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Curing Epidemics on Networks Using
a Polya Contagion Model
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Abstract— We study the curing of epidemics of a network
contagion, which is modelled using a variation of the classical
Polya urn process that takes into account spatial infection among
neighbouring nodes. We introduce several quantities for measur-
ing the overall infection in the network and use them to formulate
an optimal control problem for minimizing the average infection
rate using limited curing resources. We prove the feasibility of
this problem under high curing budgets by deriving conservative
lower bounds on the amount of curing per node that turn our
measures of network infection into supermartingales. We also
provide a provably convergent gradient descent algorithm to find
the allocation of curing under limited budgets. Motivated by the
fact that this strategy is computationally expensive, we design
a suit of heuristic methods that are locally implementable and
nearly as effective. Extensive simulations run on large-scale net-
works demonstrate the effectiveness of our proposed strategies.

Index Terms— Polya contagion urn scheme, epidemics on
networks, non-stationary stochastic processes, supermartingales,
curing strategies, gradient descent, node centrality.

I. INTRODUCTION

IN THIS paper we examine the problem of curing an
epidemic using a network contagion model adapted from

the Polya process [2], [3]. Here an epidemic can represent a
disease [4], a computer virus [5], the spread of an innovation,
rumour or idea [6], or the dynamics of competing opinions in
a social network [7].

Epidemics on networks have been intensively studied in
recent years, see [8]–[10] and references therein and thereafter.
Our model is similar to the well-known susceptible-infected-
susceptible (SIS) compartmental infection model [11], in the
sense that initially, all nodes may be healthy or infected
and as the epidemic spreads, nodes that are infected can be
cured to become healthy, but any healthy node may become
infected at any time, regardless of whether they have been
cured previously. In contrast to the SIS model, our model
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is motivated by the classical Polya contagion process, which
evolves by sampling from an urn containing a finite number
of red and black balls [12]–[14]. In the network Polya con-
tagion model, introduced in [2], each node of the underlying
network is equipped with an individual urn; however, instead
of sampling from these urns when generating its contagion
process, each node has a “super urn”, created by combining
the contents of its own urn with those of its neighbours’
urns. This adaptation captures the concept of spatial infec-
tion, since having infected neighbours increases the chance
that an individual is infected in the future. The stochastic
properties of this model, along with a comparison to the
traditional discrete-time SIS model, were examined in [2],
[3]. Comparatively, the network Polya contagion process runs
at a microscopic level to better model the behavior of the
contagion process mathematically. Indeed, with finite memory
our process becomes Markovian and exhibits similar behavior
to the discrete-time SIS model, but in the case of infinite
memory our model exhibits non-Markovian characteristics
which may be truer to some real-life epidemics. In both cases,
the microscopic viewpoint allows us to capture the behavior
of the process and study its stochastic properties. With the
explicit formulae provided for the network Polya contagion
process, the joint and marginal probabilities of infection can be
calculated exactly for any time without mean-field approxima-
tions or other moment closure techniques, as is typical for SIS
models [15].

In this work, we study the problem of controlling the
spread of contagion under the network Polya contagion model.
This problem has been extensively studied in many different
settings, including both deterministic and stochastic compart-
mental models such as SIS and SIR [8], expansions there-
upon [16], models based on real epidemic data [17], as well
as cascade models, among others [11]. Different problem
formulations which have been explored include link removal
via immunization [18], optimization of curing resources [19],
message-passing approaches [20], optimal control paradigms
which balance performance and resource usage [21], [22],
as well as approaches involving competing or synergistic
contagions on the same network [23], [24]. In this paper,
we propose various natural ways to measure the total infection
in this model, and examine conditions under which these
measures have limits as time grows without bound. Using
these measures, we pose an optimal control problem within
the context of our model. As our first contribution, we charac-
terize lower bounds on the allocation of curing to individuals
which turn these infection measures into supermartingales.
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Our results provide conservative feasibility strategies for cur-
ing network epidemics. We next focus on realistic scenarios,
where the curing budget is constrained. As our next contribu-
tion, we prove the convergence of a constrained gradient flow
method for this problem and employ it to find near-optimal
strategies under a fixed curing budget at each time step. In spite
of its effectiveness, as we demonstrate, the gradient flow
strategy is computationally expensive and only implementable
in a centralized manner. These shortcomings motivate us to
explore alternative strategies, considering notions of node
centrality of the underlying network along with the compo-
sition of super urns at each time step. These strategies are
less expensive computationally and may be carried out in a
decentralized manner. Through extensive simulation results,
we show that our proposed heuristic strategies perform well
in curing epidemics.

The rest of the paper is organized as follows. Section II
outlines some mathematical preliminaries that will be used
throughout the paper. Section III contains the description of
our network contagion process and the problem statement.
Section IV discusses analytical results pertaining to the control
of epidemics using this model, and Section V outlines strate-
gies used to solve the problems posed. Section VI includes
several simulation results. Finally, Section VII summarizes our
contributions and proposes avenues for future work.

II. PRELIMINARIES

For a sequence vi = (vi,1, . . . , vi,n), we use the notation vt
i,s

with 1 ≤ s < t ≤ n to denote the vector (vi,s, vi,s+1, . . . , vi,t),
with vt

i,0 = vt
i . Our technical results rely on notions from sto-

chastic processes, some of which we recall here. Throughout,
we assume that the reader is familiar with basic notions of
probability theory.

Let (Ω,F , P ) be a probability space, and consider the
stochastic process {Zn}∞n=1, where each Zn is a random
variable on Ω. We often refer to the indices of the process
as “time” indices. We recall that the process {Zn}∞n=1 is
stationary if for any n ∈ Z≥1, its n-fold joint probability
distribution (i.e., the distribution of (Z1, . . . , Zn)) is invariant
to time shifts. Further, {Zn}∞n=1 is exchangeable if for any
n ∈ Z≥1, its n-fold joint distribution is invariant to per-
mutations of the indices 1, . . . , n. It directly follows from
the definitions that an exchangeable process is stationary.
Lastly, the process {Zn}∞n=1 is called a martingale (resp.
supermartingale, submartingale) with respect to the filtration
{Fn}∞n=1 if E[|Zn|] < ∞ and E[Zn+1|Fn] = Zn almost
surely (resp. less than or equal to, greater than or equal to),
for all n. If the inequality is strict, we call the process a strict
supermartingale or strict submartingale. Doob’s martingale
convergence theorem [25] can then be used to show that
{Zn}∞n=1 will have a limit as n grows without bound. Precise
definitions of all notions, including that of ergodicity, can be
found in standard texts (e.g., [25], [26]).

We now recall the classical version of the Polya contagion
process [12], [14]. Consider an urn with R ∈ Z>0 red balls
and B ∈ Z>0 black balls. We denote the total number of balls
by T , i.e., T = R+B. At each time step, a ball is drawn from
the urn. The ball is then returned along with Δ > 0 balls of

Fig. 1. Illustration of the first draw for a classical Polya process. We drew
a black ball and hence Z1 = 0. Here R = 2, B = 2, and Δ = 2.

the same color. To describe this process, we use a replacement
matrix MR:

MR =
[
Δ 0
0 Δ

]
,

where [Mr]1,1 = Δ, [Mr]1,2 = 0 means we add Δ red balls
and 0 black balls when a red ball is drawn, and similarly
[Mr]2,1 = 0, [Mr]2,2 = Δ means we add 0 red balls and Δ
black balls when a black ball is drawn. and We use an indicator
Zn to denote the color of ball in the nth draw (see Figure 1):

Zn =

{
1 if the nth draw is red,

0 if the nth draw is black.

Let Un denote the proportion of red balls in the urn after
the nth draw. Then

Un :=
R + Δ

∑n
t=1 Zt

T + nΔ

=
ρc + δc

∑n
t=1 Zt

1 + nδc

where ρc = R
T is the initial proportion of red balls in the urn

and δc = Δ
T is a correlation parameter. Since we draw balls

from this urn at each time step, the conditional probability of
drawing a red ball at time n, given Zn−1 = (Z1, . . . , Zn−1),
is given by

P (Zn = 1 | Zn−1) =
R + Δ

∑n−1
t=1 Zt

T + (n− 1)Δ
= Un−1.

It can be easily shown that {Un}∞n=1 is a martingale [27]. The
process {Zn}∞n=1, whose n-fold joint distribution can be deter-
mined in closed form in terms of the parameters ρc and δc,
is also exchangeable (hence stationary) and non-ergodic with
both Un and the process sample average 1

n

∑n
i=1 Zi converg-

ing almost surely as n→∞ to a random variable governed by
the Beta distribution with parameters ρc

δc
and 1−ρc

δc
[27], [28].

The classical Polya process has been applied in many different
contexts, including the modelling of communication channels
with memory [28], image segmentation [29], as well as in
biology, statistics and other areas (see [30]).

III. MODEL DESCRIPTION AND PROBLEM STATEMENT

A. Network Polya Contagion Process

In this section, we briefly recall the network Polya contagion
process introduced in [2], [3]. Consider an undirected graph
G = (V, E), where V = {1, . . . , N} is the set of N ∈ Z≥1

nodes and E ⊂ V × V is the set of edges. We assume that G
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Fig. 2. Illustration of a super urn in a network.

is connected, i.e. there is a path between any two nodes in G.
We use Ni to denote the set of nodes that are neighbors to
node i, that is Ni = {v ∈ V : (i, v) ∈ E}, and N ′

i = {i}∪Ni.
Each node i ∈ V is equipped with an urn, initially with Ri ∈
Z>0 red balls and Bi ∈ Z>0 black balls (we do not let Ri = 0
or Bi = 0 to avoid any degenerate cases). We let Ti = Ri+Bi

be the total number of balls in the ith urn, i ∈ {1, . . . , N}.
We use Zi,n as an indicator for the ball drawn for node i at
time n:

Zi,n =

{
1 if the nth draw for node i is red,

0 if the nth draw for node i is black.

Thus we define the network contagion process as {Zn}∞n=1,
where Zn = (Zi,n, . . . , ZN,n). However, instead of drawing
solely from its own urn, each node has a “super urn” created
by combining all the balls in its own urn with the balls in its
neighbours’ urns; see Figure 2. This allows the spatial rela-
tionships between nodes to influence their state. This means
that Zi,n is the indicator for a ball drawn from node i’s super
urn, and not its individual urn. Hence, the super urn of node i
initially has R̄i =

∑
j∈N ′

i
Rj red balls, B̄i =

∑
j∈N ′

i
Bj black

balls, and T̄i =
∑

j∈N ′
i
Tj balls in total, and the network-wide

initial proportion of red balls is ρ =
�N

i=1 Ri�N
i=1 Ti

.

We allow the number of added balls to vary based on the
colour drawn, the time index, and the node for which it was
drawn; hence, the replacement matrix for node i at time t is

MR,i(t) =
[
Δr,i(t) 0

0 Δb,i(t)

]
.

We assume throughout that Δr,i(t) ≥ 0, Δb,i(t) ≥ 0, for
all t ∈ Z≥1 and that there exists i ∈ V and t such that
Δr,i(t)+Δb,i(t) 	= 0; otherwise we are simply sampling with
replacement. In the context of epidemics, the red and black
balls in an urn, respectively, represent “infection” and “health-
iness”. For example, in the context of a rumour on a social
network, adding a red ball may mean a user decided to share
information that corroborates the rumour, while adding a black
ball would mean a user instead shared information dismissing
the rumour. This information is visible to their immediate
neighbours, and hence the added balls enter the super urns of
those neighbouring users. In both cases, Δr,i(t) and Δb,i(t)

may represent the number of such posts or articles shared over
a given time window. We refer the interested reader to [3] for
a complete description of this relationship.

To express the proportion of red balls in the indi-
vidual urns of the nodes, we define the random vector
Un = (U1,n, . . . , UN,n), where Ui,n is the proportion of red
balls in node i’s urn after the nth draw, i ∈ V . For node i,

Ui,n =
Ri +

∑n
t=1 Δr,i(t)Zi,t

Xi,n
,

where

Xi,n = Ti +
n∑

t=1

Δr,i(t)Zi,t + Δb,i(t)(1 − Zi,t) (1)

is the total number of balls in node i’s urn after the nth draw,
and the numerator of Ui,n represents the total number of
red balls in the same urn. We now define the random vector
Sn = (S1,n, . . . , SN,n) as the proportion of red balls in each
of the super urns of the nodes after the nth draw, so that Si,n

is the proportion of red balls in node i’s super urn after n
draws. Hence, for node i,

Si,n =
R̄i +

∑n
t=1 Z̄r,i,t

X̄i,n

=

∑
j∈N ′

i
Uj,nXj,n

X̄i,n
, (2)

where

Z̄r,i,t =
∑

j∈N ′
i

Δr,j(t)Zj,t,

Z̄b,i,t =
∑

j∈N ′
i

Δb,j(t)(1 − Zj,t),

X̄i,n = T̄i +
n∑

t=1

(Z̄r,i,t + Z̄b,i,t) =
∑

j∈N ′
i

Xj,n.

Note that Si,0 = R̄i/T̄i. In fact, Si,n is a function of the
random draw variables of the network, and in particular of
{Zn

j }j∈N ′
i
, but for ease of notation, when the arguments

are clear, we write Si,n(Zn
1 , · · · , Zn

N) = Si,n. Then the
conditional probability of drawing a red ball from the super
urn of node i at time n given the complete network his-
tory, i.e. given all the past n − 1 draw variables for each
node in the network {Zn−1

j }Nj=1 = {(Z1,1, . . . , Z1,n−1), . . . ,
(ZN,1, . . . , ZN,n−1)}, satisfies

P
(
Zi,n = 1|{Zn−1

j }Nj=1

)
=

R̄i +
∑n−1

t=1 Z̄r,i,t

X̄i,n

= Si,n−1. (3)

That is, the conditional probability of drawing a red ball for
node i given the entire past {Zn−1

j }Nj=1 is the proportion of
red balls in its super urn, Si,n−1. Since these random variables
fully describe the evolution of the process, we say {Fn}∞n=1

is the natural filtration on {Zn−1
i }Ni=1 and by extension

{Ui,n}∞n=1 and {Si,n}∞n=1, for all i ∈ V . Thus note that in (3)
we could have instead conditioned on Fn−1.
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Using the conditional probability established above, we next
determine the n-fold joint probability of the entire network G.
Let an

i ∈ {0, 1}n, where i ∈ {1, . . . , N}. We have

P
(n)
G (an

1 , · · · , an
N)

:= P
({Zn

i = an
i }Ni=1

)
=

n∏
t=1

P
({Zi,t = ai,t}Ni=1 | {Zt−1

i = at−1
i }Ni=1

)

=
n∏

t=1

N∏
i=1

(
Si,t−1

)ai,t
(
1− Si,t−1

)1−ai,t

, (4)

where Si,t = Si,t(at
1, · · · , at

N) is defined in (3). The study
of the asymptotic behaviour of each node’s contagion process
{Zi,n}∞n=1, i ∈ V is established in [2], [3]. Our objective in
this work is to demonstrate the implications of these results
in designing curing strategies. With the above explicit joint
distribution, it is possible to determine the distributions of
each node’s contagion process. More specifically, using (4),
the n-fold distribution of node i’s process at time t ≥ n is

P
(n)
i,t (ai,t−n+1, · · · , ai,t) :=

∑
at−n

i ∈{0,1}t−n

at
j∈{0,1}t,j �=i

P
(t)
G (at

1, · · · , at
N).

It can be shown that the draw contagion process {Zi,n}∞n=1 of
each individual node i is not stationary in general (and hence
not exchangeable) [2], [3]. Thus the entire network contagion
process {Zn}∞n=1 is not stationary.

In order to measure the spread of contagion in the network
at any given time, we wish to see how likely it is, on average,
for a node to be infected at that instant. We thus define the
average infection rate in the network at time n as

Ĩn :=
1
N

N∑
i=1

P (Zi,n = 1) =
1
N

N∑
i=1

P
(1)
i,n (1).

Note that Ĩn is a function of the network variables, i.e, the net-
work topology (V, E), the initial placement of balls Ri and Bi,
the draw processes {Zi,t}nt=1, and the number of balls added
{Δr,i(t)}nt=1 and {Δb,i(t)}nt=1 for each node i ∈ V . Unfor-
tunately for an arbitrary network, the above quantity does
not yield an exact analytical formula (except in the simple
case of complete networks). As such, in general it is hard to
mathematically analyze the asymptotic behavior of Ĩn, which
we wish to minimize when attempting to cure an epidemic.
Instead we examine the asymptotic stochastic behavior of two
closely related variables given by the network-wide average
individual proportion of red balls at time n, namely

Ũn :=
1
N

N∑
i=1

Ui,n,

which we call the network susceptibility, and the network-wide
average neighborhood proportion of red balls at time n,

S̃n :=
1
N

N∑
i=1

Si,n,

which we call the network exposure. Note that similarly to Ĩn,
both Ũn and S̃n are functions of the network variables.

With the model in hand, we turn to the exploration of a cur-
ing problem. Our objective is to control the average infection
rate Ĩn as n grows without bound; but when seeking analytic
results, it might be more amenable to observe the asymptotic
behavior of the network exposure S̃n. These quantities are
closely related; through (2) we see that if Ui,n increases then
this node-specific value causes Sj,n to increase for every
neighbour j of node i, and hence by (3) their conditional
probabilities of drawing red balls increase. More specifically,

↑ Ui,n
(2)⇒ ↑ Sj,n for all j ∈ N ′

i

(3)⇒ ↑ P
(
Zi,n+1 = 1|{Zn

j }Nj=1

)
for all j ∈ N ′

i . (5)

Thus if Ũn is high, then this average measure of individual
nodes implies that the conditional probability of a node being
infected is higher on average. Hence Ũn can be understood
as the average node prevalence of infection. The effect of
the network exposure here is more direct, since (3) shows
that S̃n is in fact the network-wide average of the conditional
probabilities of infection, which is a quantity that is intimately
related to the state of infection in the neighbourhood of node i.
Thus S̃n represents the average neighbourhood prevalence
of infection. We focus on these quantities over the average
infection rate Ĩn for computational tractability. Ũn and S̃n

provide us with proxy measurements of the “level of infection”
in the network which may be used to provide mathematical
justification for our exploration into optimal curing strategies.

B. Establishing a Control Problem

The quantities {Δb,i(n)}∞n=1, which denote the net number
of “healthy” balls added to node i’s urn after each draw, can
play the role of “healing or curing parameters”. Our objective
is to show that when these parameters are appropriately
selected, one can steer the average infection rate towards a
desirable level; the selection of curing parameters is, however,
subject to an allowable budget on the maximal number of
healthy balls that can be added in the network. Let us state
this problem formally.

Problem 1 (Average Infection Rate Budget Constraint):
Minimize the limiting average infection rate Ĩt subject to a
budget B on the total healing at each time step:

min�N
i=1 Δb,i(t)≤B

∀t

lim sup
t→∞

Ĩt

Such optimal curing problems have been studied in many
different contexts [16], [31]. For our model, the solution to
Problem 1 would be an infinite horizon optimal control policy
that would yield the best possible level of epidemic elimina-
tion, given the initial data. Finding such a policy in general
appears to be difficult. Nevertheless, as we demonstrate in
the upcoming sections, one can obtain interesting analytical
results regarding the feasibility of this problem, and design
algorithmic strategies to curtail the average infection rate.

IV. CONTROLLING EPIDEMICS: ANALYTICAL RESULTS

In order to determine when Problem 1 makes sense, we wish
to examine when a limit exists. Such a result would describe
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to us when our curing problem is feasible, and hence when
the exploration of an optimal curing strategy for the net-
work Polya contagion process is reasonable. As stated earlier,
working with Ĩn can be difficult, and so we instead focus
on the related measures of the network susceptibility Ũn

and network exposure S̃n. Our next results will show how
one can force these measures to form supermartingales by
appropriately selecting the curing policies {Δb,i(n)}∞n=1, for
all i ∈ V . In conjunction with Doob’s martingale convergence
theorem [32], these results show that {Ui,n}∞n=1, {Si,n}∞n=1,
and hence both {Ũn}∞n=1 and {S̃n}∞n=1, have limits. While
the results presented herein do not obey the per-step budget
constraint on the curing, these results in conjunction with the
simulation results presented later show that strategies that fit
within the framework of Problem 1 exist that reduce Ĩn on
average. In particular, since it is possible to guarantee these
quantities decrease on average, we argue that it is reasonable
to assume there is an optimal method for forcing the average
infection rate to be reduced on average.

An important assumption used herein is that the number
of red balls to be added Δr,i(n) is known at least one step
ahead of time, so that in particular Δr,i(n) is almost surely
constant given Fn−1. A sufficient, but not necessary, condition
to satisfy this assumption is for {Δr,i(n)}∞n=1 to be set, for
all i ∈ V , before the process begins.

Theorem 2 (Individual Urn Proportion Categories): In a
general network G = (V, E), if we choose {Δb,i(n)}∞n=1 so
that

Δb,i(n) ≥ Δr,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)

almost surely for all n ∈ Z≥1 and i ∈ V (resp. equal to,
less than or equal to) then {Ui,n}∞n=1 is a supermartingale
(resp. martingale, submartingale) with respect to the natural
filtration {Fn}∞n=1, i.e.,

E[Ui,n|Fn−1] ≤ Ui,n−1 almost surely ∀n ∈ Z≥1.
Corollary 3 (Network Susceptibility Supermartingale):

In a general network G = (V, E), if the curing policies
{Δb,i(n)}∞n=1 obey the bound

Δb,i(n) ≥ Δr,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)

almost surely for all nodes i ∈ V , then the network susceptibil-
ity {Ũn}∞n=1, where Ũn = 1

N

∑N
i=1 Ui,n, is a supermartingale

with respect to the natural filtration {Fn}∞n=1, i.e.,

E[Ũn|Fn−1] ≤ Ũn−1 almost surely ∀n ∈ Z≥1.

The proof for Theorem 2 is provided in Appendix A. While
Corollary 3 is useful, the network exposure S̃n is more closely
related to the average infection rate Ĩn than the network
susceptibility Ũn, since our draws are taken from the super
urn. It is with this in mind that we show the next results, which
give us sufficient conditions for {Si,n}∞n=1 and {S̃n}∞n=1 to be
supermartingales.

Theorem 4 (Super Urn Proportion Categories): In a gen-
eral network G = (V, E), if the curing policy {Δb,i(n)}∞n=1

obeys the lower bound

Δb,i(n) > Δr,i(n)
Si,n−1

1− Si,n−1
max

k s.t. i∈N ′
k

1− Sk,n−1

Sk,n−1
(B1)

almost surely for all nodes i ∈ V , then the neighbourhood
proportions of red balls {Si,n}∞n=1 are strict supermartingales
with respect to the natural filtration {Fn}∞n=1, i.e.

E[Si,n|Fn−1] < Si,n−1 almost surely ∀i ∈ V, n ∈ Z≥1.

Furthermore, if the curing policy {Δb,i(n)}∞n=1 obeys the
upper bound

Δb,i(n) < Δr,i(n)
Si,n−1

1− Si,n−1
min

k s.t. i∈N ′
k

1− Sk,n−1

Sk,n−1
(B2)

almost surely for all nodes i ∈ V , then the neighbourhood
proportions of red balls {Si,n}∞n=1 are strict submartingales
with respect to the natural filtration {Fn}∞n=1.

Corollary 5 (Network Exposure Categories): In a general
network G = (V, E), if the curing policies {Δb,i(n)}∞n=1 obey
the lower bound (B1) almost surely for all nodes i ∈ V , then
the network exposure {S̃n}∞n=1, where S̃n = 1

N

∑N
i=1 Si,n,

is a strict supermartingale with respect to the natural filtration
{Fn}∞n=1, i.e.,

E[S̃n|Fn−1] < S̃n−1 almost surely ∀n ∈ Z≥1.

Furthermore, if the curing policies {Δb,i(t)}∞t=1 obey the
upper bound (B2) almost surely for all nodes i ∈ V , then
the network exposure {S̃n}∞n=1 is a strict submartingale with
respect to the natural filtration {Fn}∞n=1.

The proof of Theorem 4 is presented in Appendix B. While
the duality of these bounds is interesting, in the context of
curing we will focus on the lower bound (B1). It is important
to note that the policy for {Δb,i(n)}∞n=1 used in Theorem 4
is not a tight lower bound on the curing resources which
guarantee that the processes {Si,n}∞n=1 are supermartingales,
and hence it is possible that less costly policies exist that
still guarantee this property. In particular, strategies may exist
which obey the fixed budget B on the amount of curing
resources that may be used. However, these results motivate
the fact that the search for better policies makes sense, since
we know that policies exist that will fight the infection and
reduce it on average.

V. CONTROLLING EPIDEMICS: ALGORITHMIC STRATEGIES

The supermartingale results established in the previous
section demonstrate the feasibility of a relaxed version of
Problem 1, with no budget limitation. In this section, we estab-
lish numerical methods to find control policies that find
efficient sub-optimal policies for Problem 1, under budget
constraints and with having computational complexity in mind.
We compare these strategies with the ones obtained from our
supermartingale results. A summary of all strategies that will
be discussed in this section is given in Table I.

Before we present these strategies in details, let us
describe briefly how we have evaluated their performance.
The simulation platform for these strategies is outlined in
Algorithm 1. To achieve comparable results, independent



2090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

TABLE I

CURING STRATEGIES

trials of the process are ran with the same initial condi-
tions �R = (R1, . . . , RN ), �B = (B1, . . . , BN ), and �Δr =
(Δr,1, . . . , Δr,N ), for each curing strategy. The results for
each strategy are then averaged to evaluate the expected per-
formance. The full simulation results, along with discussions
of their implications, are presented in Section VI.

Algorithm 1 Network Contagion Curing
A← adjacency matrix of the network
�R, �B, �Δr ∼ �Uniform((0, 10])�N
B ← budget,

∑N
i=1 Δr,i

C ← number of cases, each with a strategy
T ← number of trials to run for each case
K ← number of time steps for each trial
for c = 1 : C do

for t = 1 : T do
�Zc,t ← RUNTRIAL(A, �R, �B, �Δr,B, K, strategy)

�Zc = 1
T

∑T
t=1

�Zc,t

procedure RUNTRIAL(A, �R, �B, �Δr,B, K, strategy)
Initialize Si,0, Ui,0 using Ri and Bi for all i ∈ V
for s = 1 : K do

Assign Δb,i(s) using strategy, obeying B if required
Generate �Y ∼ Uniform([0, 1])N

if Yi ≤ Si,s−1 then
Zi,s = 1

else
Zi,s = 0

Update Si,s, Ui,s using Δr,i, Δb,i(s) for all i ∈ V
based on A

A. Supermartingale Strategies

The supermartingales results that we have obtained in
Section IV, specifically Theorems 2 and 4, naturally lead
to a class of curing strategies. In particular, these strategies
guarantee that Ũn and S̃n, respectively, are supermartingales.
It is worth reminding that our theoretical results do not
necessarily imply that average infection rate Ĩn forms a
supermartingale. In spite of this, these strategies are still viable
options for curing, as far as enough resources are available.

We next describe the differences between the strategy given
by individual urn proportions, and the one given by super urn
proportions.

By Corollary 3, we know that strategy (i) guarantees that
the network susceptibility Ũn will be a supermartingale. Hence
we set the curing strategy for each node so that it will
force its own individual urn proportion of red balls to be a
supermartingale. Since draws are taken from the super urns
and not the individual urns, the relationship between the
reduction of Ũn and Ĩn is not a strong one and our simulations
suggests that this strategy does not appear to offer a large
reduction in the average infection rate in general. In contrast,
the curing strategy given by Corollary 5, where we choose
our curing strategy to force the super urn proportions of red
balls to be supermartingales for all nodes, performs reasonably
well.

While these strategies guarantee a reduction in their respec-
tive measures, they use an arbitrary amount of curing resources
to do so in general. In fact, as we will see later, these
strategies always use a large amount of curing resources
relative to the impact they have on reducing the average
infection rate. However, the impact of these results are in
proving achievability of the curing problem. It is with this in
mind that we examine a numerical curing strategy that obeys
a fixed budget on the per-step curing resources in order to stay
within the framework of Problem 1.

B. Gradient Flow Methods

In this section, we employ the well-known gradient descent
algorithm [33] for Problem 1. As discussed earlier, using Ĩn

as a measure of infection is computationally expensive, and
hence we instead focus on the network exposure S̃n. While
our suggested gradient descent algorithm will not provide the
exact answer to Problem 1 for reducing Ĩn, we will show that
it is guaranteed to provide the optimal policy to reduce the
closely related measure S̃n.

In Problem 1, our curing policy is constrained by a budget
B at each time step and so the feasible set, or set of valid
curing policies, for our gradient descent is all policies which
do not exceed B. However, any optimal policy will make
use of the whole budget, and so we consider our feasible
set to be X =

{
{Δb,i(n)}Ni=1 ∈ R

N
≥0 |

∑N
i=1 Δb,i(n) = B

}
.

Proposition 6 shows that for arbitrary initial conditions and
network topologies, the problem under study for the expected
network exposure E[S̃n|Fn−1] is convex.

Proposition 6 (Gradient descent conditions are met): In a
general network G = (V, E) with arbitrary initial conditions,
the expected network exposure E[S̃n|Fn−1] is convex with
respect to the curing parameters {Δb,i(n)}Ni=1 for all n.
Furthermore, the feasible set

X =

{
{Δb,i(n)}Ni=1 ∈ R

N
≥0

∣∣∣∣∣
N∑

i=1

Δb,i(n) = B
}

is convex and compact.
The proof for Proposition 6 can be found in Appendix C.

The structure of the feasible set X allows us to employ
the simplex constrained gradient descent method, described
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Fig. 3. Comparison of all curing strategies presented in Table I on a Facebook group network. Here strategy (iv) used closeness centrality. Simulation
results were averaged over 250 trials for each strategy, and altogether took approximately 49 hours on 10 cores of an Intel Xeon processor at 2.20GHz. Initial
numbers of balls Ri and Bi, and numbers of red balls added Δr,i (which remained constant in time), were uniformly randomly assigned for each node but
stayed consistent throughout all trials and strategies, while the assignments of {Δb,i(t)}∞t=1 were different for each strategy. Since the Δr,i are all constant,
the budget was set as B =

�N
i=1 Δr,i.

in Algorithm 2 [33, Chapter 2]. The complexity of this
algorithm which runs at each time step is O(Nsa), where
N is the number of nodes, s is the number of iterations of
the gradient descent, and 1

a is the granularity used to find the
limit-minimized step size αk. While Proposition 6 guarantees
that the curing policy that this algorithm finds will be optimal
for each individual step, it does not guarantee optimality over
the entire time horizon. In spite of this, as the simulation
results in Figure 3 show, this curing strategy still outperforms
all other curing strategies studied in this paper. The downside
of the gradient method is that it is computationally expensive
to execute, as it requires intimate knowledge of the state of all
nodes in the network. This motivates us to seek other methods
which are computationally easier to execute, although they do
not perform as well as the gradient descent strategy.

C. Heuristic Strategies

Both sets of strategies identified above come with chal-
lenges. The supermartingale strategies are accompanied by
analytical results that guarantee that they will improve in
general, but they do not obey a fixed budget, nor do they
create a significant reduction in the average infection rate.
The gradient flow method uses a fixed budget and is provably

Algorithm 2 Constrained Gradient Descent on a Simplex [33]

y1 = (B, 0, . . . , 0)
T ← number of iterations to perform
for k = 1 : T do

i = argminj∈V
∂f
∂xj

[ȳk]i = B, and [ȳk]j = 0 for all j 	= i
αk = arg minα∈[0,1] f(yk + α(ȳk − yk))
yk+1 = yk + αk(ȳk − yk)

optimal to reduce the expected network exposure E[S̃n|Fn−1],
but it is computationally costly and requires a large amount of
information about the state of infection at every node, includ-
ing the history of draws and values of the curing parameters.
As a compromise between these strategies, we present the
centrality-infection ratio, which is a heuristic centrality-based
strategy designed to allocate the fixed per-step budget B.

The idea is to create a ratio to split the budget between all
nodes in the network, whose time complexity will be of the
order O(1). We consider three factors when determining how
much curing a node should receive: local impact, topological
position, and level of infection. Nodes with higher local impact



2092 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

have more neighbours, and hence any healing they receive is
immediately distributed to a larger number of nodes. Those
with a better topological position are more centrally located
within the network, in the sense that the distance from them to
all other nodes is smaller. Lastly, nodes with a higher level of
infection will need more curing resources to become healthy.
Numerical results suggest that lack of consideration of any of
these factors leads to a worse performance.

The resulting curing strategy, which we called the
centrality-infection ratio, is

Δb,i(n) = B |Ni|CiSi,n−1∑N
j=1 |Nj |CjSj,n−1

.

To measure local impact of node i, we use the degree,
|Ni|, which measures the number of neighbours for node i.
Topological position is determined by calculating a centrality
metric, either closeness centrality Cc,i [34] or betweenness
centrality Cb,i [35], which, for node i, are defined as

Cc,i :=
1∑

j∈V d(i, j)
,

Cb,i :=
∑

s,t∈V, s�=t, s,t�=i

σs,t(i)
σs,t

,

where d(i, j) is the length of the shortest path from node i
to node j, σs,t is the total number of shortest paths from s
to t, and σs,t(i) is the number of those shortest paths passing
through i. Note that two nodes i, j for whom d(i, j) = k
take k time steps to feel the effects of one another. Hence,
the closeness centrality encodes the “influence” nodes have on
the network on average: those with higher closeness centrality
will, on average, spread the effect of their curing resources
more quickly. The betweenness centrality similarly measures
how swiftly allocated curing resources will dissipate, but with
a focus on shorter spreading time rather than average effect.
Finally, to measure the level of infection, we use the super
urn proportion of red balls Si,n. From (3), we know that this
quantity captures how likely it is for node i to be infected
currently given the history of the process. Thus we give more
importance to nodes who are more likely to be infected,
in order to make them less likely to be infected in the future.
This allocation ratio is a generalization of the best heuristic
strategy presented in [2], which considered only node degrees.

The advantage of this heuristic strategy is twofold. Not only
does it reduce computational time complexity at each time step
from O(Nsa) to O(1), it is also somewhat distributed in the
sense that it does not require constant information from the
entire network. Unlike the gradient descent algorithm, strategy
(iv) simply needs to know information about the network
topology and the state of infection of each node. Since we
assume that our network’s graph is constant in time, this
topological information is only required initially and can be
used thereafter. The only other information required from the
network at large is the sum of the super urn ratios

∑N
i=1 Si,n,

and hence much less information needs to be communicated
through the network for the implementation of this strategy.

Lastly, for comparison reasons we present the uniform
curing strategy (v), which splits the budget B equally to all

nodes in the network. This provides a benchmark to measure
the improvement achieved by more intelligent strategies.

VI. SIMULATION RESULTS AND DISCUSSION

In order to confirm the results of Theorems 2 and 4,
a number of simulations were performed; the pseudocode is
outlined in Algorithm 1. While the simulations performed had
the numbers of red balls added Δr,i vary between nodes, they
were constant in time. This was done to simplify the choice
of the per-step budget, and does not affect the execution of
the simulations themselves. All initial conditions used in the
simulations herein, as well as videos displaying the average
performance of the curing strategies, are available online.1

A. Simulation Setup

The network shown in Figure 3(a) was generated by using
a tool [36] to crawl through 500 posts in a Facebook group.
Individuals who created posts or interacted with others’ con-
tent are represented by nodes, while edges are created if
individuals interacted with the post or comment of another
(by commenting on the post, or liking the post or comment).
The resulting graph has 1,363 nodes and 2,425 edges, and by
design represents the topology of a real social network.

We now provide a detailed description of the simulation,
as described in Algorithm 1. The values of Ri, Bi and Δr,i

were uniformly randomly assigned for each node as integers
between 1 and 10. These values remained consistent for all
strategies and throughout all trials that were performed. Since
the values for Δr,i were fixed over time, the per-step budget
was set at B =

∑N
i=1 Δr,i. With the initial conditions set,

a number of trials were performed for each strategy. Each
trial was performed by successively drawing balls from super
urns for a fixed number of time steps. At time t, we first
assigned the curing Δb,i(t) based on the strategy selected.
Then a uniform random variable on [0, 1], Yi, was generated
for each node i and compared to the super urn proportion.
If Yi < Si,t−1 then we say that a red ball was drawn and
so Zi,t = 1, otherwise we drew black and so Zi,t = 0.
Based on what was drawn, we added Δr,i red or Δb,i(t) black
balls into node i’s urn, and hence its super urn and those of
its neighbours. At the end of each trial the draw variables
were saved, and then averaged over all trials to produce the
empirical performance of the curing strategy.

B. Discussion of Simulation Results

The comparisons of all strategies outlined in Section V
can be seen in Figures 3–6. It is important to note that only
strategies (iii), (iv) and (v) in Table I have a budget B on their
curing resources, while the other two strategies vary the total
curing they use in time; the amount of resources each strategy
consumes is shown in Figure 3(c). Figure 3(d) displays the
average wasted curing resources for each strategy, which we
will define later.

Figures 3(b) and 4 compare the performance of all strategies
described in Section V on a Facebook network. Figure 3(b)

1See: http://bit.ly/2szl8PY
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Fig. 4. Plot of empirical average infection rate Ĩn on the network shown
in 3(a) for a longer time frame. Strategies used are shown in Table I. The
simulations presented here were performed identically to those described
in Figure 3, with all initial conditions consistent between trials and strategies.
Strategies were averaged over 1,000 trials, and altogether took approximately
30 hours on 12 cores of an Intel Xeon processor at 2.20GHz.

includes the gradient flow algorithm, while Figure 4 shows all
other strategies over a longer time horizon. The benchmark
uniform strategy (v) performs the worst, which is to be
expected. Although (iii) is only proven to be optimal for the
expected network exposure E[S̃n|Fn−1], we observe that it is
effective for the average infection rate Ĩn as well; as previously
mentioned, this strategy outperforms all other curing strate-
gies described in this paper. However, the heuristic strategy
(iv) shows similar performance with dramatic improvements
in computational complexity. The supermartingale strategies
(i) and (ii) both reduce Ĩn below the initial average infection
rate in the network ρ, but are less effective in doing so than the
other two methods. This is likely due to their lack of consid-
eration of the network topology, which plays a critical role in
determining how curing resources spread across the network.
Strategy (i) sees only an immediate small reduction in Ĩn,
while strategy (ii) continuously decreases Ĩn. This empirical
evidence follows (5), and further supports our assertion that
we should focus on the network exposure S̃n to reduce the
average infection rate.

Figure 5(b) compares the performance of all strategies
described in Section V on a denser Barabasi-Albert net-
work, with average degree 19.55. Barabasi-Albert networks
are randomly generated through preferential attachment and
are widely used in the literature, as they have been shown
to exhibit the properties of real social networks [37]. Inter-
estingly, the gap between strategies (i) and (ii) is smaller
relative to the sparser Facebook group network since strategy
(ii) performs worse, highlighting the importance of considering
topological information. Moreover, we observe that between-
ness centrality was the correct metric to use in this setting,
rather than closeness centrality (or other metrics including
eigenvector, Pagerank, and degree centralities). Relative to
the sparser network in Figure 3, there are many more paths
between nodes in this context and so a simple ratio of their
length, i.e., closeness centrality, fails to adequately measure the
importance of nodes. Instead, the ratio of the number of such

paths in which a node appears, i.e., betweenness centrality,
is a better measure of the influence of an individual. In other
words, having shorter spreading times of curing resources to
a larger number of nodes is more important than the average
effect of the spreading of those curing resources.

In Figure 3(c) we examine the amount of curing resources
used by each strategy. Since strategies (iii), (iv) and (v) all
obey a per-step budget constraint their usages are fixed. Both
supermartingale strategies, which may use arbitrary amounts
of curing resources, initially use a larger amount of curing
resources and then reduce their usage. This initial expenditure
is the cost required to turn the measures into supermartingales,
after which the strategies only need to maintain the property
which requires less resources. Strategy (i)’s usage appears
to decay exponentially to an almost constant amount, while
strategy (ii) continues to decrease its usage in time. Further,
strategy (i) uses almost 50% more curing resources than the
budget B initially, while strategy (ii)’s initial usage is only
around 18% higher than B. This is likely because strategy (i)
is selfish; it only considers infection on an individual node
level. In contrast, strategy (ii) considers the infection in local
neighbourhoods of nodes, and hence is more judicious in
applying resources to specific nodes.

The amount of curing resources wasted by each strategy is
displayed in Figure 3(d). Waste is defined as curing resources
which were assigned to nodes that did not use them since
they displayed “infected” behaviour at that time, and is hence
computed as

∑N
i=1

∑n
t=1 Δb,i(t)Zi,t. We observe an intuitive

correlation between the amount of resources wasted and curing
performance: strategies which waste less resources tend to
be more effective at reducing the average infection rate Ĩn.
However, this does not tell the full story. The gradient flow
algorithm has several spikes where it wastes more resources
than the centrality-infection ratio (iv), but this does not appear
to affect its curing performance. These likely occur because
the gradient descent tends to focus on clusters of points when
assigning curing, and hence the rest of the network becomes
more infected. Then, when it switches to another cluster,
the nodes are more infected and hence it wastes more resources
until it sufficiently cures the infection in that cluster. Since
the selection of these clusters depends heavily on the past
evolution of the process there exists a higher variance in the
wastage of curing resources, causing the line (iii) to be less
smooth than those of other strategies. Strategy (i) initially
wastes less than strategy (ii) even though it uses more curing
resources, and it still performs worse with respect to reduction
in Ĩn. This suggests that optimal curing strategies do not
simply waste less, but also intelligently allocate their curing
resources to make the best use of them.

Figure 6 shows the initial and final state of infection of
all nodes in a randomly generated network for two different
curing strategies. We define the state of infection for node i
at time t by its individual proportion of red balls Ui,t. Here
we use a small and sparse Barabasi-Albert network so the
states at the node level are more visible. In Figure 6(a) we see
that for such a network the centrality-infection ratio (iv) dra-
matically outperforms uniform curing (v), as was the case for
the social network shown in Figure 3(a). After 1,000 time
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Fig. 5. Comparison of all curing strategies presented in Table I on a Barabasi-Albert network. Here strategy (iv) made use of betweenness centrality.
Simulation results were averaged over 500 trials for each strategy, and altogether took approximately 20 hours on 4 cores of an Intel i5 processor at 3.40GHz.
Simulations were initialized in the same way as those in Figure 3.

Fig. 6. Comparison of curing strategies (iv) and (v) on a Barabasi-Alberth network [37] with 100 nodes and 99 edges. Here strategy (iv) used closeness
centrality. Blue represents total healthiness (Ui,n = 0) while red represents total infection (Ui,n = 1). Simulation results were averaged over 1,000 trials for
each strategy, and altogether took approximately 5 minutes on 4 cores of an Intel Core i7 processor at 2.20 GHz. This simulation was performed identically
to those described in Figure 3, with all initial conditions consistent between trials and strategies.

steps, strategy (iv) reduced the average infection rate Ĩn to
about 15%, and no node is worse off than it was to begin
with. In contrast, strategy (v) barely reduced Ĩn below the
initial average infection rate ρ, and the individual infection
of some nodes rose above 90%. This result illustrates the
fact that intelligent allocation of curing resources is not only
important to reduce the network-wide average infection rate,
but the infection of individual nodes as well.

VII. CONCLUSION AND FUTURE WORK

In this paper we examined the problem of curing epidemics
using a network contagion model adapted from the Polya urn
process. We formulated an optimal control problem and pro-
vided analytical results that showed that finding solutions is
a worthwhile endeavour. We used theoretical, numerical and
heuristic curing strategies to attempt to cure the epidemic, and
evaluated their performance using simulations.



HAYHOE et al.: CURING EPIDEMICS ON NETWORKS USING A POLYA CONTAGION MODEL 2095

Future work with this model could include the statement
of different curing problems. A budget could be assigned
over a finite time horizon instead of on a per-step basis, and
strategies would need to judiciously use this limited supply
to reduce infection as much as possible in the time window.
The problem could even be reversed, so that some desirable
healthiness threshold is provided and one could find the lowest
possible budget that would guarantee that the average infection
rate would be at or below the threshold. Such a problem
could be examined for a per-step or fixed horizon budget.
Applications of our model and curing results to control and
contain contagion in real-world networks, including social net-
works, campaigning platforms and malware-prone computer
networks, is another interesting future direction.

APPENDIX

A. Proof of Theorem 2

This result is a generalization of Theorem 4.6 in [3], since
here we allow {Δr,i(t)}∞t=1 to vary in time. As such, some
minor steps are omitted.

We will start with the case of a supermartingale. That is,
we wish to show that almost surely for all n ∈ Z≥1,

E[Ui,n | Fn−1]−Ui,n−1≤0⇔ E[Ui,n−Ui,n−1 | Fn−1]≤0,

since Ui,n−1 is almost surely constant given Fn−1. Take Xi,n

as in (1). We then compute the difference Ui,n − Ui,n−1,

Ui,n − Ui,n−1

=
Ri +

∑n
t=1 Δr,i(t)Zi,t

Xi,n
− Ri +

∑n−1
t=1 Δr,i(t)Zi,t

Xi,n−1

=
Δr,i(n)Zi,n

Xi,n
− (Ri +

∑n−1
t=1 Δr,i(t)Zi,t)(Xi,n −Xi,n−1)

Xi,n−1Xi,n

=
Δr,i(n)Zi,n − Ui,n−1(Δr,i(n)Zi,n + Δb,i(n)(1 − Zi,n))

Xi,n
.

Since Xi,n > 0 almost surely, for all n ∈ Z≥1, it will not
change the sign of the inequality later on, and so we can ignore
it to focus only on the numerator. Thus we wish to check if,
almost surely,

E
[
Δr,i(n)Zi,n − Ui,n−1(Δr,i(n)Zi,n

+Δb,i(n)(1 − Zi,n))|Fn−1

] ≤ 0.

Now if the curing policy {Δb,i(n)}∞n=1 for node i satisfies the
bound given:

Δb,i(n) ≥ Δr,i(n)(1 − Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)
,

then almost surely,

E
[
Δr,i(n)Zi,n(1−Ui,n−1)−Ui,n−1(1−Zi,n)Δb,i(n)|Fn−1

]
≤ E

[
Δr,i(n)Zi,n(1 − Ui,n−1)− Ui,n−1(1− Zi,n)

×Δr,i(n)(1 − Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)

∣∣∣∣∣Fn−1

]

= Δr,i(n)(1 − Ui,n−1)
[
Si,n−1 − (1− Si,n−1)

Si,n−1

1− Si,n−1

]
= 0,

where the second to last equality comes from the fact that
E[Zi,n|Fn−1] = P (Zi,n = 1|Fn−1) = Si,n−1 almost surely
by (3), and the last equality uses that Si,n−1 is almost surely
constant givenFn−1. Thus as long as Δb,i(n) obeys this bound
almost surely for all n ∈ Z≥1, {Ui,n}∞n=1 is a supermartingale
with respect to {Zn}∞n=1. Similarly, if Δb,i(n) is almost surely
equal (resp. less than or equal) to this bound, {Ui,n}∞n=1 is a
martingale (resp. submartingale) with respect to {Fn}∞n=1. �

B. Proof of Theorem 4

We will focus on the case of a supermartingale, since the
proof for submartingales follows similarly. First, note that
the question of {Si,n}∞n=1 being a strict supermartingale is
equivalent to

E[Si,n|Fn−1]− Si,n−1 < 0

where {Fn} is the natural filtration (indeed, we can just
condition on Zn−1). Note, in particular, that E[Zi,t|Fn] = Zi,t

almost surely, for all i ∈ V and t ∈ {1, . . . , n}, and the same
is true for {Si,t}nt=1. Then almost surely, as in Theorem 2,

Si,n − Si,n−1 =
Si,n−1(X̄i,n−1 − X̄i,n) + Z̄r,i,n

X̄i,n
.

Since X̄i,n > 0 almost surely for all n ∈ Z≥1 and all
i ∈ V , we can ignore it. Further, since Si,n−1 is almost surely
constant, we need to only check if

E
[
Si,n−1(X̄i,n−1 − X̄i,n) + Z̄r,i,n | Fn−1

]
< 0

⇔ E
[
(1− Si,n−1)Z̄r,i,n − Si,n−1Z̄b,i,n | Fn−1

]
< 0,

since X̄i,n−1 − X̄i,n = −Z̄r,i,n − Z̄b,i,n. Now let the lower
bound (B1) be satisfied:

Δb,j(n) > Δr,j(n)
Sj,n−1

1− Sj,n−1
max

k s.t. j∈N ′
k

1− Sk,n−1

Sk,n−1
.

Notice E[Zj,n|Fn−1] = Sj,n−1 almost surely, so we have

E
[
Si,n−1(X̄i,n−1 − X̄i,n) + Z̄r,i,n | Fn−1

]
< E

[
(1 − Si,n−1)Z̄r,i,n − Si,n−1

∑
j∈N ′

i

Δr,j(n)
Sj,n−1

1− Sj,n−1

× max
k s.t. j∈N ′

k

1− Sk,n−1

Sk,n−1
(1− Zj,n)

∣∣∣∣∣Fn−1

]

=
∑

j∈N ′
i

Δr,j(n)Sj,n−1(1 − Si,n−1)−Δr,j(n)
Sj,n−1

1− Sj,n−1

×Si,n−1 max
k s.t. j∈N ′

k

1− Sk,n−1

Sk,n−1
(1 − Sj,n−1)

=
∑

j∈N ′
i

Δr,j(n)Sj,n−1

×
[
1− Si,n−1

(
1 + max

k s.t. j∈N ′
k

1− Sk,n−1

Sk,n−1

)]

=
∑

j∈N ′
i

Δr,j(n)Sj,n−1

[
1− Si,n−1

mink s.t. j∈N ′
k
Sk,n−1

]
.
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Now note that j ∈ N ′
i and hence, in particular,

mink s.t. j∈N ′
k
Sk,n−1 ≤ Si,n−1 almost surely, and all other

quantities are non-negative. Thus, with our value of Δb,j(n)
for all j ∈ N ′

i , we have almost surely

E
[
Si,n−1(X̄i,n−1 − X̄i,n) + Z̄i,n | Fn−1

]
<
∑

j∈N ′
i

Δr,j(n)Sj,n−1

[
1− Si,n−1

mink s.t. j∈N ′
k

Sk,n−1

]

≤ 0.

Thus, for any i ∈ V , if {Δb,i(n)}∞n=1 obeys the lower
bound (B1) almost surely, the neighbourhood proportion of
red balls {Si,n}∞n=1 is a strict supermartingale.

For the case of a strict submartingale, notice if the upper
bound (B2) is satisfied:

Δb,j(n) < Δr,j(n)
Sj,n−1

1− Sj,n−1
min

k s.t. j∈N ′
k

1− Sk,n−1

Sk,n−1
,

then similarly to the case of a supermartingale,

E
[
Si,n−1(X̄i,n−1 − X̄i,n) + Z̄i,n | Fn−1

]
> E

[
(1− Si,n−1)Z̄r,i,n − Si,n−1

∑
j∈N ′

i

Δr,j(n)
Sj,n−1

1− Sj,n−1

× min
k s.t. j∈N ′

k

1− Sk,n−1

Sk,n−1
(1 − Zj,n)

∣∣∣∣∣Fn−1

]

=
∑

j∈N ′
i

Δr,j(n)Sj,n−1

[
1− Si,n−1

maxk s.t. j∈N ′
k

Sk,n−1

]

≥ 0,

since maxk s.t. j∈N ′
k
Sk,n−1 ≥ Si,n−1 almost surely. Thus

if {Δb,i(n)}∞n=1 obeys the upper bound (B2) almost surely,
the neighbourhood proportion of red balls {Si,n}∞n=1 is a strict
submartingale. �

C. Proof of Proposition 6

First note that as a function of the parameters x =
(Δb,1(n), . . . , Δb,N (n)), S̃n is of the form fn(x) =
1
N

∑N
i=1

ci

di+σi(x) , where from (2), we can see that

ci = R̄i +
n−1∑
t=1

Z̄r,i,t +
∑

j∈N ′
i

Δr,j(n)Zj,n,

di = ci + B̄i +
n−1∑
t=1

Z̄b,i,t, and

σi(x) =
∑

j∈N ′
i

xj(1− Zj,n).

Note that the Zi,t are binary-valued random variables and we
always assume Δr,i(t), Δb,i(t) ≥ 0 for all i, t. Hence ci > 0,
di > 0, and σi(x) ≥ 0 for all nodes i with any possible
realization of the nodes’ contagion processes {Zn

j }Nj=1. Now
define the summand of fn(x) as hi(y) = ci

di+y , y ∈ R≥0.
Note that hi(y) is convex on R≥0 since di > 0, and σi(x)
is linear in x. Hence, the composition hi(σi(x)) is convex,
and so fn(x) = 1

N

∑N
i=1 hi(σi(x)) is convex. As a result S̃n

is convex in the curing parameters (Δb,1(n), . . . , Δb,N (n))
for all n and any realization of {Zn

j }Nj=1; hence, its expec-
tation E[S̃n|Fn−1] is also convex. Lastly, the constraint

set
{
{Δb,i(n)}Ni=1 ∈ R

N
≥0 |

∑N
i=1 Δb,i(n) = B

}
is clearly a

finite-dimensional simplex and, hence, convex and compact.�
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