
Capacity of Generalized Discrete-Memoryless
Push-to-Talk Two-Way Channels

Jian-Jia Weng, Fady Alajaji, and Tamás Linder
Department of Mathematics and Statistics

Queen’s University
Kingston, ON K7L 3N6, Canada

jian-jia.weng@queensu.ca, {fady, linder}@mast.queensu.ca

Abstract—In this paper, we generalize Shannon’s push-to-talk
two-way channel (PTT-TWC) by allowing reliable full-duplex
transmission as well as noisy reception in the half-duplex (PTT)
mode. Viewing a PTT-TWC as two state-dependent one-way
channels, we introduce a channel symmetry property pertaining
to the one-way channels. Shannon’s TWC capacity inner bound is
shown to be tight for the generalized model under this symmetry
property. We also analytically derive the capacity region, which
is shown to be the convex hull of (at most) 4 rate pairs. Examples
that illustrate different shapes of the capacity region are given,
and efficient transmission schemes are discussed via the examples.

Index Terms—Network information theory, push-to-talk two-
way channels, capacity region, time-sharing, channel symmetry.

I. INTRODUCTION

Point-to-point two-way communication [1] as depicted in
Fig. 1 allows two users to simultaneously exchange informa-
tion over a shared channel. Ideally, this enables cooperation
between users to jointly improve the reliability of transmission
via interactive adaptive coding. However, how each user can
effectively maximize its individual transmission rate over the
shared channel and concurrently provide sufficient feedback
to help the other user’s transmission is quite a challenging
problem. Although in the past two decades increased attention
has been given to two-way channels (TWCs) [2]–[14], a
single-letter characterization of the capacity region for general
TWCs remains open. The aim of this paper is to establish a
capacity result for a generalized push-to-talk (PTT) TWC.

Let Xj ∈ {0, 1, 2} and Yj ∈ {0, 1} denote user-j’s
channel input and output for j = 1, 2, respectively. Shannon’s
discrete-memoryless PTT-TWC (DM-PTT-TWC) [1] as shown
in Table I(a) is a classic example where two-way simultaneous
(i.e., full-duplex) transmission is completely unreliable and
time-sharing between two one-way transmissions (i.e., half-
duplex communication) is necessary to achieve capacity. As
observed from the channel’s marginal transition matrices in
Tables I(b) and I(c), user 1 can perfectly transmit a one-bit
message to user 2 only when the channel input of user 2 is ‘0’,
and vice versa. Let Rj denote the transmission rate of user j
for j = 1, 2. A simple time-sharing argument then gives the set
of reliable transmission rate pairs (R1, R2) = (α, 1−α), where

This work was supported in part by NSERC of Canada.

Fig. 1: Block diagram of a two-user TWC with channel inputs
X1 and X2 and channel outputs Y1 and Y2.

0 ≤ α ≤ 1. Since there is no other way to transmit information
reliably, that set of rate pairs clearly constitutes the boundary
of the capacity region and thus determines capacity.1

Inspired by Shannon’s TWC setup, the PTT idea was
extended to other multi-user channels such as PTT mul-
tiaccess channels [15, Problem 14.7], [16], switch-to-talk
broadcast channels, and incompatible broadcast channels [17,
Section V]. In [4], a capacity result was established for a DM-
PTT network with more than two users.

In this paper, we generalize Shannon’s PTT-TWC by mak-
ing two-way simultaneous transmission useful. We also allow
noisy reception in the half-duplex transmission and extend
the channel input and output alphabets beyond ternary-input
and binary-output. Viewing the PTT-TWC as two sets of
one-way channels (one for each direction of transmission),
we further introduce a channel symmetry property, which
imposes on each transition matrix of the one-way channels
a uniform structure, a weakly-symmetric structure [18], and
a capacity constraint. Under this symmetry property, we an-
alytically derive the capacity region for the generalized PTT-
TWCs. We also illustrate the possible different shapes of the
capacity region and discuss efficient transmission strategies via
examples.

It is worth mentioning that a by-product of our derivation is
a new way to show the tightness of Shannon’s capacity inner
bound [1] which is complementary to prior methods in [7],
[10], [12]. In fact, we find that none of these prior results imply
that Shannon’s inner bound is tight for Shannon’s PTT-TWC
(and for our general model under the symmetry property). We
will discuss this issue later (in Section III).

The rest of this paper is organized as follows. In Section II,
a brief review on the general TWC and the proposed DM-
PTT-TWC models is given. A capacity result for the proposed
model is derived in Section III. Examples are presented and

1A formal proof of this statement via the Lagrange multiplier method can
be found in [2, Section 2.5.3].



TABLE I: The full and marginal transition matrices of Shan-
non’s PTT-TWC, where Xj and Yj denote user-j’s channel
input and output, respectively, j = 1, 2. The rows and columns
are indexed by the channel inputs and outputs, respectively.

(a) PY1,Y2|X1,X2
[1, Table I]

(X1, X2) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 1
4

1
4

1
4

1
4

(0, 1) 1
2

1
2

0 0

(0, 2) 0 0 1
2

1
2

(1, 0) 1
2

0 1
2

0

(1, 1) 1
4

1
4

1
4

1
4

(1, 2) 1
4

1
4

1
4

1
4

(2, 0) 0 1
2

0 1
2

(2, 1) 1
4

1
4

1
4

1
4

(2, 2) 1
4

1
4

1
4

1
4

(b) PY2|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(1, 0) 1 0

(2, 0) 0 1

(0, 1) 1
2

1
2

(1, 1) 1
2

1
2

(2, 1) 1
2

1
2

(0, 2) 1
2

1
2

(1, 2) 1
2

1
2

(2, 2) 1
2

1
2

(c) PY1|X1,X2

(X1, X2) 0 1

(0, 0) 1
2

1
2

(0, 1) 1 0

(0, 2) 0 1

(1, 0) 1
2

1
2

(1, 1) 1
2

1
2

(1, 2) 1
2

1
2

(2, 0) 1
2

1
2

(2, 1) 1
2

1
2

(2, 2) 1
2

1
2

qualitatively assessed in Section IV, and conclusions are drawn
in Section V.

II. PRELIMINARIES AND GENERALIZED
DM-PTT-TWC MODEL

A. General DM-TWC Model

In point-to-point two-way communication, two users ex-
change messages M1 and M2 via n channel uses. Messages
M1 and M2 are assumed to be independent and uniformly
distributed on the finite setsM1 , {1, 2, ..., 2nR1} andM2 ,
{1, 2, ..., 2nR2}, respectively, for some integers nR1,nR2 ≥ 0.
Let Xj and Yj be the channel input and output alphabets,
respectively, for j = 1, 2. For i = 1, 2, . . . , n, let Xj,i ∈ Xj
and Yj,i ∈ Yj denote the channel input and output of
user j at time i, respectively. Given the channel transition
probability PY1,Y2|X1,X2

, a TWC is said to be memoryless
if PY1,i,Y2,i|Xi

1,X
i
2,Y

i−1
1 ,Xi−1

2
(y1,i, y2,i|xi1, xi2, yi−11 , yi−12 ) =

PY1,Y2|X1,X2
(y1,i, y2,i|x1,i, x2,i) for all i = 1, 2, . . . , n, where

xij , (xj,1, xj,2, . . . , xj,i) and yi−1j , (yj,1, yj,2, . . . , yj,i−1).
A channel code for a DM-TWC is defined as follows.

Definition 1. An (n,R1, R2) code for a DM-TWC consists
of two message sets M1 = {1, 2, . . . , 2nR1} and M2 =
{1, 2, . . . , 2nR2}, two sequences of encoding functions fn1 ,
(f1,1, f1,2, . . . , f1,n) and fn2 , (f2,1, f2,2, . . . , f2,n) such that

X1,1 = f1,1(M1), X2,1 = f2,1(M2), X1,i = f1,i(M1, Y
i−1
1 ),

and X2,i = f2,i(M2, Y
i−1
2 ) for i = 2, 3, . . . , n, and two

decoding functions g1 and g2 such that M̂2 = g1(M1, Y
n
1 )

and M̂1 = g2(M2, Y
n
2 ).

When messages M1 and M2 are encoded via an (n,R1, R2)
channel code, the probability of decoding error is defined as
P

(n)
e (fn1 , f

n
2 , g1, g2) = Pr{M̂1 6=M1 or M̂2 6=M2}.

Definition 2. A rate pair (R1, R2) is said to be achievable
if there exists a sequence of (n,R1, R2) codes such that
limn→∞ P

(n)
e = 0. The capacity region C is defined as the

closure of the convex hull of all achievable rate pairs.

To date, a computable single-letter expression for the ca-
pacity region of general DM-TWCs has not been found.
Capacity bounds such as [1], [19]–[21] still play crucial
roles in studying transmission problems over DM-TWCs.
Let R(PX1,X2

, PY1,Y2|X1,X2
) denote the set of rate pairs

(R1, R2) with R1 ≤ I(X1;Y2|X2) and R2 ≤ I(X2;Y1|X1),
where the joint distribution of all random variables is given
by PX1,X2,Y1,Y2

= PX1,X2
· PY1,Y2|X1,X2

. Shannon in [1]
showed that the capacity region of a DM-TWC with transition
probability PY1,Y2|X1,X2

is inner bounded by

CI(PY1,Y2|X1,X2
) , co

 ⋃
PX1

PX2

R(PX1PX2 , PY1,Y2|X1,X2
)

,
and outer bounded by

CO(PY1,Y2|X1,X2
) ,

⋃
PX1,X2

R(PX1,X2 , PY1,Y2|X1,X2
),

where co denotes taking the closure of the convex hull. An
alternative expression of CI without the convex hull operation
can be obtained by introducing an auxiliary random variable
[22, Proposition 17.2].

In general, CI and CO do not coincide, but various sufficient
conditions that imply the tightness of CI have been proposed
in [1], [10], [12]. However, these conditions only apply to
DM-TWCs for which the convex hull operation is unnecessary
in obtaining CI, thus failing to determine the capacity region
for channels requiring this operation, such as Shannon’s PTT-
TWC. In this paper, we address this issue for a generalized
DM-PTT-TWC model.

B. Generalized DM-PTT-TWC Model

For j = 1, 2, let Xj , {0, 1, . . . , rj − 1} and Yj ,
{0, 1, . . . , sj − 1}, where rj ≥ 3 and sj ≥ 2 (to avoid
trivial cases). Without loss of generality, we set X1 = 0 and
X2 = 0 as the signals for the “PTT mode”. For j = 1, 2, let
vj denote the length-sj row vector with all entries equal to
1/sj . Also, let Qj,xk

denote a (rj−1)×sk channel transition
matrix with capacity Cj,xk

for j, k = 1, 2 with j 6= k and
xk ∈ Xk. An (r1, r2, s1, s2) generalized DM-PTT-TWC with
transition probability PY1,Y2|X1,X2

is defined by imposing the
following structure for the marginal channel transition matrices



[PYj |X1,X2
(·|·, ·)] (where the rows and columns are indexed by

the channel inputs and outputs, respectively): for all x2 ∈ X2,

[PY2|X1,X2
(·|·, x2)] =

(
v2

Q1,x2

)
,

and for all x1 ∈ X1,

[PY1|X1,X2
(·|x1, ·)] =

(
v1

Q2,x1

)
.

We remark that the above structures do not imply the property
PY1,Y2|X1,X2

= PY1|X1,X2
· PY2|X1,X2

.
Unlike Shannon’s original PTT-TWC, our proposed model

considers both perfect and noisy reception in the PTT mode
and allows reliable full-duplex transmission. Shannon’s PTT-
TWC can be recovered by setting (r1, r2, s1, s2) = (3, 3, 2, 2),
Qj,0 = I2, and Qj,1 = Qj,2 = 1

2 · 12×2 for j = 1, 2, where
I2 and 12×2 denote the 2 × 2 identity and all-one matrices,
respectively, and the overall channel transition probability can
be obtained as PY1,Y2|X1,X2

= PY1|X1,X2
· PY2|X1,X2

.

III. CAPACITY REGION OF GENERALIZED
DM-PTT-TWCS WITH A SYMMETRY PROPERTY

The capacity region of an (r1, r2, s1, s2) DM-PTT-TWC is
generally unknown. Below, we show that the capacity region
can be analytically determined when the marginal channels
exhibit the following symmetry property:
Channel Symmetry Property for Generalized PTT-TWCs:
for j, k = 1, 2 with j 6= k, Qj,xk

’s are weakly-symmetric2 for
all xk ∈ Xk and Cj,xk

= Cj,1 for all xk 6= 0.
Letting 1{·} denote indicator function, and letting PU0

Xj

denote the probability distribution that assigns zero probability
mass to Xj = 0 and is uniform over the set Xj\{0},
j = 1, 2, we define six rate pairs and their associated input
distributions for the generalized PTT-TWC with the above
symmetry property as follows:
• R∗1 , (0, 0), PX1,X2(x1, x2) = 1{x1 = 0} · 1{x2 = 0};
• R∗2 , (C1,1, C2,1), PX1,X2 = PU0

X1
· PU0

X2
;

• R∗3 , (C1,0, 0), PX1,X2
(x1, x2) = PU0

X1
(x1) ·1{x2 = 0};

• R∗4 , (0, C2,0), PX1,X2(x1, x2) = 1{x1 = 0} ·PU0

X2
(x2);

• R∗5 , (C1,1, 0), PX1,X2
(x1, x2) = PU0

X1
(x1) ·1{x2 = 1};

• R∗6 , (0, C2,1), PX1,X2(x1, x2) = 1{x1 = 1} ·PU0

X2
(x2).

Note that the R∗l ’s are all attained via independent inputs.

Theorem 1. For an (r1, r2, s1, s2) DM-PTT-TWC that satisfies
the above channel symmetry property, Shannon’s inner bound
is tight and the capacity region can be determined by taking
the convex hull of R∗1, R∗2, max(R∗3,R

∗
5), and max(R∗4,R

∗
6).

3

The idea behind the proof of Theorem 1 is to show that any
rate pair in Shannon’s outer bound region CO can be upper-
bounded component-wise by another rate pair that is a convex

2A channel is said to be weakly-symmetric if its transition matrix has
identical column sums and its rows are permutations of each other [18, Section
7.2]; for such a channel, the mutual information is maximized by the uniform
input distribution. We note that for more general symmetric transition matrices
for which mutual information is maximized by the uniform input distribution
(e.g. quasi-symmetric channels [23]), Theorem 1 does not necessarily hold.

3We set max(A,B) = B iff A is upper-bounded component-wise by B.

combination of the R∗l ’s. More specifically, depending on the
value of Cj,xk

’s, we can use the four rate pairs: R∗1, R∗2,
max(R∗3,R

∗
5), and max(R∗4,R

∗
6), to upper-bound any rate

pair in CO and hence determine the capacity region. Here, we
only prove the case where R∗3 = max(R∗3,R

∗
5) and R∗4 =

max(R∗4,R
∗
6). The same argument can be used to prove other

cases, and hence the details are omitted.
Proof of Theorem 1: Given any PX1,X2

, we bound the
associated rate pair (I(X1;Y2|X2), I(X2;Y1|X1)) as follows:

I(X1;Y2|X2)

=

r2−1∑
x2=0

PX2(x2) · I(X1;Y2|X2 = x2) (1)

≤
r2−1∑
x2=0

PX2(x2) ·
[
(1− PX1|X2

(0|x2)) · C1,x2

]
(2)

= (PX2
(0)− PX1,X2

(0, 0)) · C1,0

+
∑
x2 6=0

(PX2
(x2)− PX1,X2

(0, x2)) · C1,x2

= (PX2
(0)− PX1,X2

(0, 0)) · C1,0

+
∑
x2 6=0

(PX2
(x2)− PX1,X2

(0, x2)) · C1,1

+(PX1
(0)− PX1,X2

(0, 0)) · 0 + PX1,X2
(0) · 0︸ ︷︷ ︸

=0

, (3)

where (2) follows from Lemma 3 in the Appendix and (3)
holds since C1,x2

= C1,1 for all x2 6= 0. Similarly, we have

I(X2;Y1|X1)

=

r1−1∑
x1=0

PX1
(x1) · I(X2;Y1|X1 = x1) (4)

≤
r1−1∑
x1=0

PX1(x1) ·
[
(1− PX2|X1

(0|x1)) · C2,x1

]
= (PX1

(0)− PX1,X2
(0, 0)) · C2,0

+
∑
x1 6=0

(PX1
(x1)− PX1,X2

(x1, 0)) · C2,x1

= (PX1
(0)− PX1,X2

(0, 0)) · C2,0

+
∑
x1 6=0

(PX1
(x1)− PX1,X2

(x1, 0)) · C2,1

+(PX2
(0)− PX1,X2

(0, 0)) · 0 + PX1,X2
(0) · 0︸ ︷︷ ︸

=0

. (5)

Note that (3) and (5) and the fact that
∑
x2 6=0(PX2

(x2) −
PX1,X2

(0, x2)) =
∑
x1 6=0(PX1

(x1) − PX1,X2
(x1, 0)) imply

that the pair (I(X1;Y2|X2), I(X2;Y1|X1)) is upper-bounded
component-wise by

PX1,X2(0)·R∗1 +

[ ∑
x1 6=0

PX1(x1)−PX1,X2(x1, 0)

]
·R∗2+[

PX2
(0)−PX1,X2

(0, 0)
]
·R∗3 +

[
PX1

(0)−PX1,X2
(0, 0)

]
·R∗4.

Since the coefficients of the above four rate pairs sum to
one, any rate pair in CO is outer bounded by some convex



combination of R∗1, R∗2, R∗3, and R∗4. Since the four rate
pairs are achievable via independent inputs, we conclude that
Shannon’s inner bound is tight.

Clearly, the capacity region of Shannon’s PTT-TWC can
be easily determined via Theorem 1 without using the time-
sharing argument [1] or the Lagrange multiplier method [2].

Moreover, we note that (1) can be interpreted as the average
amount of information sent over a set of state-dependent one-
way channels {[PY2|X1,X2

(·|·, x2)]: x2 ∈ X2}, where the
channel input, output, and state, correspond to X1, Y2, and
X2, respectively. Thus, user-2’s input distribution PX2

not
only carries its own message but also determines how often
each one-way channel can be used for user 1. The same in-
terpretation also applies to (4). Clearly, the best channel input
distribution for one user may not create the most favorable
one-way channel allocation for the other user, necessitating a
rate trade-off between the two users’ transmissions.

Quantifying the trade-off is often the most involved part of
determining the capacity region of general TWCs. The prior
approach to tackle the problem is to exploit (when they exist)
channel symmetry or invariance properties so that for any
PX1,X2

= PX2
· PX1|X2

, one can always find a P̃X1
such

that R(PX1,X2
, PY1,Y2|X1,X2

) ⊆ R(P̃X1
· PX2

, PY1,Y2|X1,X2
)

[1], [10], [12]. However, this approach fails here since such
P̃X1 may not exist for each PX1,X2 . This observation can be
illustrated via Shannon’s PTT-TWC as one can see that no
single independent input distribution can achieve the rate pair
(R1, R2) = (α, 1−α), where 0 < α < 1. It is thus of interest
to exploit other symmetry property as the one presented at
the beginning of the section that allows us to show CO ⊆ CI
directly.

IV. EXAMPLES AND DISCUSSION

In the last section, we proved the tightness of Shannon’s
inner bound for a class of generalized DM-PTT-TWCs. The
capacity result in Theorem 1 suggests a way to use different
state-dependent one-way channels to optimize bi-directional
transmission rates. In what follows, we illustrate all possible
shapes of the capacity region via examples and discuss the
optimal transmission strategy behind each result.

Let (r1, r2, s1, s2) = (3, 3, 3, 3). Consider the generalized
PTT-TWC with the parameterized marginal transition matrices
as shown in Table II and the following settings:

Setting 1: (a, b, c, d) = (0, 0.15, 0, 0.15) ⇒

Cj,0 = 0.6667 > Cj,xk
= 0.1539

for j, k = 1, 2 with j 6= k and all xk 6= 0;
Setting 2: (a, b, c, d) = (0, 0.05, 0, 0.01) ⇒

C1,0 = 0.6667 > C1,x2
= 0.4105

C2,0 = 0.6667 > C2,x1
= 0.5918

for all x1 6= 0 and x2 6= 0;
Setting 3: (a, b, c, d) = (0.1, 0, 0, 0.01) ⇒

C1,0 = 0.2601 < C1,x2 = 0.6667

TABLE II: Marginal transition matrices of a generalized PTT-
TWC, where 0 ≤ a, b, c, d ≤ 2

3 .

(a) PY2|X1,X2

(X1, X2) 0 1 2

(0, 0) 1
3

1
3

1
3

(1, 0) 2
3
− a a 1

3

(2, 0) a 2
3
− a 1

3

(0, 1) 1
3

1
3

1
3

(1, 1) 2
3
− b b 1

3

(2, 1) b 2
3
− b 1

3

(0, 2) 1
3

1
3

1
3

(1, 2) 2
3
− b b 1

3

(2, 2) b 2
3
− b 1

3

(b) PY1|X1,X2

(X1, X2) 0 1 2

(0, 0) 1
3

1
3

1
3

(0, 1) 2
3
− c c 1

3

(0, 2) c 2
3
− c 1

3

(1, 0) 1
3

1
3

1
3

(1, 1) 2
3
− d d 1

3

(1, 2) d 2
3
− d 1

3

(2, 0) 1
3

1
3

1
3

(2, 1) 2
3
− d d 1

3

(2, 2) d 2
3
− d 1

3

C2,0 = 0.6667 > C2,x1
= 0.5918

for all x1 6= 0 and x2 6= 0;
Setting 4: (a, b, c, d) = (0.1, 0, 0.2, 0.05) ⇒

C1,0 = 0.2601 < C1,x2
= 0.6667

C2,0 = 0.0791 < C2,x1
= 0.4105

for all x1 6= 0 and x2 6= 0.

Note that, unlike for Shannon’s original PTT-TWC, reliable
full-duplex transmission is possible in the above settings since
Cj,xk

> 0 for all j, k = 1, 2 with j 6= k and xk ∈ Xk.
In Figures 2(a)-(d) (corresponding to Settings 1–4, respec-

tively), the blue dots4 are the achievable rate pairs via inde-
pendent inputs of the form: PX1,X2

= PX1
· PX2

; Shannon’s
inner bound region CI is then given by taking the convex hull
of those rate pairs. Shannon’s outer bound CO is obtained using
a similar method, but the convex hull operation is not needed.
We also depict the achievable rate region using the half-duplex
transmission mode (via input symbol ‘0’). In all settings, we
have that CI = CO as expected.

In Figure 2(a), we first observe that the half-duplex trans-
mission can attain the entire capacity region. Indeed, although
full-duplex transmission is reliable, the large difference be-
tween Cj,0 and Cj,xk

(for xk 6= 0) limits the rates achievable
via two-way simultaneous transmission and hence the half-
duplex transmission is still optimal (in the sense of achieving
capacity). Nevertheless, the benefit of full-duplex transmission
can be made significant by increasing the value of Cj,xk

for
xk 6= 0. In Figure 2(b), we illustrate a situation where two-
way simultaneous transmission achieves better rate pairs than
using the half-duplex transmission.

Moreover, when the Cj,xk
’s (xk 6= 0) are much larger than

Cj,0, using [PY2|X1,X2
(·|·, 0)] and [PY1|X1,X2

(·|0, ·)] for infor-
mation transmission becomes inefficient since they contribute

4In our computations, we discretized the standard 2-dimensional simplex
to generate the input distributions for each user. The mutual information
I(Xj ;Yk|Xk) is then evaluated under the product of the discretized input
distributions. A similar approach is used to obtain rate pairs in Shannon’s
outer bound region.
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(b) Setting 2 (unused rate pairs: R5 = (0.4105, 0) and
R6 = (0, 0.5918))
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(c) Setting 3 (unused rate pairs: R3 = (0.2601, 0) and
R6 = (0, 0.5918))
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(d) Setting 4 (unused rate pairs: R3 = (0.2601, 0) and
R4 = (0, 0.0791))

Fig. 2: The capacity region of the generalized DM-PTT-TWCs in Table II. Except for Setting 1, the capacity region is determined
by four rate pairs.

very little to the overall transmission rates in (1) and (4).
In this case, one should expect to abandon the (relatively)
inefficient channels and use only the efficient ones. This is
illustrated in Figs. 2(c) and 2(d). In an extreme case, such
as Setting 4, the upper-right corner point of the capacity
region is given by R∗2 = (0.6667, 0.4105) = (C1,1, C2,1),
implying that both users shut down the state-dependent one-
way channels [PY2|X1,X2

(·|·, 0)] and [PY1|X1,X2
(·|0, ·)] and

only use the remaining channels for information exchange.

V. CONCLUSIONS

We identified a channel symmetry property under which
Shannon’s capacity inner bound is tight for a class of gener-
alized DM-PTT-TWCs. This symmetry property differs from
prior ones in that it necessitates the use of a time-sharing
scheme to achieve capacity. Specifically, a time-sharing coding
scheme that involves two independent transmissions is opti-
mal. Viewing the generalized DM-PTT-TWC as two sets of
one-way channels, we further observed that one-way channel
components with (relatively) low capacity should be aban-
doned for efficient transmissions. Future research directions
include finding a more general tightness condition for DM-
TWCs, identifying the connections between different chan-

nel symmetry properties (in particular between the channel
symmetry property introduced in this paper and the ones in
[10] and [12]), and investigating the transmission of correlated
sources over the generalized DM-PTT-TWCs.

APPENDIX

The appendix establishes input-output mutual information
results for one-way channels that are of the same type as
the state-dependent one-way channels in the generalized PTT-
TWC of Theorem 1. Let X = {0, 1, . . . , r − 1} and Y =
{0, 1, . . . , s − 1} denote channel input and output alphabets,
respectively, for some integers r ≥ 3 and s ≥ 2. Suppose that
the set of probability vectors {[PY |X(·|x1)] : x1 ∈ X\{0}}
specifies a weakly-symmetric channel and PY |X(y|0) = 1/s
for all y ∈ Y . The input-output mutual information for a
specific channel input symbol x ∈ X is defined as

I(X = x;Y ) ,
∑
y∈Y

PY |X(y|x) ·
PY |X(y|x)
PY (y)

.

The following results are needed in the proof of Theorem 1.

Lemma 2. The capacity of the channel with the above
properties is given by C∗ = maxPX

I(X;Y ) = log s −



H([PY |X(·|1)]), where H([PY |X(·|1)]) denotes the entropy
of the probability vector [PY |X(·|1)]. The capacity-achieving
input distribution is given by:

P ∗X(x) =

{
0 if x = 0,
1
r−1 otherwise.

Proof: We apply the KKT condition for channel capacity
[24, Theorem 4.5.1] to check the optimality of P ∗X . Under P ∗X ,
we first have that I(X = x;Y ) = log s−H([PY |X(·|1)]) for
x 6= 0 [18, Theorem 7.2.1] since P ∗X is a uniform distribution
when restricted to the input alphabet X \ {0} and the channel
with the restricted inputs is weakly-symmetric. Moreover, for
x 6= 0, we have

I(X = 0;Y )

=

s−1∑
y=0

1

s
· log 1/s∑

x′ 6=0 PY |X(y|x′)/(r − 1)

= log
r − 1

s
−
s−1∑
y=0

1

s
· log

∑
x′ 6=0

PY |X(y|x′)


= log

r − 1

s
− log

∑
x′ 6=0

PY |X(y′|x′)

 (6)

= − log s+ log(r − 1)

−

 s−1∑
y′=0

PY |X(y′|x)


︸ ︷︷ ︸

=1

· log

∑
x′ 6=0

PY |X(y′|x′)


≤ −H(Y |X = x) + log(r − 1)

−
s−1∑
y′=0

PY |X(y′|x) · log

∑
x′ 6=0

PY |X(y′|x′)

 (7)

=

s−1∑
y′=0

PY |X(y′|x) · log
PY |X(y′|x)∑

x′ 6=0 PY |X(y′|x′)/(r − 1)

= I(X = x;Y ),

where y′ ∈ Y is arbitrary in (6) since
∑
x′ 6=0 PY |X(y|x′) does

not depend on y and (7) holds since H(Y |X = 0) ≤ log s.
Combining the above results then gives that I(X = 0;Y ) ≤
I(X = x;Y ) for all x 6= 0, thus implying the optimality
of P ∗X . Finally, we conclude that C∗ = maxPX

I(X;Y ) =
I(X = x;Y ) for any x 6= 0 by the KKT condition.

Lemma 3. For any 0 ≤ α ≤ 1, consider the following channel
input distribution:

P
(1)
X (x) =

{
α if x = 0,
1−α
µ−1 otherwise,

Let P (2)
X denote any input distribution with P (2)

X (0) = α. Then,
we have that I(2)(X;Y ) ≤ I(1)(X;Y ) = (1 − α) · C∗ (here
the superscript indicates which input distribution is used for
evaluation).

Proof: First, we have that H(2)(Y ) ≤ log s = H(1)(Y ).
Also, since H(Y |X = x) = H(Y |X = 1) for all x 6= 0 due
to the weakly-symmetric structure, one can easily conclude
that H(1)(Y |X) = H(2)(Y |X). The above results then imply
that I(2)(X;Y ) ≤ I(1)(X;Y ). Moreover, a direct computation
(with the result in Lemma 2) yields that I(1)(X;Y ) = (1 −
α) · C∗, thereby completing the proof.
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