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Abstract— A network epidemics model based on the classical
Polya urn scheme is investigated. Temporal contagion processes
are generated on the network nodes via a modified Polya
sampling scheme that accounts for spatial infection among
neighboring nodes. The stochastic properties and the asymptotic
behavior of the resulting network contagion process are ana-
lyzed. Unlike the classical Polya process, the network process is
noted to be non-stationary in general, although it is shown to be
time-invariant in its first and some of its second-order statistics
and to satisfy martingale convergence properties for certain
network structures. Finally, two classical Polya processes, one
computational and one analytical, are proposed to statistically
approximate the contagion process of each node, showing a
good fit for a range of system parameters.

I. INTRODUCTION

We study the dynamics and properties of a contagion

process, or epidemic, on a network. In this framework an

epidemic can represent a disease [1], a computer virus [2],

the spread of an innovation, rumor or idea [3], or the

dynamics of competing opinions in a social network [4].

Many epidemic models for the study of infection propa-

gation and curing exist in the literature. Our model has simi-

larities with the well-known susceptible-infected-susceptible

infection model [5]. In this model, all nodes may initially

be healthy or infected. As the epidemic spreads, infected

nodes can be cured and become healthy, but healthy nodes

may become infected at any time, regardless of whether

they have previously been cured. The model that we present

is an adaptation of the Polya contagion process [6], [7]

to a network setting. Epidemics on networks have been

intensively studied in recent years; see [8] and references

therein and thereafter. The classical Polya model has been

used in a wide range of applications; e.g., see [9] for

a summary. In this work, we consider a Polya contagion

process for networks by accounting for spatial infection

between nodes and examine its stochastic evolution.

We introduce a novel framework for studying epidemics

on networks. Our model is motivated by the classical Polya

contagion process generated by sampling from an urn con-

taining a finite number of red and black balls [6], [7].

Similar to that setting, each node of the underlying net-

work is equipped with an individual urn; however, instead

of drawing solely from its own urn when generating its

contagion process, each node has a “super urn”, created by

combining all the balls in its own urn with the balls in its

neighbors’ urns. In this sense, the model captures the fact
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that having infected neighbous increases the chance of an

individual node being infected in the future. This concept

of the super urn sampling mechanism for incorporating

spatial interactions between each node and its neighbors was

originally introduced in [10] in the context of the image

segmentation and labeling problem. We herein adopt the

image model of [10] for a network setting and analyze

the resulting contagion process affecting each node of the

network for the purpose of epidemic mitigation and control.

More specifically, we study the time evolution and stochas-

tic properties of the proposed network contagion process. We

derive an expression for the temporal n-fold joint probability

distribution of the process. We show that this process,

unlike the classical Polya urn process, is in general non-

stationary, and hence not exchangeable. For the special case

of complete networks, we analytically find the 1-dimensional

and 2-dimensional (n, 1)-step marginal distributions of the

contagion process. These results show that, even though

it is not stationary, the process is nevertheless identically

distributed with its later two marginal distributions being

invariant to time shifts. We also establish two martingale

properties (one for general networks and one for regular

networks) regarding the network urn compositions, proving

that the proportions of red balls in each node’s urn as

well as the network average urn proportion converge almost

surely to a limit as time grows without bound. These results

are useful in studying curing policies. We next provide

two approximations to the network contagion process by

modeling each node’s contagion process via the classical

stationary Polya process [6]. In the first one, we approximate

each node’s process with the classical Polya process whose

correlation parameter is empirically selected so that the

Kullback-Leibler divergence between its n-fold joint distri-

bution and that of the original node process is minimized. In

the second approximation, we propose an analytical classical

Polya model whose parameters are chosen by matching

its first and (n, 1)-step second-order statistics with those

of the original node process. Finally, we present ideas for

controlling epidemics by studying the average infection in

the context of “contagion dilution”. We also formulate some

control problems with budget constraints for minimizing the

limiting average infection. Preliminary simulation results are

presented. Throughout, the proofs are omitted for reasons of

space and will appear elsewhere.

II. PRELIMINARIES

For a sequence (v1, ..., vn), we use the notation vt with

1 ≤ t ≤ n to denote the vector (v1, v2, ..., vt). Our technical

results rely on notions from stochastic processes, some of



which we recall here. Throughout, we assume that the reader

is familiar with basic notions of probability theory.

Let (Ω,F , P ) be a probability space, and consider the

stochastic process {Zn}∞n=1, where Zn is a random variable

on Ω. We often refer to the indices of the process as “time”

indices. We recall that the process {Zn}∞n=1 is stationary if

for any n ∈ Z≥1, its n-fold joint probability distribution (i.e.,

the distribution of (Z1, ..., Zn)) is invariant to time shifts.

Further, {Zn}∞n=1 is exchangeable if for any n ∈ Z≥1, its

n-fold joint distribution is invariant to permutations of the

indices 1, ..., n. It directly follows from the definitions that

an exchangeable process is stationary. Lastly, the process

{Zn}∞n=1 is called a martingale with respect to {Xn}∞n=1 if

E[|Zn|] < ∞ and E[Zn+1|Xn] = Zn almost surely, for all

n. If E[Zn+1|Zn] = Zn almost surely, we say that {Zn}∞n=1

is a martingale with respect to itself and simply state that it

is a martingale. Precise definitions of all notions, including

that of ergodicity can be found in standard texts (e.g., [11]).

We now recall the classical version of the Polya contagion

process [6], [7]. Consider an urn with R ∈ Z>0 red balls and

B ∈ Z>0 black balls. We denote the total number of balls

by T , i.e., T = R + B. At each time step, a ball is drawn

from the urn. The ball is then returned along with ∆ > 0
balls of the same color. We use an indicator Zn to denote

the color of ball in the nth draw: Zn = 1 if the nth draw is

red, and Zn = 0 if the nth draw is black. Let Un denote the

proportion of red balls in the urn after the nth draw. Then

Un :=
ρc + (Zn + Zn−1 + · · ·+ Z1)δc

1 + nδc

where ρc =
R
T is the initial proportion of red balls in the urn

and δc = ∆
T is a correlation parameter. The above classical

Polya process {Zn}∞n=1 is fully described by its parameters

ρc and δc; we denote it by Polya(ρc, δc). The conditional

probability of drawing a red ball at time n, given Zn−1 =
(Z1, · · · , Zn−1), is given by P (Zn = 1 | Zn−1) = Un−1.

It can be easily shown that {Un}∞n=1 is a martingale [12].

The process {Zn}∞n=1, whose n-fold joint distribution is

denoted by Q
(n)
ρc,δc

, is also exchangeable (hence stationary)

and non-ergodic with both Un and the process sample

average 1
n

∑n
i=1 Zi converging almost surely as n → ∞ to

a random variable governed by the Beta distribution with

parameters ρc

δc
and 1−ρc

δc
; we denote this distribution by

Beta(ρc

δc
, 1−ρc

δc
) [12], [13]. Lastly, the 1-dimensional distri-

bution of the Polya process is Q
(1)
ρc,δc

(a) = P (Zn = a) =

(ρc)
a(1 − ρc)

1−a, for all n ∈ Z≥1 and a ∈ {0, 1}.

III. NETWORK CONTAGION PROCESS

In this section, we introduce a generalization of the

Polya contagion process to scenarios on graphs, where each

individual node in the graph is still equipped with an

urn; however, the node’s neighboring structure affects the

evolution of its process. This model hence captures spatial

contagion, where infected neighbors increase the chance of

a node being infected in the future. Consider an undirected

graph G = (V, E), where V = {1, . . . , N} is the set of

N ∈ Z≥1 nodes and E ⊂ V × V . We assume that G is

connected, i.e., there is a path between any two nodes in G.

We use Ni to denote the set of nodes that are neighbors to

node i, that is Ni = {v ∈ V : (i, v) ∈ E}, and N ′
i = {i}∪Ni.

Each node i ∈ V is equipped with an urn, initially with

Ri ∈ Z>0 red balls and Bi ∈ Z>0 black balls (we do not

let Ri = 0 or Bi = 0 to avoid any degenerate cases). We

let Ti = Ri + Bi be the total number of balls in the ith

urn, i = 1, · · · , N . We use Zi,n as an indicator for the ball

drawn for node i at time n: Zi,n = 1 if the nth draw for

node i is red, and Zi,n = 0 if the nth draw for node i is

black. However, instead of drawing solely from its own urn,

each node has a “super urn” created by combining all the

balls in its own urn with the balls in its neighbors’ urns; see

Fig. 1. This allows the spatial relationships between nodes

to influence their state of infection. This means that Zi,n is

the indicator for a ball drawn from node i’s super urn, and

not its individual urn. Hence, the super urn of node i has

R̄i =
∑

j∈N ′
i
Rj red balls, B̄i =

∑

j∈N ′
i
Bj black balls, and

T̄i =
∑

j∈N ′
i
Tj balls in total.

Super Urn

1

2

3

4

Fig. 1. Illustration of a super urn in a network, here for node 1.

We further consider a time-varying version of the classical

Polya contagion process, following [14], where at time t

for node i ∈ V , ∆r,i(t) net red balls are added to node

i’s urn when a red ball is drawn, and ∆b,i(t) net black

balls are added to node i’s urn when a black ball is drawn.

When ∆r,i(t) = ∆b,i(t) for all t, we write ∆i(t) instead; if

the ∆’s are not node-dependent, we omit the node index.

We assume throughout that ∆r,i(t) ≥ 0,∆b,i(t) ≥ 0,

for all t and that there exists i ∈ V and t such that

∆r,i(t) + ∆b,i(t) 6= 0; otherwise we are simply sampling

with replacement. To express the proportion of red balls in

the individual urns of the nodes, we define the random vector

Un = (U1,n, . . . , UN,n) after the nth draw, where Ui,n is the

proportion of red balls in node i’s urn after the nth draw,

i ∈ V . For node i,

Ui,n :=
Ri +

∑n
t=1 Zi,t∆r,i(t)

Ti +
∑n

t=1 Zi,t∆r,i(t) + (1 − Zi,t)∆b,i(t)

where the numerator represents the total number of red balls

in node i’s urn after the nth draw, while the denominator

is the total number of balls in the same urn. In the context

of epidemics, the red and black balls in an urn, respectively,

represent “infection” and “healthiness”. Let now

Xj,n = Tj +

n
∑

t=1

Zj,t∆r,j(t) + (1− Zj,t)∆b,j(t).



Then the conditional probability of drawing a red ball

from the super urn of node i at time n given the com-

plete network history, i.e. given all the past n − 1 draw

variables for each node in the network {Zn−1
j }Nj=1 =

{(Z1,1, · · · , Z1,n−1), · · · , (ZN,1, · · · , ZN,n−1)}, satisfies

P
(

Zi,n = 1|{Zn−1
j }Nj=1

)

=
R̄i +

∑

j∈N ′
i

∑n−1
t=1 Zj,t∆r,j(t)

∑

j∈N ′
i
Xj,n−1

=

∑

j∈N
′

i
Uj,n−1Xj,n−1

∑

j∈N
′

i
Xj,n−1

=: gi,n(Z
n−1
1 , · · · , Zn−1

N ). (1)

A main objective throughout the rest of this paper is to

study the evolution and stochastic properties of the process

defined above. Using the above conditional probability, we

can determine the n-fold joint probability of the entire

network G: for ani ∈ {0, 1}n, i = 1, · · · , N , we have that

P
(n)
G (an1 , · · · , a

n
N) := P

(

{Zn
i = ani }

N
i=1

)

=

n
∏

t=1

P
(

Z1,t = a1,t, ..., ZN,t = aN,t | {Z
t−1 = at−1}Ni=1

)

=

n
∏

t=1

N
∏

i=1

(gi,t)
ai,t(1− gi,t)

1−ai,t , (2)

where gi,t is defined in (1). Similar to the classical Polya urn

process, we are interested in studying the asymptotic behav-

ior of each node’s contagion process, since understanding

many interesting questions regarding the limiting behavior

of epidemics on networks and formulating curing strategies

are closely related to this problem. With the above explicit

joint distribution, it is possible to determine the distributions

of each node’s process. More specifically, using (2), the n-

fold distribution of node i’s process at time t ≥ n is

P
(n)
i,t (ai,t−n+1, ..., ai,t) :=

∑

at−n
i

∈{0,1}t−n

at
j∈{0,1}t,j 6=i

P
(n)
G (at1, · · · , a

t
N).

We define the average infection in the network at time n as

Ĩn :=
1

N

N
∑

i=1

P (Zi,n = 1) =
1

N

N
∑

i=1

P
(1)
i,n (1).

Unfortunately for an arbitrary network, the above quantity

does not yield an exact analytical formula (except in the

simple case of complete networks). As such, it is in general

hard to mathematically analyze the asymptotic behavior of

Ĩn, which we wish to minimize when attempting to cure an

epidemic. Instead we examine the asymptotic stochastic be-

havior of a closely related variable given by the average indi-

vidual proportion of red balls at time n, Ũn := 1
N

∑N
i=1 Ui,n,

which we call the network susceptibility. Indeed in the next

section, we derive martingale results for both {Ui,n}∞n=1 and

{Ũn}∞n=1 under certain network configurations.

Remark 3.1: (Finite Memory): It is worth pointing out

that a practical adaptation to our model can be considered,

where urns have “finite memory” in the sense that the balls

added after each draw are only kept in each node’s urn for

a finite number of future draws. This model is developed

in [13] for the classical Polya process in the context of

modeling communication channels, where it is shown that

the resulting finite memory contagion process is stationary,

Markovian and ergodic. We leave investigating this scenario

in our context to a future work. •

IV. STOCHASTIC PROPERTIES

We next examine the stochastic properties of the network

contagion process. We assume throughout this section that

∆r,i(t) = ∆b,i(t) = ∆ > 0, for all i ∈ V and times t;

that is the net number of red and black balls added are

equal and constant in time for all nodes. In the case of a

complete network, the composition of every nodes’ super

urn is identical; in a sense, there is only one super urn that

is being drawn from. Thus for a complete network the super

urn model is analogous to one urn where multiple draws

occur with replacement, which has been recently studied in

detail [15]. However, the analysis in [15] is carried in an

aggregate sense and, in particular, only for the entire urn, not

individual processes. Unfortunately, this aggregate approach

does not work in a network setting, and so in that case the

super urn model is more useful.

We will now derive some stochastic distributions for

the complete network; later on, we will derive martingale

results for more general networks. Given that the network is

complete, we focus on one of the nodes, say i ∈ V . Defining

the event An−1 = {Zi,n−1 = an−1, ..., Zi,1 = a1}, we can

write, using (1) under the above assumptions and omitting

some details for reasons of space, that

P (Zi,n = 1, An−1)

=
∑

bn−1

j
∈{0,1}n−1,j 6=i

P (Zi,n = 1|An−1, {Z
n−1
j,1 = bn−1

j }j 6=i)

× P (An−1, {Z
n−1
j = bn−1

j }j 6=i)

=

∑n−1
t=1

[

atP (An−1) +
∑

j 6=i P (An−1, Zj,t = 1)
]

δ
N

1 + (n− 1)δ

+
ρP (An−1)

1 + (n− 1)δ
(3)

where ρ =
∑N

i=1
Ri∑

N
i=1

Ti
and δ = N∆∑

N
i=1

Ti
. Then, by summing out

(3) over an−1 ∈ {0, 1}n−1 we obtain

P (Zi,n = 1) =
ρ+ δ

N

∑n−1
t=1

∑N
j=1 P (Zj,t = 1)

1 + (n− 1)δ
. (4)

An interesting corollary of this derivation is stated next.

Lemma 4.1: (Complete Network Marginal Distribu-

tion): The 1-dimensional marginal distribution of node i’s

contagion draw process {Zi,n}∞n=1 for the N -node complete

network is given by

P
(1)
i,n (a) = P (Zi,n = a) = ρa(1− ρ)1−a.

where i ∈ V , n ≥ 1, and a ∈ {0, 1}.

We next show that process is not stationary in general.



Remark 4.2: (Non-Stationarity of the Network Conta-

gion Process): Consider a 2-node complete network. Then,

using (2), one can obtain that

P (Z1,2 = 1, Z1,1 = 1) = ρ
ρ+ (1 + ρ) δ2

1 + δ
,

P (Z1,3 = 1, Z1,2 = 1) = ρ
4ρ+ δ(2 + 14ρ) + δ2(6 + 14ρ)

4(1 + δ)2(1 + 2δ)

+ ρ
δ3(5 + 3ρ)

4(1 + δ)2(1 + 2δ)
.

and hence the network process is not stationary. •
Since every exchangeable process is stationary, Re-

mark 4.2 implies that the process is also not exchangeable in

general. However, there are still some notions of stationarity

present; for example, our next result show how the relation-

ship between the first and nth draws in a complete network

is consistent in time.

Lemma 4.3: (Complete Network (n, 1)-step Marginal

Distribution): For the complete network, the 2-dimensional

marginal distribution that node i’s draw variables at times n

and 1 are both one is given by

P (Zi,n = 1, Zi,1 = 1) = ρ
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ

for i ∈ V , n ≥ 2. Furthermore, for any other node k,

P (Zk,n = 1, Zi,1 = 1) = ρ
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
.

Although the process is not stationary in general, our

simulated results suggest that it is in fact “asymptotically

stationary”, in the sense that after some sufficient “settling”

time, the joint probabilities are invariant to shifts in the time

indices. A representative example is shown in Fig. 2.

P(Z
i,n

=1,Z
i,n-1

=1)

Settled value

0.204

0.2

0.1904

0.1840
10 20 30 40 50

Fig. 2. Simulated values for P (Z1,n = 1, Z1,n−1 = 1) for 2 ≤ n ≤ 50
averaged over 50,000 simulated trials, each ran until n = 1000. This is
on a 2-node network with R1 = R2 = 4, B1 = B2 = 8,∆ = 47, and
the settled value is about 0.1996. Here we observe asymptotic stationarity,
as for some large enough n the deviations from the settled value are very
small in magnitude.

We now turn our attention to the martingale properties of

the network contagion process, where we do not assume that

the network is necessarily complete.

Theorem 4.4: (General Network Individual Urn Pro-

portion Martingale): For a general network G = (V, E),
∆r,i(n) = ∆b,i(n) = ∆ and Ti = T , for all i ∈ V

and all n, the individual proportion of red balls {Ui,n}
∞
n=1

is a martingale with respect to {Un}∞n=1, where Un =
(U1,n, · · · , UN,n) if and only if

1

|Ni|

∑

j∈Ni

Uj,n = Ui,n

for all n, almost surely.

If the condition in Theorem 4.4 holds, we obtain by the

martingale convergence theorem [11], that for any i, both

Ui,n and 1
n

∑n
t=1 Zi,t converge almost surely to a limit as

n → ∞. However, the condition of Theorem 4.4, barring

the trivial single node scenario (which reverts to the classical

Polya scheme), is not verifiable. In fact, it is not clear that

this ever occurs in general. This bodes well for investigations

into curing, since if the condition in Theorem 4.4 held then

we would have no hope of curing the infection beyond the

initial level ρ. To achieve a more applicable result, we now

examine the evolution of the network susceptibility Ũn =
1
N

∑N
i=1 Ui,n when the network is regular.

Theorem 4.5: (Regular Network Susceptibility Martin-

gale): For a regular network G = (V, E), i.e., |Ni| = |Nj | for

all i, j ∈ V , with ∆r,i(n) = ∆b,i(n) = ∆ and Ti = T for

all nodes i ∈ V and times n, the average urn proportion

of red balls {Ũn}∞n=1, where Ũn = 1
N

∑N
i=1 Ui,n, is a

martingale with respect to {Un}∞n=1, and so there exists a

random variable M such that {Ũn} converges almost surely

to M as n → ∞.

V. MODEL APPROXIMATIONS

As previously noted, the dynamics of the network conta-

gion process are complicated, especially when considered

on general networks. For this reason, in this section we

develop two useful approximations to this process on a

general network that allow us to shed some light on its

asymptotic behavior. Throughout this section, unless stated

otherwise, we consider general network topologies. However,

to match the 1− and (n, 1)-step distributions in the models

below, we assume that the neighborhood of each node i is a

complete sub-network in order to apply Lemmas 4.1 and 4.3.

A. Approximation: Computational Model

We now introduce our first approximation technique,

where we approximate the contagion process of each node

in the network with a classical Polya urn process.

Model 5.1: (Computational Model): Given any node i in

the network, we approximate the dynamics of its contagion

process using a classical Polya(ρc = ρ, δc = δ̂) process

with distribution Q
(n)
ρc,δc

= Q
(n)

ρ,δ̂
. Here ρc is chosen to be

the proportion of red balls ρ in the node’s super urn, so

that the 1-dimensional distributions of the classical Polya

process and the node process {Zi,n} coincide, while δ̂ is set

by performing a minimization to find the value that best fits

Q
(n)

ρ,δ̂
to the distribution of {Zi,n}∞n=1 of node i ∈ V . We

use a divergence measure, denoted by D(·||·), to observe the

quality of the fit. More specifically,

ρ =

∑

j∈N
′

i
Rj

∑

j∈N
′

i
Tj

, and δ̂ = argmin
δ′

1

n
D

(

P
(n)
i,n ||Q

(n)

ρ,δ̂

)



where

Q
(n)

ρ,δ̂
(a1, ..., an) =

Γ
(

1

δ̂

)

Γ
(

ρ

δ̂
+ ān

)

Γ
(

1−ρ

δ̂
+ n− ān

)

Γ
(

1
δ̂
+ n

)

Γ
(

ρ

δ̂

)

Γ
(

1−ρ

δ̂

)

where Γ(·) is the Gamma function and ān = a1 + · · ·+ an.

The explicit derivation of the distribution Q
(n)

ρ,δ̂
can be

found in [12], [16]. This method ensures that the fit of Q
(n)

ρ,δ̂
is as close as possible under the given divergence measure.

To simplify the calculation, we use the Kullback-Leibler

divergence [17]; we thus have that

δ̂ = argmin
δ̃

1

n

∑

an∈{0,1}n

P
(n)
i,n (an) log





P
(n)
i,n (an)

Q
(n)

ρ,δ̃
(an)





= argmax
δ̃

1

n

∑

an∈{0,1}n

P
(n)
i,n (an) logQ

(n)

ρ,δ̃
(an)

since P
(n)
i,n (an) logP

(n)
i,n (an) is independent of δ̃. The ap-

proximating process is stationary and exchangeable since it

is a classical Polya process. We also know (from Section II)

that it is non-ergodic with its sample average converging

almost surely to the Beta(ρ
δ̂
, 1−ρ

δ̂
) distribution. Calculating

an analytic expression for the minimizing δ̂ is not feasible

in general, and hence should be performed computationally.

However, due to the above minimization, the value of δ̂ is, by

definition, the best way to fit a Polya process to the process

{Zi,n}
∞
n=1 for a given n.

B. Approximation: Analytical Model

An alternative to Model 5.1 is to attempt to find an approx-

imation whose parameters can be determined analytically.

Model 5.2: (Analytical Model): For any given node i, we

approximate the dynamics of its process {Zi,n}∞n=1 by using

a classical Polya(ρc = ρ, δc = δ′) process, where

ρ =

∑

j∈N
′

i
Rj

∑

j∈N
′

i
Tj

, and δ′ =
δ

N + (N − 1)δ
,

where δ = N∆∑

j∈N
′

i

Tj
. Here the parameters of the classical

Polya process are chosen by directly matching its first and

(n, 1)-step second-order statistics with those of {Zi,n}∞n=1.

This method avoids the computational burden of the previous

model by yielding an analytical expression for the correlation

parameter of the classical Polya process.

We next prove that under some stationarity and symmetry

assumptions, the contagion process for a complete network

running on each node is statistically identical to the classical

Polya process of Model 5.2.

Lemma 5.3: (Exact Representation): Suppose that

(i) P (Zi,1 = 1 | Zn
j = an) = ρ, and

(ii) P (Zi,t = 1 | Zn
j = an) = P (Zk,n+1 = 1 | Zn

j = an),

for all n ≥ 1, 2 ≤ t ≤ n, i, j, k ∈ V , an ∈ {0, 1}n. Then

for any node i in a complete network, {Zi,n}
∞
n=1 is given

exactly by the Polya(ρ, δ′) process.

Unfortunately, in a general network setting neither of these

assumptions hold true. However, this result motivates the fact

that this analytical approximation is reasonable to use for

situations where conditions (i) and (ii) hold within tolerable

margins of error; empirical evidence indicates that this occurs

for large values of N , since as N increases the quality of

the fit improves. This approximation, nevertheless, drastically

reduces the complexity in analyzing the individual contagion

draw processes, as closed-form expressions for the process

parameters are available.

We close this section with numerical demonstrations

on the fitness of both approximation models. Fig. 3

shows representative comparisons between the Beta(ρ
δ̂
, 1−ρ

δ̂
)

and Beta( ρ
δ′ ,

1−ρ
δ′ ) pdfs with the simulated histogram of

1
n

∑n
t=1 Zi,n, where n = 1000, for an arbitrary node i in

a network. Recall that the Beta pdfs are the distribution of

the limit random variables to which the sample average of

the process of Models 5.1 and 5.2 converge almost surely,

respectively, as n → ∞ (see Section II). We observe in

Fig. 3, for networks where Ri and Bi differ between nodes,

that the shape of the pdfs approximately fit the histogram.

Empirical

Model 5.1

Model 5.2

0.1 0.4 0.8

1

2

3

4

(a) Complete network, N = 2,∑N
i=1

Ri = 6,
∑N

i=1
Bi = 8,

∆ = 1

Empirical

Model 5.1

Model 5.2

0
0 0.6

1

1

2

3

(b) Barabasi-Albert network [18],
N = 5, node degrees are

2, 3, 1, 1, 1 resp.,
∑N

i=1
Ri = 28,

∑N
i=1

Bi = 21, ∆ = 8

Fig. 3. Comparison of simulated normalized histogram for 1

n

∑n
t=1

Zi,n

for node 1 in a given network (ran until time 1, 000 and averaged over

5, 000 simulated trials), the Beta( ρ
δ̂
,
1−ρ

δ̂
) pdf from Model 5.1, and the

Beta( ρ
δ′
,
1−ρ
δ′

) pdf from Model 5.2. The pdfs fit similarly for the complete
network, but for the general non-complete network Model 5.1 fits best.

VI. FUTURE DIRECTIONS: CONTROLLING EPIDEMICS

With a model in place, the next question is to determine

strategies to control and mitigate epidemics. Our objective

is to study the average infection Ĩn as n grows without

bound; but when seeking analytic results, it might be more

amenable to observe the asymptotic behavior of the network

susceptibility Ũn (note that when Ũn decreases, so does Ĩn).

In this framework, we wish to reduce the level of infection

to some acceptable threshold. We say the epidemic has been

ǫ-eliminated if lim supn→∞ Ĩn ≤ ǫ, ǫ ∈ [0, 1].

A. Contagion Dilution

In situations where the conditions of Lemma 5.3 hold

within an acceptable range of error, making Model 5.2 a

good approximation for the nodes’ contagion processes, we

note that as the number of nodes N increases, the correlation

parameter δ′ decreases. Indeed, δ′ → 0 as N → ∞, and

thus the draw variables of the process of each node become

independent and identically distributed, since we are simply

drawing with replacement. Hence for each node i, by the

strong law of large numbers, we know that the sample



average 1
n

∑n
t=1 Zi,n converges almost surely to a constant,

which must be the expected value E[Zi,n] = ρ. This means

that for complete networks with a large enough number of

nodes, the sample average of draws is effectively constant

at ρ, and so the average infection is stable and fixed at

ρ. This implies that by increasing the number of nodes in

the network and by making the network fully connected so

that the conditions of Lemma 5.3 hold, we may limit the

spread of contagion beyond the initial level of infection ρ.

The reduction of contagion spread effectively means that all

nodes average out their own individual initial infection and

share it in the network. For example, a large and highly

connected group of healthy nodes and one very infected

node will eventually become a group of slightly less healthy

individuals, but none will be very infected. This means that

the epidemic will be almost surely ρ-eliminated, but there

are no guarantees that it do better, regardless of the initial

conditions. One can interpret the outcome of this discussion

in the framework of consensus or opinion dynamics, where

contagion dilution drastically reduces the opinion of outliers

with extreme views.

B. Establishing a Control Problem

We note that the ∆b,i(·) quantities, which denote the net

number of “healthy” balls added to node i’s urn after each

draw (see Section III), can play the role of “healing or curing

parameters”. When these parameters are judiciously selected

subject to an allowable budget, say B, on the maximal

number of healthy balls that can be added in the network

at any given time, the network epidemic can be steered

towards a desirable level. For a given ǫ, healing budget B
and network G, we say that curing from initial conditions

{Ri, Bi}i∈V is ǫ-achievable if there exists a B-constrained

choice of {∆b,i(·)}i∈V such that the epidemic can be ǫ-

eliminated on G. We thus consider the following problem.

Problem 6.1: (Average Infection Budget Constraint):

Minimize the limiting average infection Ĩn subject to a

budget B on the total healing at each time step:

min∑
N
i=1

∆b,i(t)≤B
∀t

lim sup
n→∞

Ĩn

In the case of regular graphs under some conditions, using

Theorem 4.5, we know that the limit of the related measure

Ũn, the network susceptibility, exists. In the general case,

we simply attempt to reduce infection in the worst-case

scenario. The solution to Problem 6.1 would be an infinite

horizon optimal control policy that would yield the best

possible level of epidemic elimination for a given network,

budget, and initial conditions. However, finding such a policy

in general appears to be difficult. Although discussion of

potential policies or numerical approximations are left to a

future work, we finish this paper by comparing a number

of potential strategies in Fig. 4 to show how the choice

of allocation of curing can affect the outcome. The figure

indicates strategies which incorporate the degree of the nodes

perform best. Strategies used for the choice of ∆b,i(·), in

increasing order of empirical effectiveness, include:

(i) Curing only the most infected node: ∆b,i(t) = B if

argmaxi∈V Ui,t−1 = i and 0 otherwise.

(ii) Ratio of infectedness: ∆b,i(t) = B Ui,t−1∑
N
i=1

Uj,t−1

(iii) Super urn ratio: ∆b,i(t) = B R̄i/T̄i∑
N
j=1

R̄j/T̄j

(iv) Uniformly applying the budget: ∆b,i(t) =
B
N

(v) Node degree: ∆b,i(t) = B |Ni|∑
N
i=1

|Ni|

(vi) Degree and infectedness: ∆b,i(t) = B |Ni|Ui,t−1∑
N
i=1

|Ni|Ui,t−1

(vii) Degree and super urn ratio: ∆b,i(t) = B |Ni|R̄i/T̄i∑
N
j=1

|Nj |R̄j/T̄j
.

(a) Barabasi-Albert network [18]
used for simulations, N = 100

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Average ρ

0
1000

0.4

0.6

1

(b) Comparison of curing strategies
(lower values mean less infection)

Fig. 4. Comparison of the average infection Ĩn, 1 ≤ n ≤ 1, 000,
for different curing strategies under identical initial conditions on a 100-

node Barabasi-Albert network. Here the initial conditions are
∑N

i=1
Ri =

587,
∑N

i=1
Bi = 568, and so ρ = 0.5082. All nodes use ∆r = 4, the

budget is B = 400, and results are averaged over 2, 000 trials. Strategies
(ii)-(iv) and (vi)-(vii) perform nearly identically, and are overlaid.
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