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Abstract

The design of two-dimensional signal constellations
for the transmission of binary non-uniform memoryless
sources over additive white Gaussian noise channels
is investigated. The main application of this problem
is the implementation of improved constellations where
transmitted data is highly non-uniform. A simple algo-
rithm, which optimizes a constellation by re-arranging
its points in a pairwise fashion (i.e., two points are
modified a time with the other points remaining fixed),
is presented. In general, the optimized constellations
depend on both the source statistics and the signal-
to-noise ratio (SNR) in the channel. We show that
constellations designed with source statistics considered
can yield symbol error rate performance that is sub-
stantially better than rectangular quadrature amplitude
modulation signal sets used with either Gray mapping
or more recently developed maps. Gains as high as 5
dB in Eb/N0 SNR are obtained for highly non-uniform
sources.

1. Introduction

For uniformly distributed sources, rectangular
quadrature amplitude modulation (QAM) using Gray
mapping is known to perform well, and is shown as
optimal in terms of bit error rate (BER) for high
enough signal-to-noise ratios (SNR) [1]. As noted in
[11], however, there are many real-world examples of
data sources which are highly non-uniform, such as
text (email and instant/short messages), medical im-
ages and encoded voice data [2]. Compression will
often have residual redundancy in the output due to
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non-ideal coding methods [3]. Rather than using tra-
ditional source and channel coding (which can be sen-
sitive to noise-related errors in decoding if optimal
variable-length source coding is used), we can choose
instead to directly exploit the non-uniformity of the
source via the modulation scheme, while gaining noise-
resiliency in many cases and significantly reducing sys-
tem complexity and delay [3]. Such an approach
can be quite attractive for complexity-constrained and
delay-sensitive applications such as wireless sensor net-
works. In these non-uniform situations, the perfor-
mance of Gray mapped M -ary rectangular QAM is
sub-optimal. One simple improvement is to exploit the
knowledge of symbol probability by implementing (op-
timal) maximum a posteriori (MAP) decoding (instead
of maximum-likelihood decoding) at the receiver. In
[11], new M1-mappings were developed to improve per-
formance of M -ary rectangular QAM and phase-shift
keying constellations. It is also noted in [11] that per-
formance can be improved by translating each mapped
constellation so that it has zero mean. Here we con-
sider making further changes to the constellations in
order to achieve lower symbol error rate (SER). In [5],
such a constellation design problem was considered for
uniform sources under additive white Gaussian noise
(AWGN).

In this paper, we propose a method for redesign-
ing M-ary constellations to better exploit the non-
uniformity in the data, for large values of M , under
AWGN and MAP decoding. The method, which is
simple to implement, consists of iteratively improving
the performance of a constellation by re-arranging its
points two at a time, while keeping the other points
fixed. We verify our work by comparing it to the
known optimal constellations in [7] for M = 2, and
in [9] for M = 4, before considering larger constel-
lations. Other related works on constellation design
include [4, 6, 10, 12].

The remainder of this paper is organized as follows.



In Section 2, we describe the problem. We explain
our method for optimizing these constellations in Sec-
tion 3. In Section 4, we present the results of our
work, and compare performance to existing constella-
tions and mappings. In Section 5, we draw our conclu-
sions and present directions for future work.

2. Problem Statement

We consider a memoryless source {Xn} which gener-
ates independent binary symbols {0, 1} non-uniformly
with p = Pr{Xn = 0} > 1

2 . We wish to transmit
this data over an AWGN channel with noise variance
of N0

2 per dimension. We assume that an M -ary two-
dimensional (2-D) modulation scheme is to be used,
and that it is desirable to maximize data throughput
per transmission while achieving the lowest possible
SER. For convenience, we assume M to be a power
of two. Binary symbols are grouped into sequences
of log2M bits, forming a new symbol sequence {Yn}
having M distinct values {s1, s2, ..., sM} with proba-
bilities {p1, p2, ..., pM}. The probabilities are defined
by the number of zeros in the bit sequence. If sequence
si has ni zeros, then pi = pni(1 − p)log2M−ni . (In
the constellation diagrams that come later, we refer to
equiprobable symbols by the number of zeros, n, they
have in their corresponding binary sequence.) Each
channel symbol is then mapped to a signal point, ~si, in
some initial M -ary constellation, where ~si = (si,x, si,y).
Our objective is then to change the arrangement of the
points in that constellation to achieve the lowest SER
possible at a given SNR Eb/N0, where Eb is the average
energy per bit.

The search space to be considered is continuous and
consists of all collections of points {~s1, ~s2, ..., ~sM} sat-
isfying

(i) a zero mean constraint:
∑M

i=1 pi~si = 0; and

(ii) an average power constraint:
∑M

i=1 pi‖~si‖2 = E,

where the average energy per symbol, E, is given. Note
that E and Eb are related by Eb = E

log2M . Our objec-
tive function is the SER. For M = 2, the optimal con-
stellation was found analytically in [7], but as the con-
stellation size grows, this quickly becomes difficult. In
[9], the authors design optimal constellations for M = 4
by numerically evaluating tight error bounds developed
in [8]. Our goal is to design signal point arrangements
that are near-optimal for larger constellation sizes, such
as M = 16, 64, 256, under MAP decoding.

3. Pairwise Optimization

In this section, we consider a new method for de-
veloping improved signal constellations for 2-D trans-
mission. While the search space is continuous, the zero
mean and average power constraints may be used to re-
duce the search complexity. The zero mean constraint
is a necessary property of any optimal (in terms of
minimal SER) constellation with constrained average
energy, since SER performance under MAP decoding
is not affected by translation or rotation of the con-
stellation; it is only affected by changing the relative
distances between points. It is of note that for non-
uniform sources, rectangular (symmetric) constella-
tions such as 16-, 64- and 256-QAM are not zero mean.
It is trivial to improve such constellations slightly by
translating them to be zero mean, and scaling them up
to their original average energy (which will increase the
separation between all points).

For a given initial constellation, it is not possible to
adjust the position of a single point while adhering to
the above two constraints. Taking any pair of points,
however, allows us to move those points around while
still adhering to the constraints. If ~s1 and ~s2 are the
selected points, then the zero mean constraint implies
that

p1 ~s1 + p2 ~s2 = −
M∑
i=3

pi~si

so, if we let ~b =
∑M

i=3 pi~si, then

~s1 =
1
p1

(−~b − p2 ~s2)

or
~s1 = ~a − c~s2

where ~a = − ~b
p1

and c = p2
p1

. Thus

s1,x = ax − c · s2,x and s1,y = ay − c · s2,y. (1)

The average energy constraint implies the following:

p1‖~s1‖2 + p2‖~s2‖2 = E −
M∑
i=3

pi‖~si‖2. (2)

Letting the constant d =
∑M

i=3 pi‖~si‖2 and substitut-
ing (1) in (2) yields

p1

(
(ax − c · s2,x)2 + (ay − c · s2,y)2

)
+p2(s2

2,x + s2
2,y) = E − d. (3)

Expanding and completing the square gives us(
s2,x −

p1ax

p1 + p2

)2

+
(

s2,y −
p1ay

p1 + p2

)2

= r2 (4)



where r2 = p1(E−d)
p2(p1+p2)

− p3
1

p2(p1+p2)2

(
a2

x + a2
y

)
. Under

the constraints, Eqn. (4) gives us a circle, centered at(
p1ax

p1+p2
,

p1ay

p1+p2

)
with radius r, on which ~s2 may travel,

and the relationship given by Eqn. (1) defines a corre-
sponding circle for ~s1. With (4), for each pair of signals
(~s1, ~s2), the problem of searching over four variables
(s1,x, s1,y, s2,x, s2,y) is effectively reduced to searching
over a single variable, θ, which is the angle parametriz-
ing this circle for ~s2, measured counterclockwise rela-
tive to the positive x-axis for the center of the circle.
For a given value of θ, ~s2 is defined, and ~s1 has a cor-
responding position. It is over this parameter θ that
each pair of points can be optimized for performance.

With regards to the performance for a potential con-
stellation, we consider the union upper bound1 on the
SER Ps, which is fairly tight for medium to high SNRs:

Ps =
M∑

u=1

P (ε| ~su)P ( ~su)

=
M∑

u=1

P

⋃
i 6=u

εiu

 P ( ~su)

≤
M∑

u=1

∑
i 6=u

P (εiu)P ( ~su) (5)

where

P (εiu) = Q

‖~si − ~su‖√
2N0

+

√
2N0ln

P ( ~su)
P (~si)

2‖~si − ~su‖


and Q(x) = 1√

2π

∫∞
x

e−y2/2dy is the Gaussian Q-
function. Note that P (εiu) is the probability that ~si

has a larger MAP decoding metric than ~su given that
~su was sent [8].

When considering only the pair of points ~s1 and ~s2,
we can ignore the terms in Eqn. (5) for u 6= 1, 2 and
i 6= 1, 2 as they will remain constant. The remaining
terms we use as an upper bound are

F12 =
∑

i 6=1 P (εi1)P (~s1) +
∑

i 6=2 P (εi2)P (~s2)

+
∑M

u=3 P ( ~su) (P (ε1u) + P (ε2u)) (6)

which is the objective function to be minimized for each
pair.

3.1. Algorithm

The implemented algorithm is as follows:
1To keep things simple, we herein employ the union bound

which can be inaccurate for low SNRs. However, the tight upper
and lower bounds of [8] can also be used to further improve
system performance.

Figure 1. Performance of M = 4 constella-
tions for p = 0.9. Optimized from [9] and PO4
are both designed for SNR = 0 dB.

1. Configure some initial constellation, ensuring it
adheres to the zero mean and average energy con-
straints.

2. Randomly (uniformly) select a pair of points
(~s1, ~s2).

3. Calculate the constrained circles from (4) and (1).

4. Find the positions of (~s1, ~s2) by minimizing (6).

5. Go back to Step 2 and repeat until the constella-
tion stabilizes.

The initial constellation used in Step 1 contains
the source information implicitly through the symbol
probabilities. Tests using different initial constellations
(rectangular, circular, asymmetric) all yielded similar
results. In Step 4, we calculate the circle noted in Eqn.
(4) and set angle θ to be 0 relative to the x-axis, and
take discrete steps counterclockwise. At each step of θ,
F12 is calculated using the corresponding ~s1 and ~s2 on
their respective circles, and the design SNR (Eb/N0),
which is set as a constant. This is a simple and brute-
force approach, but it works well enough for our needs.
The complexity of the algorithm can be approximated
by the number of times we calculate the Gaussian Q-
function. For each pair of points being optimized, we



Figure 2. Pairwise optimized constellation for
M = 16, p = 0.9 and design SNR = 1 dB.

calculate F12 for 50 steps of θ, each of which requires
4M calls to Q(·) as in (6), or 200M calls per pair. We
need roughly M2 pairs before good constellations are
achieved, for a total of 200M3 calls (each call takes ap-
prox. 3 µs on our 3.0 GHz AMD hardware). When
executed, our algorithm stabilizes in a matter of sec-
onds for sizes up to M = 16, and scales up to three or
four hours for M = 256. Stabilization, as used in Step
5, means visual inspection of the constellation at this
point. When considering the speed of convergence, it
is difficult to be precise, since we do not know what the
optimal constellation looks like, or even the final PO
constellation for larger sizes. In general, the more likely
symbols settle quickly, but the large number of un-
likely symbols in large constellations tend to continue
rearranging (with better performance at each step) for
much longer.

4. Numerical Results and Discussion

We consider the memoryless non-uniform binary
source with distribution p for transmission over an
AWGN channel for M = 2, 4, 16, 64, 256 and compare
the performance (in terms of SER simulations) un-
der symbol-by-symbol MAP decoding of our pairwise
optimized constellations (which are denoted by PO2,
PO4,· · · , PO256) to existing constellations. We use
p = 0.9 in the simulations, except for the discussion at
the end of the Section 4.2.

Figure 3. Performance of M = 16 constella-
tions for p = 0.9 and design SNR = 1 dB.
Performance of a specialized constellation
(i.e., with design SNR identical to true SNR)
also shown.

4.1. Binary and Quaternary Constellations

We begin by comparing to the known optimal con-
stellation presented in [7] for M = 2. Our algorithm
directly arrives at the same final constellation as the
work in [7], as shown in Eqn. (3) with both ~a = ~0 and
d = 0 (since we have no symbols beyond ~s1 and ~s2):

p
(
(−c · s2,x)2 + (−c · s2,y)2

)
+ (1− p)(s2

2,x + s2
2,y) = E

and we choose the point with s2,y = 0, so

p(−c · s2,x)2 + (1 − p)s2
2,x = E

s2,x =

√
E

pc2 + (1 − p)
=

√
E · p

(1 − p)

s1,x = −c · s2,x = −

√
E · (1 − p)

p

which is the result obtained in [7]. Note that for M = 2,
the union bound in (5) yields the exact SER. While the
pairwise algorithm is not limited to one dimension, the
results are equivalent after rotation. Simulation con-
firms an exact SER performance match, as expected.
There is no consideration of design SNR for M = 2,



Figure 4. Pairwise optimized constellation for
M = 64, p = 0.9 and design SNR = 2 dB.

because the constraints alone fix the relative positions
of ~s1 and ~s2, and we have no other points with respect
to which we may optimize.

We next consider the constellations found in [9] for
M = 4. When the pairwise optimization stabilizes,
the resulting constellation is very similar to those ar-
rived at in [9] for the given design SNR (in this case
SNR = 0 dB), up to a rotation and/or reflection. In
Fig. 1, it is clear that the pairwise optimized con-
stellation PO4 performs identically to the optimized
M = 4 constellation of [9]. Both constellations per-
form considerably better than quaternary phase shift
keying (QPSK) for highly non-uniform sources, with
nearly 5 dB gain at any SNR. The above results in-
dicate that the algorithm does in fact tend towards
optimal constellations, and we may proceed to apply
it to larger modulation constellations, where optimal
constellations are not known.

4.2. 16-ary Constellations and Robustness

Before investigating large constellations, we will ex-
amine the performance of the 16 point constellation.
The pairwise optimized constellation is shown in Fig.
2. In Fig. 3, the M1 mapping of [11] already im-
proves the performance of (rectangular) 16-QAM by
approximately 1 dB. We can also see that the pair-
wise optimized constellation PO16 achieves a further
improvement of 2 dB over the M1 mapping, for a to-
tal gain of 3 dB over Gray mapped 16-QAM. Also in-
cluded in Fig. 3 is the performance at each true SNR

Figure 5. Performance of constellations for
M = 64, p = 0.9 and design SNR = 2 dB
and the pairwise optimized constellation for
M = 256 with design SNR = 4 dB. BPSK
also shown as reference point.

step of a specialized constellation designed specifically
for that noise level. This specialized configuration does
not provide considerable gains over a constellation de-
signed at a single low-mid SNR (in this case, 1dB) and
used across all noise levels. This shows that a constella-
tion designed using a single appropriately chosen design
SNR provides robust performance vis-a-vis changes in
the true SNR.

While we have not included the plots here, gains over
Gray-mapped 16-QAM are also achieved by PO16 for
smaller values of p. For p = 0.5, the gain achieved was
negligible, as expected. With p = 0.6, the gain is about
0.25dB. For p = 0.7 and p = 0.8, more significant gains
of 0.5 dB and 1.5 dB are achieved, respectively.

4.3. 64-ary and 256-ary Constellations

The result of pairwise optimization of a 64 point con-
stellation using design SNR = 2dB is shown in Fig. 4.
Again we see the tendency of more likely points to lay
closer to the origin. This keeps the average energy low,
allowing less likely points to sit farther away, thus cre-
ating more distance between points overall. In Fig. 5,
we compare the performance of this constellation to 64-
QAM with the M1 and Gray mappings. The M1 64-



Figure 6. Pairwise optimized constellation for
M = 256, p = 0.9 and design SNR = 4 dB.

QAM mapping developed in [11] already outperforms
Gray mapped 64-QAM by approximately 3.5 dB for
any given SER. The pairwise optimized constellation
we develop here, PO64, outperforms 64-QAM with M1
mapping by another 1.5 dB at a given SER, for a total
improvement of about 5 dB over 64-QAM with Gray
mapping. It is interesting to note that for medium
and high SNRs (above 4 dB), the PO64 constellation
achieves better SER than the BER of binary phase shift
keying (BPSK). It is likely that the BER of PO16 will
be lower than that of BPSK for sufficiently high values
of p. The performance of the pairwise optimized con-
stellation for M = 256 (PO256 in Fig. 6) is better than
64-QAM with Gray map by approximately 2dB for any
SER. Note that PO256 has both a higher data rate and
a lower SER than Gray mapped rectangular 64-QAM
at all SNRs, thus improving both system performance
and throughput.

5. Conclusions

It is clear that the pairwise optimized constella-
tions offer significant gains over traditional (rectan-
gular QAM) modulation constellations for highly non-
uniform sources. This is especially true for high rate
constellations, where much energy is spent needlessly
on likely symbols. We recognize that asymmetric non-
rectangular constellations introduce additional com-
plexity in the (de)modulation process. Smaller im-
provements can be easily obtained by re-centering the

traditional rectangular constellations to be zero mean.
Here we have only considered SER performance of
these constellations.

Further work will involve designing good mappings
for these improved constellations to achieve even better
results in terms of BER.
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