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Abstract

In this paper we survey approaches to studying the ergodicity of aperiodic and irre-

ducible Markov chains [3], [18], [5], [12], [19]. Various results exist for subgeometric

and geometric ergodicity with different techniques. Roberts and Rosenthal [19] show

using the Coupling Inequality and Nummelin’s Splitting Technique how geometric

ergodicity follows from a simple drift condition. Subgeometric ergodicity is charac-

terized with a theorem introduced by Tuominen and Tweedie [22], which show the

equivalence of a variety of criteria that imply subgeometric ergodicity. Concave func-

tions and the class of pairs of ultimately nondecreasing functions are used by Douc,

Fort, Moulines, and Soulier [18] and Hairer [5] to extend and construct practical cri-

teria that imply subgeometric ergodicity. In all these results petite sets and drift

conditions play a crucial role, which allows us to unify these results in a common

context and notation. We end by using the known results to show ergodicity when

random time drift conditions are satisfied on a set of stopping times. We explore how

the rate of ergodicity and the expectation between stopping times relate, motivated

by the possible applications in network control and event triggered control systems.
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Chapter 1

Introduction

The theory of Markov chains offers an intuitive model for noisy systems with short

term feedback, describing the randomness of the future conditioned only on the im-

mediate past. The theory lends itself well to many real life applications as it naturally

describes a system with probabilistic updating dynamics based on a limited memory

of the past. In this thesis we consider the long term effects of probabilistic updating

dynamics by focusing on the asymptotic behavior of the transition probabilities for a

discrete time indexed Markov chain.

We collect and present three different approaches to ergodic theory of Markov

chains: a discussion of geometric ergodicity by Rosenthal [19] using Coupling In-

equalities and Nummelin’s Splitting technique [15]; a characterization of subgeometric

ergodicity by Meyn and Tweedie [13], and Tuominen and Tweedie [22] in the context

of regularity and the decomposition of transition probabilities; and an extension of

the applicability of subgeometric ergodicity by Douc, Fort, Moulines and Soulier [18],

and Hairer [5] exploiting concavity and a class of paired ultimately increasing func-

tions. Throughout, we use the concepts of drift conditions and petite sets to connect

the different styles of the three methods and provide some cohesion of the ideas.
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1.1 Definitions and Background

Definition (Convolutions). The convolution of two functions f, g : N→ R is denoted

as f ∗ g : N→ R and defined as

f ∗ g(n) =
n∑
k=0

f(k)g(n− k)

for all n ∈ N

Note that if f, g ≥ 0, limn→∞ g(n) = g(∞) exists and
∑

n f(n) < ∞ then

limn→∞ f ∗ g(n) =
∑∞

k=0 f(k)g(∞) follows from the dominated convergence theorem.

1.1.1 Markov chains

A discrete time Markov chain is described by

(a) a sequence of random variables {xt}t∈N that take values in some complete

separable metric space (X ,B(X )), where B(X ) is the Borel σ-field of X assumed

countably generated (p110 of [12])

(b) a family of transition probabilities {Pt} defined on (X ,B(X )), where Pt(xt, ·)

is the probability distribution of xt+1 given xt.

(c) The transition probabilities satisfy the Markov Property

P (xt+1 ∈ B : xt, xt−1, ..x0) = P (xt+1 ∈ B : xt) = Pt(xt, B) for all B ∈ B(X ),

conditioning on the immediate past is the same as conditioning on the whole past.

The one step transition probabilities act on measures µ on the measure space
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(X ,B(X )) and functions φ : X → R by

(µP )(A) =

∫
X
P (x,A)µ(dx), (Pφ)(x) =

∫
X
φ(y)P (x, dy)

respectively for any A ∈ B(X ) and any x ∈ X . A Markov chain is time homoge-

neous if the transition probabilities are independent of the time index. For a time

homogeneous Markov chain the notation normally used for the transition probabilities

follows

P (xt+m : xt) = Pm(xt, xt+m)

where Pm is the mth step transition probability of the Markov chain and is defined

by chaining the one step transition probability measures together. An m-skeleton of

{xt} is a Markov chain constructed by sampling {xt} at every mth step; so {xt} has

m− 1 m-skeletons {xtm+k}, k = 0, 1, . . .m− 1.

Definition (Invariant Distribution). An invariant distribution (or measure) is a mea-

sure µ such that µP (B) = µ(B) for all B ∈ B(X ).

Definition (Irreducibility). A Markov chain {xt} with transition probabilities P ,

defined on a measurable space (X,B(X )), is said to be irreducible if there exists a

finite measure ψ on (X,B(X )) such that

ψ(A) > 0⇒
∞∑
n=0

P n(x,A) > 0 for all x ∈ X

More specifically, the Markov chain is called ψ-irreducible.

A maximal irreducibility measure ψ is an irreducibility measure such that for all

other irreducibility measures φ, we have ψ(B) = 0 ⇒ φ(B) = 0 for any B ∈ B(X ).
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We can see from the definition of irreducibility that any measure of the form

∫ ∞∑
n=0

φ(dx)P n(x,B)2−n−1 for B ∈ B(X ) (1.1)

is a maximal irreducibility measure, where φ is any finite irreducibility measure. For

an irreducible Markov chain we denote by B+(X ) the family of sets A ∈ B(X ) such

that
∞∑
n=0

P n(x,A) > 0 for all x ∈ X . Equivalently B+(X ) = {A ∈ B(X ) : ψ(A) > 0}

where ψ is a maximal irreducibility measure.

Definition (Aperiodicity). An irreducible Markov chain {xt} with transition proba-

bilities P is said to be aperiodic if for any fixed x ∈ X and B ∈ B+(X ) there exists

N(x,B) > 0 such that

P n(x,B) > 0 for all n ≥ N(x,B)

A set B where {n > 0 : P n(x,B) > 0} is nonempty is said to be reachable from

x, in that there is a positive probability of the Markov chain hitting that set in finite

time. We note that B+(X ) is the collection of sets reachable from any point.

For the rest of this thesis we only deal with time homogeneous Markov chains, and

use the notation {xt} for Markov chains and P as the one step transition probability.

In the study of Markov chains there are several important types of sets that are

connected to the transition probabilities.

Definition (Full and Absorbing Sets). A set A ∈ B(X ) is full if ψ(AC) = 0 for a

maximal irreducibility measure ψ. A set A ∈ B(X ) is absorbing if P (x,A) = 1 for all

x ∈ A.

In an irreducible Markov chain every absorbing set is full. We use the concept of
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a full absorbing set to restrict our attention and not have to worry about sets that

will never be reached.

Definition (Atom). A set α ∈ B+(X ) is an atom if

P (x, ·) = P (y, ·)

for all x, y ∈ α.

The concept of an atom is extremely important as it gives us some sort of funda-

mental unit, where all the points of a reachable set act together.

Definition (Small sets). A set C ∈ B+(X ) is (m, ε, ν)-small if

Pm(x,B) ≥ εν(B) ∀B ∈ B(X ), x ∈ C

where m ∈ N, ε ∈ (0, 1) and ν(·) is a positive measure on (X ,B(X )).

Definition (Petite Sets). A set C ∈ B+(X ) is called κ-petite if there is a measure κ

on B(X ) and a probability distribution a(·) on Z≥0 such that

∞∑
n=0

a(n)P n(x,B) ≥ κ(B) ∀B ∈ B(X ), x ∈ C (1.2)

The next lemma follows a similar proof as Lemma 5.5.2 of [12] and allows us to

assume without loss of generality, that for an irreducible Markov chain, if a set is

κ-petite then κ can be replaced by maximal irreducibility measure (or equivalently κ

can be assumed maximal).
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Lemma 1.1.1. If an irreducible Markov chain has some set C ∈ B+(X ) that is κ-

petite for some distribution a(·), then C is ψ-petite for the distribution a∗f(n) where

f(n) = 2−n−1 and ψ is a maximal irreducibility measure.

Proof. Since a(·) and f(·) are proper probability distributions on N, a ∗ f is a proper

distribution on N. We then have for all B ∈ B+(X )

∞∑
n=0

P n(x,B)a ∗ f(n) =
∞∑
n=0

P n(x,B)
n∑
j=0

2−j−1a(n− j)

=
∞∑
n=0

n∑
j=0

∫
P j(x, dy)a(j)P n−j(y,B)2j−n−1

=

∫ ∞∑
j=0

P j(x, dy)a(j)
∞∑
n=0

P n(x,B)2−n−1

≥
∞∑
n=0

∫
κ(dy)P n(x,B)2−n−1.

Comparing (1.2) with the definition of irreducible measures we see that κ is an

irreducibility measure. Therefore letting ψ(·) =
∞∑
n=0

∫
κ(dy)P n(x, ·)2−n−1 implies that

ψ is a maximal irreducibility measure of the form (1.1) and that C is ψ-petite, which

completes the proof.

A central fact in the study of Markov chains is the existence of small sets. Num-

melin’s Splitting Technique [15] and some important ergodic theorem (see Theorem

2 of [22]) rely on that fact.

Fact 1.1.2. For an irreducible Markov chain, every set A ∈ B+(X ) contains a small

set in B+(X ).

The proof of the fact requires measure-theoretic techniques that are outside the
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scope of this thesis. A detailed proof can be found in Theorem 5.2.1 of Meyn and

Tweedie [12].

An interesting result is the equivalence of small sets and petite sets.

Theorem 1.1.3 (Theorem 5.5.3 of [12], lemma 17 [19] ). For an aperiodic and irre-

ducible Markov chain {xt} every petite set is small.

Proof. Let A be a petite set for some distribution a(·). We can assume by Lemma

1.1.1 that A is κ-petite where κ is a maximal irreducibility measure. By Fact 1.1.2

we know that there exists a (m, ε, ν(·))-small set C ∈ B+(X ).

By aperiodicity there exists N(x,C) for each x ∈ X such that P n(x,C) > 0 for

all n ≥ N(x,C), which leads to the inequalities

PN(x,C)+m(x,B) ≥
∫
C

PN(x,C)(x, dy)Pm(y,B) ≥ PN(x,C)(x,C)εν(B)

for all B ∈ B(X ). Thus we have for all x ∈ X

P n(x)(x,B) ≥ δ(x)ν(B), B ∈ B+X (1.3)

for some functions n : X → N, δ : X → (0,∞). We now define the sets Am =

{x : n(x) = m} and the constants δm =
∫
Am

ν(dx)δ(x) for all m ∈ N. We note that

by (1.3) that
∫
An
ν(dx)P n(x, ·) ≥ δmν(·).

Letting T be the set
{
n ≥ 1 : ∃cn > 0 such that

∫
νP n(x, ·) ≥ cnν(·)

}
, we show

that T is non empty and additive. By the irreducibility assumption ∪∞n=0An is a full

absorbing set, and the An are disjoint so that
∑∞

n=0 κ(An) = 1 implying T is non



1.1. DEFINITIONS AND BACKGROUND 8

empty. For all n, k ∈ T then

∫
ν(dx)P n+k(x, ·) ≥

∫
ν(dx)

∫
P n(x, dy)P k(y, ·)

≥
∫
ν(dx)

∫
δ(x)ν(dy)P k(y, ·)

=

∫
ν(dx)δ(x)

∫
ν(dy)P k(y, ·)

≥cnckν(·)

implying that n+ k is in T and so T is additive.

If gcd(T ) = d > 1 then for some N∗ the sets {∪nAN∗+nd+i}, i = 1, ...d are positive

measure sets that are periodic in the Markov chain {xt}. However, this contradicts

the assumption that the Markov chain is aperiodic and so we must conclude that

gcd(T ) = 1.

With gcd(T ) = 1 we have that n ∈ T for all n ≥ N∗ for some N∗. With the

(m, ε, ν)-small set C we have for all n ∈ T

Pm+n(x, ·) =

∫
Pm(x, dy)P n(y, ·)

≥
∫

1C(x)εν(dy)P n(y, ·)

≥1C(x)εcnν(·)

(1.4)

which implies that the (m, ε, ν)-small set C is actually (m + n, εcn, ν)-small for all

n ≥ N∗.

With A being κ-petite for a distribution a(·) we can choose a positive integer

N(C) such that
∑∞

n=N(C)+1 a(n) ≤ κ(C)/2 so that
∑N(C)

n=1 a(n)P n(x,C) ≥ κ(C) −∑∞
n=N(C)+1 a(n) ≥ κ(C)/2. Without loss of generality N∗ ≥ m, which implies for all
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k ≤ N(C) that N(C) + 2N∗ − k ≥ m + N∗. Using (1.4) and choosing γ = min{cn :

m+N∗ ≤ n ≤ N(C) + 2N∗} > 0 yields for all x in the petite set A

PN(C)+2N∗(x, ·) ≥
N(C)∑
k=1

PN(C)+2N∗(x, ·)a(k)

≥
N(C)∑
k=1

∫
C

a(k)P k(x, dy)PN(C)+2N∗−k(y, ·)

≥
N(C)∑
k=1

a(k)P k(x,C)γν(·)

≥1

2
κ(C)γν(·).

The proof is completed by noting that the petite set A is
(
N(C) + 2N∗, 1

2
κ(C)γ, ν(·)

)
-

small.

The equivalence of small sets and petite sets can be used cleverly to show that all

petite sets are petite for some distribution that has finite mean. The next theorem

follows from Proposition 5.5.5 and 5.5.6 of [12].

Theorem 1.1.4. For an aperiodic and irreducible Markov chain every petite set is

petite with a maximal irreducibility measure for a distribution with finite mean.

Proof. Suppose C ∈ B+(X ) is κ-petite. By the previous theorem we have that C is

(m, ε, ν)-small, so that C is εν-petite for the impulse distribution δm(·) = 1m(·). We

can then apply Lemma 1.1.1 with f(n) = 2−n−11{n≥0} to show that C is ψδm-petite for

the distribution δm∗f(·) = 2m−1−(·)1{·≥m} so that ψδm =
∑∞

k=m

∫
ν(dx)P k(x, ·)2m−1−k

is a maximal irreducibility measure. The only part left to prove is that the distribu-

tion δm ∗ f has a finite mean, but that follows by noting that
∑∞

k=1 k(δm ∗ f)(k) =∑∞
k=m k2m−1−k <∞.
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We require one last definition relating to Markov chains, that of stopping times

which allow us to sample the chain at times when events occur, most notably the

times of first hitting or returning to a set.

Definition (Stopping Times). A stopping time with respect to a Markov chain {xt}

is a random variable τ such that for each n, the events {τ ≤ n} are measurable with

respect to the σ-field generated by {x0, x1, ...xn}.

The most common stopping time we use is the hitting time and we use the standard

notation that τB = min{t > 0 : xt ∈ B} for B ∈ B(X ).

1.1.2 Regularity and Ergodicity

Regularity and ergodicity are concepts closely related through the work of Meyn and

Tweedie [12], [13] and Tuominen and Tweedie [22], which will be explored in Section

2, and specifically in Theorem 3.1.1. Although we do not use the concepts in the

first sections, we still try to provide some interpretation in the context of regularity

and ergodicity. The definitions below are in terms of functions f : X → [1,∞) and

r : N→ (0,∞).

Definition (Regular Sets). A set A ∈ B(X ) is called (f, r)-regular if

sup
x∈A

Ex[

τB−1∑
k=0

r(k)f(xk)] <∞

for all B ∈ B+(X )

Definition (Regular Measures). A finite measure ν on B(X ) is called (f, r)-regular

if

Eν [

τB−1∑
k=0

r(k)f(xk)] <∞



1.1. DEFINITIONS AND BACKGROUND 11

for all B ∈ B+(X ), and a point x is called (f, r)-regular if the measure δx is (f, r)-

regular.

This leads to a lemma relating regular distributions to regular atoms.

Lemma 1.1.5. If a Markov chain {xt} has an atom α ∈ B+(X ) and an (f, r)-regular

distribution λ, then α is an (f, r)-regular set.

Proof.

λ(α)Eα[

τB−1∑
n=0

r(n)f(xn)] =

∫
α

λ(dx)Ex[

τB−1∑
n=0

r(n)f(xn)]

≤
∫
X
λ(dx)Ex[

τB−1∑
n=0

r(n)f(xn)]

=Eλ[

τB−1∑
n=0

r(n)f(xn)]

The expectation is finite for all B ∈ B+(X ) since λ is assumed (f, r)-regular, and so

α is an (f, r)-regular set.

To make sense of ergodicity we first need to define the f -norm, denoted ‖.‖f .

Definition (f -norm). For a function f : X → [1,∞) the f -norm of a measure µ

defined on (X ,B(X )) is given by

‖µ‖f = sup
g≤f
|
∫
µ(dx)g(x)|.

The commonly used Total Variation norm, or TV -norm, is the f -norm when

f = 1, denoted ‖.‖TV .
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Definition (Ergodicity). A Markov chain {xt} with invariant distribution π is (f, r)-

ergodic if it satisfies the conditions (i)-(iv) of Theorem 3.1.1. A more useful classi-

fication of ergodicity comes from the fact (see Theorem 3.2.3) that (f, r)-ergodicity

implies

r(n)‖P n(x, ·)− π(·)‖f → 0 as n→∞ for all x ∈ X . (1.5)

If (1.5) is satisfied for a geometric r and f = 1 then the Markov chain {xt} is

geometrically ergodic.

Before getting to Theorem 3.1.1 we reference ergodicity for convenience, however

for clarity’s sake the concept that we allude to is the convergence of the transition

probabilities to an invariant distribution (i.e. r(n)‖P n(x, ·)− π(·)‖f → 0)

1.1.3 Foster-Lyapunov Drift Condition

The main tool used in studying Markov chains and ergodicity is drift conditions as

they provide bounds on return times to reachable sets, which allows some sort of

control on the dynamics of a Markov chain by focusing on when the chain hits a

specific set.

Theorem 1.1.6 (See Chap. 11 of [12]). Let {xt} be an irreducible Markov chain on

state space X . If there exists a function V : X → (0,∞), a small set C and constants

ε > 0, b <∞ such that

E[V (xt+1) : xt = x] ≤ V (x)− ε+ b1C(x) ∀x ∈ X

then for any fixed B ∈ B+(X ), εEx0 [τB] ≤ V (x0)+c(B). Further, there exists a petite

set A such that supx∈AEx[τA] < ∞, and {xt} is Positive Harris Recurrent (i.e. the
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chain is (1, 1)-ergodic and converges to an invariant distribution).

Proof. We construct a martingale sequence using the drift condition and then use

it to bound return times to the small set. The Recurrence result follows after by

constructing the invariant distribution using Nummelin’s Splitting Technique and

considering the small set as an atom. We first fix B ∈ B+(X ) and define stopping

times

τB = min(t > 0 : xt ∈ B)

τN = min(τB, N)

and define a sequence {Mt}t∈N by

M0 = V (x0)

Mt = V (xt) +
t−1∑
k=0

(ε− b1C(xk)).

Then {Mt} is a supermartingale sequence since

E[Mt+1 : xt, . . . , x0] = E[V (xt+1) +
t∑

k=0

(ε− b1C(xk)) : xt, . . . , x0]

≤ V (xt) +
t−1∑
k=0

(ε− b1C(xk)) (by hypothesis)

= Mt (by definition)
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By Doob’s Optional Sampling theorem

Ex0 [MτN ] ≤M0

Ex0 [V (xτN ) +
τN−1∑
k=0

(ε− b1C(xk))] ≤ V (x0)

Ex0 [
τN−1∑
k=0

ε] ≤ V (x0)− Ex0 [V (xτN )] + bEx0 [
τN−1∑
k=0

1C(xk)]

To continue we note by Theorem 1.1.4 that C is κ-petite for some finite mean distri-

bution a(·), which gives the inequality

1C(x) ≤
∑∞

n=1 P
n(x,B)

κ(B)

for any B ∈ B+(X ), and so with

Ex0 [P
n(xk, B)] =

∫
P k(x0, dy)P n(y,B)

=

∫
P n+k(x0, dx)1B(x) = Ex0 [1B(xk+n)]

we have

εEx0 [τ
N ] ≤ V (x0) + b

∞∑
n=1

a(n)Ex0 [
τN−1∑
k=0

1B(xk+n)]

κ(B)

≤ V (x0) + b

∑∞
n=1 a(n)n

κ(B)
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Since τN ↑ τB we have by the monotone convergence theorem

Ex0 [τ
N ] ↑ Ex0 [τB] = sup

N
Ex0 [τ

N ] ≤ V (x0) + b

∑∞
n=1 a(n)n

κ(B)
. (1.6)

With a(·) assumed to have finite mean by the hypothesis we obtain the first claim

that εEx0 [τB] ≤ V (x0) + c(B) for any B ∈ B+(X ).

We now turn to the second claim of a petite set with finite return time. Noting

X = {V <∞} we have that for some M > 0, {V ≤M} ∩C ∈ B+(X ) and with Fact

1.1.2 there exists a petite set A contained in {V ≤ M} ∩ C. Since V is bounded on

petite A ∈ B+(X ), our second claim

sup
x∈A

Ex[τA] <∞

follows directly from (1.6).

The claims of ergodicity and recurrence follows from Theorem 4.1 of [11], and

more explicitly from Nummelin’s splitting technique and its implications described

below, turning A into an atom.

1.2 Nummelin’s Splitting Technique

Nummelin’s splitting technique [15] is a widely used method in the study of Markov

chains; see 4.2 of [19], Chapter 5 of [12], Proposition 3.7 and Theorem 4.1 of [22],

[24], [13], and in the appendix of [3]. With an irreducible, aperiodic Markov chain

{xt} on state space X with transition probability P and a (m, δ, ν)-small set C with

finite return time, we construct an atom for the Markov chain in order to construct

an invariant distribution for the chain.
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We first show the splitting technique for the case m = 1 (i.e. C is a (1, δ, ν-small

set). Construct a new Markov chain {zt} on X × {0, 1} by zt = (xt, at) where {at}

are a sequence of random variables on {0, 1}, independent of {xt}, except for when

xt ∈ C.

1. If xt /∈ C then xt+1 ∼ P (xt, ·)

2. If xt ∈ C then

with probability δ : at = 1 and xt+1 ∼ ν(·)

with probability (1− δ) : at = 0 and xt+1 ∼ P (xt,·)−δν(·)
1−δ

So that the distribution of xt given zt is

P (xt+1 ∈ B : zt = (xt, at) ∈ C × {1}) = ν(B)

P (xt+1 ∈ B : zt = (xt, at) ∈ C × {0}) =
P (xt, B)− δν(B)

1− δ

Note that P (xt,·)−δν(·)
1−δ ≥ 0 is a valid probability measure since C is (1, δ, ν)-small. If

xt ∈ C then

xt+1 ∼ δν(·) + (1− δ)P (xt, ·)− δν(·)
1− δ

= P (xt, ·)

so the one-step transition probabilities are unchanged for {xt}.

This allows us to define S = C × {1} as an accessible atom for {zt}, and to

construct an invariant distribution for {xt} using {zt}.

We specified the technique for the one step transition probability, but the same

construction equally applies for (m, ε, ν)-small sets where m > 1 with the only change

being that the m − 1 steps after hitting C at xt are distributed conditionally on
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xt and xt+m (see Section 4.2 of [19]). In the case with m > 1 the Markov chain

{zt} does not have an atom, instead it has an ”m-step atom” in the sense that

Pm((x, 1), ·) = Pm((y, 1), ·) for all x, y ∈ X

1.3 Invariant Distribution

The invariant distribution of a Markov chain is appears as the limit of transition

probabilities when Markov chains are ergodic. We use, without proving, a Theorem

from Meyn and Tweedie [12] to provide conditions that give insight into the existence

and properties of the invariant distribution.

Theorem 1.3.1 (Theorem 10.0.1 of [12]). An aperiodic and irreducible Markov chain

{xt} admits a unique invariant probability measure π(·) if there exists a petite set C

such that supx∈C Ex[τC ] < ∞. The invariant measure π has the representation, for

any A ∈ B+(X )

π(B) =

∫
A

π(dy)Ey[

τA∑
n=1

1B(xn)], B ∈ B(X ). (1.7)

The case when {xt} has an atom α such that supx∈αEx[τα] < ∞ is interesting

because it allows the invariant distribution π to have a more explicit representation.

In the case with an atom α,

π(X ) = 1 = π(α)Eα[τα]

and so

π(B) = π(α)Eα[
τα∑
n=1

1B(xn)] =

Eα[
τα∑
n=1

1B(xn)]

Eα[τα]
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which is Kac’s Theorem (see Theorem 10.2.2 of [12]). We note that for any A ∈

B+(X ),

π(V ) =

∫
A

π(dy)Ey[

τA∑
n=1

V (xn)] (1.8)

and if {xt} satisfies The Foster-Lyapunov Drift condition PV ≤ V − ε + b1C then

{V < ∞} is a full absorbing set and we can choose A = {V < Q} ∈ B+(X ) for Q

large enough.

Therefore with the supermartingale sequence Mt = V (xt) +
∑t−1

k=0(ε− b1C(xk)) we

have that for τN = min{N, τA}

Ey[

τA∑
n=1

V (xn)] = Ey[

τA∑
n=1

Ey[V (xτn) : xn]]

≤ Ey[

τA∑
n=1

V (xτn−1) + b1C(xτn−1)]

so that by iteterating conditional expectations we have

≤ Ey[

τA∑
n=1

V (y) + bEy[
τn−1∑
k=1

1C(xk) : τA]]

≤ Ey[

τA∑
n=1

V (y) +
∞∑
s=0

a(s)

bEy[
τn−1∑
k=0

1A(xk+s) : τA]

κ(A)
] as in Theorem 1.1.6

≤ Ey[

τA∑
n=1

V (y) +
∞∑
s=0

a(s)
bs

κ(A)
]

≤ Ey[τA(V (y) + c(A))]

≤ (V (y) + c(A))2/ε

and because V is bounded on A = {V < Q} we have that π(V ) <∞.
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It is interesting to note how the drift condition can give us a more explicit repre-

sentation of π by starting with Kac’s Theorem. If {xt} satisfies a Foster-Lyapunov

drift condition with a (m, δ, ν)-small set C then using Nummelin’s Splitting Tech-

nique to create the Markov chain {zt} = {(xt, at)} where the m-skeleton {ztm} has an

atom, we can use (1.4) to get P km(x, ·) ≥ m−1
∑m−1

i=0 P i1C(x)ν(·). Therefore the m-

skeleton {ztm} satisfies a drift condition with a (k, a, ν)-small set {
∑m−1

i=0 P i1C ≥ a}

(i.e. Lemma 14.2.8 of [12] )and so the m-skeleton by Theorem 1.1.6 has a bounded

return time to an atom. We can then apply Kac’s Theorem to get an invariant mea-

sure πm for {xtm} and an invariant measure π = m−1
∑m−1

i=0 P iπm for {xt}. A more

detailed explanation, and a proof, can be found in Chapter 10 of [12], by Meyn and

Tweedie.

1.3.1 Bounds on Stopping Time Moments

If a Markov chain has an invariant distribution π of the form of (1.7) it can be used

to bound the expected hitting time of any set B ∈ B(X ) such that π(B) > 0. The

result is similar to Theorem 14.2.4 of [12] which is more general and uses regularity.

Proposition 1.3.2. Suppose {xt} is an aperiodic and irreducible Markov chain. If

supx∈C Ex[τC ] <∞ for some small set C then

sup
x∈C

Ex[τB] <∞

for all B ∈ B+(X ). (i.e. C is a (1,1)-regular set).

Proof. Similarly to the proof of Theorem 3.1.1, for any bounded function f : X →
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[1,M ] we can define

V (x) = Ex[

τC∑
k=1

f(xk)]1CC (x) + f(x)

which satisfies a drift condition

PV (x) = Ex[

τC∑
k=2

f(xk)1CC (x1)] + Pf(x)

= Ex[

τC∑
k=2

f(xk)1CC (x1)] + Ex[f(x1)1C(x1)] + Ex[f(x1)1CC (x1)]

= Ex[

τC∑
k=1

f(xk)1CC (x1)] + Ex[f(x1)1C(x1)]

= Ex[

τC∑
k=1

f(xk)]

= V (x)− f(x) + 1C(x)Ex[

τC∑
k=1

f(xk)]

≤ V (x)− 1 + 1C(x) sup
x∈C

MEx[τC ].

With V bounded on C by M , the proof is completed by an application of Theorem

1.1.6, giving supx∈C Ex[τB] ≤M + c(B).

1.4 Coupling Inequality and Parallel Chains

The main idea behind the coupling inequality is to bound the total variation distance

between the distributions of two random variables by the probability they are dif-

ferent; the more coupled the two random variables are the more their distributions

match up. Let X, Y be two jointly distributed random variables on a space X with
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distributions L(X) and L(Y ) respectively. Then we can bound the total variation

between the distributions by the probability the two variables are not equal.

‖L(X)− L(Y )‖TV = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (X ∈ A,X 6= Y )

− P (Y ∈ A,X = Y )− P (Y ∈ A,X 6= Y )|

≤ sup
A
|P (X ∈ A,X 6= Y )− P (Y ∈ A,X 6= Y )|

≤P (X 6= Y )

The coupling inequality is useful in discussions of ergodicity when used in con-

junction with parallel Markov chains, as in 4.1 of [19], and 4.2 of [5]. We try to create

two Markov chains having the same one-step transition probability and as high as

possible probability of being equal.

Let {xn} and {x′n} be two Markov chains that have probability transition kernel

P (x, ·), and let C be an (m, δ, ν)-small set. We use the coupling construction provided

by Roberts and Rosenthal.

Let x0 = x and x′0 ∼ π(·) where π(·) is the invariant distribution of both Markov

chains.

1. If xn = x′n then xn+1 = x′n+1 ∼ P (xn, ·)

2. Else, if (xn, x
′
n) ∈ C × C then

with probability δ, xn+m = x′n+m ∼ ν(·)

with probability 1− δ then independently

xn+m ∼ 1
1−δ (P

m(xn, ·)− δν(·))
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x′n+m ∼ 1
1−δ (P

m(x′n, ·)− δν(·))

3. Else, independently xn+m ∼ Pm(xn, ·) and x′n+m ∼ Pm(x′n, ·).

The in-between states xn+1, ...xn+m−1, x
′
n+1, ...x

′
n+m−1 are distributed conditionally

given xn, xn+m, x
′
n, x

′
n+m, as mentioned in Section 1.2.

We would like to use this coupling between the {xn} and the stationary {x′n} to

bound the normed difference between distribution of xn and the invariant distribu-

tion π(·). By the Coupling Inequality and the previous discussion with Nummelin’s

Splitting technique we have ‖P n(x, ·)− π(·)‖TV ≤ P (xn 6= x′n).

1.5 Commentary

We introduced the important concepts that will be used throughout this thesis: ape-

riodic and irreducible time homogeneous Markov chains {xt}, petite sets, drift con-

ditions, and Nummelin’s Splitting technique. We showed the equivalence of petite

sets and small sets, how a petite set and drift condition bound stopping times, and

how using a small set a Markov chain can be split to create a sort of pseudo-atom.

The ergodicity results in the following sections use a similar concept as the coupling

inequality to show how bounded return times of a petite set resulting from a drift

condition implies ergodicity.
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Chapter 2

Geometric Ergodicity

In this section we follow the results given by Roberts and Rosenthal in [19] to show how

a strong type of ergodicity, geometric ergodicity, follows from a simple drift condition.

The proofs are simple and self-contained and rely heavily on the Coupling Inequality

and Nummelin’s Splitting technique, showcasing how powerful the concepts are.

2.1 Univariate Drift Condition

A variant of the Foster-Lyapunov condition, the univariate drift condition is stronger

and in fact implies the Foster-Lyapunov drift condition. An irreducible Markov chain

satisfies the univariate drift condition if there are constants λ ∈ (0, 1) and b < ∞,

along with a function W : X → [1,∞), and a small set C such that

PW ≤ λW + b1C .

We can check in the same way as we did for the Foster-Lyapunov drift condition

that the functions Mn = λ−nV (xn)−
n−1∑
k=0

b1C(xk) are supermartingale if the univariate
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drift condition is satisfied, and so we get the inequality

Ex0 [λ
−nV (xn)] ≤ V (x0) + Ex0 [

n−1∑
k=0

b1C(xk)] (2.1)

for all n and x0 ∈ X , and with Theorem 1.1.4 we also have

Ex[λ
τB ] ≤ V (x) + c(B)

for all B ∈ B+(X ). The last inequality is proven in the same way as Theorem 1.1.6.

The univariate drift condition interestingly allows us to assume that V is bounded

on C, which simplifies working with this particular drift condition.

Lemma 2.1.1 (Lemma 14 of [19]). If a function V : X → [1,∞), constants λ ∈ (0, 1),

b > 0 and a small set C satisfy the univariate drift condition

PV ≤ λV + b1C

then we can assume that V is bounded on C.

Proof. We aim to replace λ and C so the statement is true. Choosing λ0 ∈ (λ, 1) and

setting K = b/(λ− λ0) we define the set C0 = C ∩ {V ≤ K}. We wish now to show

the univariate drift condition

PV ≤ λ0V + b1C0 (2.2)

holds for all x and with C0 a small set. We note that by definition of a small set

C0 ⊆ C is small just as C is small, and that the univariate drift condition (2.2)
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holds for any x ∈ C0 and x /∈ C, so we need only check the drift condition holds for

x ∈ C \ C0. Indeed for any x ∈ C \ C0 we have that V (x) ≥ K so that

PV (x) ≤λV + b

=λ0V − (λ0 − λ)V + b

≤λ0V − (λ0 − λ)K + b

=λ0V

and the univariate drift condition (2.2) holds for all x ∈ X . Therefore we can assume

either V is bounded on C or that V satisfies a different univariate condition with C0

where V is bounded on C0.

Roberts and Rosenthal [19] prove using the coupling inequality that geometric

ergodicity follows from the univariate drift condition.

Theorem 2.1.2 (Theorem 9 of [19]). Suppose {xt} is an aperiodic, irreducible Markov

chain with invariant distribution π(·). Suppose C is a (1, ε, ν)-small set and V :→

[1,∞) satisfies the univariate drift condition with constants λ ∈ (0, 1) and b < ∞

with V (x) <∞ for some x ∈ X . Then {xt} is geometrically ergodic.

The proof of this theorem is the focus of this chapter and will be explicitly done

in steps, and the reasoning will be clear.
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2.2 Bivariate Drift Condition

The bivariate drift condition is satisfied for two independent copies of a Markov chain

with a small set C if there exists a function h : X ×X → [1,∞) and α > 1 such that

P̄ h(x, y) ≤h(x, y)/α (x, y) /∈ C × C

P̄h(x, y) <∞ (x, y) ∈ C × C

where

P̄ h(x, y) =

∫
X

∫
X
h(z, w)P (x, dz)P (y, dw)

Now we explore a connection between the univariate and bivariate drift conditions.

Proposition 2.2.1 (Proposition 11 of [19]). Suppose the univariate drift condition is

satisfied for V : X → [1,∞) and constants λ ∈ (0, 1) b <∞ and small set C. Letting

d = infx∈CC V (x), if d > b
1−λ − 1, then the bivariate drift condition is satisfied for

h(x, y) = 1
2
(V (x) + V (y)) and α−1 = λ+ b/(d+ 1) > 1.

Proof. Having (x, y) /∈ C ×C implies by the univariate drift condition that h(x, y) =

1
2
(V (x) + V (y)) ≥ (d+ 1)/2 so

P̄ h(x, y) =
1

2
(PV (x) + PV (y))

≤1

2
(λV (x) + λV (y) + b)

=λh(x, y) +
b

2

≤λh(x, y) +
b

2
(h(x, y)/((1 + d)/2)
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=(λ+ b/(d+ 1))h(x, y).

Therefore if d > (b/(1 − λ)) − 1 the bivariate drift condition is satisfied with α−1 =

λ+ b/(d+ 1) > 1.

Assuming two copies of a Markov chain with a (m.ε, ν)-small set C are run in

parallel as described in Section 1.4 we have for all (xk, x
′
k) ∈ C × C.

P̄mh(xk, x
′
k)1(xk+1 6=xk+1) = (1−ε)

∫
X

∫
X

(1−ε)−2h(z, w)(Pm(x, dz)−εν(dz))(Pm(y, dw)−εν(dw))

and we can define

Bm = max[1, α(1− ε) sup
C×C

R̄h]

where (1− ε)R̄h(xk, x
′
k) = P̄ h(xk, x

′
k)1(xk+1 6=xk+1)

2.3 Geometric Ergodicity

That geometric ergodicity follows from the univariate drift condition with a small set

C is proven by Roberts and Rosenthal by using the coupling inequality to bound the

TV -norm, but an alternate proof is given by Meyn and Tweedie [12] with Theorem

15.4.1, Theorem 15.4.3 using a regenerative decomposition to bound the TV -norm.

The results are extremely similar in that they both make use of bounded return times

to a small set, however Meyn and Tweedie have a stronger result proving geometric

ergodicity under the V -norm where V satisfies the univariate drift condition. We

note that Hairer [5] gives a concise proof of geometric ergodicity using the coupling

inequality and a bivariate drift in the same spirit as Roberts and Rosnethal in Section

4.2 of [5], although for the continuous time case.
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Theorem 2.3.1 (Theorem 12 of [19]). If V satisfies the univariate drift condition

and h satisfies the bivariate drift condition then for the two Markov chains {xk} and

{x′k} run in parallel

‖P k(x0, xk)− P k(x′0, x
′
k)‖TV ≤ (1− ε)j + α−kBj−1E[h(x0, x

′
0)]

for all 1 ≤ j ≤ k where B and α are defined as the bivariate drift condition, ε is

defined from the drift condition for V where C is a (m, ε, ν)-small set.

Proof. We first prove the result for the case when m = 1 and for ease denote B1 as

B. Let Nk = #{m : 0 ≤ m ≤ k, (xm, x
′
m) ∈ C × C} then

P (xk 6= x′k) =P (xk 6= x′k, Nk−1 ≥ j) + P (xk 6= x′k, Nk−1 < j)

≤(1− δ)j + P (xk 6= x′k, Nk−1 < j)

(2.3)

Then we bound the second term with martingales usingMk = αkB−Nk−1h(xk, x
′
k)1(xk 6=x′k)

with N−1 = 0. The proof that {Mk} is supermartingale is given in the next lemma.

We assume for the moment that {Mk} is supermartingale and proceed.

P (xk 6= x′k, Nk−1 < j) ≤P (xk 6= x′k, B
−Nk−1 ≥ B−(j−1)) (since B ≥ 1)

=P (1(xk 6=x′k)B
−Nk−1 ≥ B−(j−1))

≤Bj−1E[1(xk 6=x′k)B
−Nk−1 ] (By Markov’s Iequality)

≤Bj−1E[1(xk 6=x′k)B
−Nk−1h(xk, x

′
k)] (as h ≥ 1)

=α−kBj−1E[Mk] (by definition of Mk)

≤α−kBj−1E[M0] (since {Mk} is supermartingale)
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=α−kBj−1E[h(x0, x
′
0)]

Thus the result holds, and choosing j = brkc for sufficiently small r gives geometric

convergence of ‖P k(x0, xk)− P k(x′0, x
′
k)‖TV .

The case for m > 1 can be handled in the same way with only a few changes

to the definitions of the terms. The main difference between the case when m = 1

and m > 1 is that for the latter case we wish to ignore the Markov chains for the

m − 1 steps after hitting C × C since those times are ”filled in” by conditioning on

the Markov chain at the hitting time of C × C and m steps afterwards (see Sections

1.4, 1.2).

We define the sequence hitting times of C × C avoiding the ”filled in” times as

τi = min{t ≥ τi−1 +m : (xt, x
′
t) ∈ C × C}

with τ0 = 0. We change the term Nk to count the number of hitting terms we care

about,

Nk = max{n : τn ≤ k}.

and we replace Nk by Nk−m in (2.3) and in the definition of Mk. Finally we have that

Mk is not supermartingale but Mt(k) is; t(k) represent the latest current time we care

about and is defined as

t(k) =

 k, if (xn, x
′
n) /∈ C × C for k −m ≤ m ≤ k − 1

t(k − 1), else

With these changes to the terms the proof works exactly as before.
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Lemma 2.3.2. {Mk} defined in the proof of the previous theorem is a supermartin-

gale.

Proof. If (xk, x
′
k) /∈ C × C then Nk = Nk−1 and

E[Mk+1 : x0, . . . , xk, x
′
0, . . . , x

′
k]

=αk+1B−Nk−1E[h(xk+1, x
′
k+1)1(xk+1 6=x′k+1) : xk, x

′
k]

≤αk+1B−Nk−1E[h(xk+1, x
′
k+1) : xk, x

′
k]1(xk 6=x′k)

=αk+1B−Nk−1P̄ h(xk, x
′
k)1(xk 6=x′k) (by definition of h)

=MkαP̄h(xk, x
′
k)/h(xk, x

′
k) (by definition of Mk)

≤Mk

where the last inequality holds since h satisfies the bivariate drift condition P̄ h(x, y) ≤

h(x, y)/α for all (x, y) /∈ C × C.

If (xk, x
′
k) ∈ C × C then Nk = Nk−1 + 1 and

E[Mk+1 : x0, . . . , xk, x
′
0, . . . , x

′
k]

=αk+1B−Nk−1−1E[h(xk+1, x
′
k+1)1(xk+1 6=x′k+1) : xk, x

′
k]

≤αk+1B−Nk−1−1(1− ε)R̄h(xk, x
′
k)

=αk+1B−Nk−1P̄ h(xk, x
′
k)1(xk 6=x′k)

=MkαB
−1(1− ε)R̄h(xk, x

′
k)/h(xk, x

′
k)

≤Mk/h(xk, x
′
k) (by definition of B)

≤Mk (since h ≥ 1)
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The second last inequality holds since B = max{1, α(1 − ε) supC×C R̄h}, thus

{Mk} is supermartingale.

Corollary 2.3.3. Suppose V satisfies the univariate drift condition with correspond-

ing h satisfying the bivariate drift condition on two copies of a Markov chain {xk}

and {x′k} run in parallel such that x′0 ∼ π(·) where π(·) is the invariant distribution

of {xk}. Then the distribution of the Markov chain converges geometrically to the

invariant distribution under the TV -norm.

Although the results of this section require that infx∈CC V (x) > b
1−λ−1 for V and

petite set C satisfying the univariate drift condition, Lemma 18 of [19] by Rosenthal

shows how this assumption is satisfied. What is interesting about the results in this

section is that a Markov chain satisfying the simple univariate drift condition 2.1

is geometrically ergodic, which is a fast convergence rate. If we wish explore more

varied ergodic rates we would try to alter or weaken the drift condition, and in fact

the next sections are dedicated to finding conditions for subgeometric ergodicity.

2.4 V-uniform Ergodicity

We attempt to find a simple proof where we extend Roberts and Rosenthal’s results

into uniform ergodicity without any of the analysis done by Meyn and Tweedie. We

look towards Lemma 4.6 by Hairer [5] for inspiration.

Theorem 2.4.1. Suppose an irreducible and aperiodic Markov chain {xt} satisfies

the univariate drift condition 2.1 with λ < 1, a constant b, a small set C and a

function V : X → [1,∞). If π(V ) < ∞, where π is the invariant distribution, then
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the Markov chain is V -uniform ergodic, which means that

‖P n(x0, ·)− π(·)‖V ≤ BV (x0)γn

for all x0 ∈ X where B is a constant and γ < 1.

Proof. From the discussion of Rosenthal’s techniques, in particular 2.3.1 we have that

the Markov chain is geometrically ergodic, and that

‖P n(x0, ·)− π(·)‖TV ≤MV (x0)ρn1

for some constants M and ρ1 < 1. From the definition of ‖.‖V and the triangle

inequality we have for all R > 0 and all n

‖P n(x0, ·)− π(·)‖V ≤ R‖P n(x0, ·)− π(·)‖TV +

∫
V≥R

V (y)(P n(x0, dy) + π(dy)).

We can treat this inequality as separate inequalities for each n which allows us to

replace the constant R by a function on N. We choose a constant ρ2 so that we

have the strict chain of inequalities 1 < ρ2 < min{ρ−1
1 , λ−1}, and define a function

r : N→ (0,∞) by r(n) = ρn2 .

From the univariate drift condition we have the inequality Ex0 [V (xn)] ≤ V (x0) +

b(n+ 1) but with 1 < ρ2 we know that for some Nb that ρn2 ≥ (n+ 1)b for all n ≥ Nb,

which yields

Ex0 [λ
−nV (xn)] ≤ V (x0) + Ex0 [ρ

n
2V (xn)]

for all n ≥ Nb. By choice we have that λρ2 < 1 and so there exists N∗ such that
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1− (λρ2)n ≥ 2−1 for all n ≥ N∗, so that

Ex0 [V (xn)2−1] ≤ Ex0 [(1− λnρn2 )V (xn)] ≤ λnV (x0)

for all n ≥ N∗. Applying all these inequalities we get

‖P n(x0, ·)− π(·)‖V ≤ρn2‖P n(x0, ·)− π(·)‖TV +

∫
V≥ρn2

V (y)(P n(x0, dy) + π(dy))

(2.4)

≤MV (x0)(ρ1ρ2)n + 2λnV (x0) + π(V ≥ ρn2 ) (2.5)

for all n ≥ maxNb, N
∗. By Chebyshev’s inequality π(V ≥ ρn2 ) ≤ π(V )ρ−n2 and with

the assumption π(V ) < ∞ we can take γ = max{ρ1ρ2, λ, ρ
−1
2 } < 1 to achieve the

bound

‖P n(x0, ·)− π(·)‖V ≤ (M + 2 + π(V ))V (x0)γ−n

which shows V -uniform ergodicity and completes the proof since x0 was arbitrary.

The problem with this proof is that the rate of convergence (i.e. γ) was not

explicitly determined since it is dependent on the rate of convergence in the TV -

norm. However, Rosenthal [19] provides a somewhat concrete formulation of the rate

of convergence in the TV -norm, and is included as Theorem 2.3.1.

2.5 Commentary

In this section we followed the paper [19], by Roberts and Rosenthal to show, using

the coupling inequality, how a simple drift criteria PV ≤ λV + b1C implies geometric



2.5. COMMENTARY 34

ergodicity for an aperiodic and irreducible Markov chain. The rate of ergodicity

is made somewhat explicit with Theorem 2.3.1, and the results are extended to V -

uniform ergodicity with a undetermined rate. To explore different rates of convergence

we alter the drift condition in the following sections.
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Chapter 3

Subgeometric Ergodicity

We wish to find conditions under which an aperiodic and irreducible Markov chain is

ergodic with a subgeometric rate. To that effect (f, r)-regularity, ergodicity defined

in the beginning in Section 1.1.2 are needed, as well as an understanding of the class

of subgeometric rate functions.

In this section we focus on current research on the class of subgeometric rate

functions(see section 4 of [5], section 5 of [3], [13], [11], [12], [18], [22]). Let Λ0 be the

family of functions r : N→ R>0 such that

r is non-decreasing, r(1) ≥ 2

and

log r(n)

n
↓ 0 as n→∞

The second condition implies that for all r ∈ Λ0 if n > m > 0 then

n log r(n+m) ≤ n log r(n) +m log r(n) ≤ n log r(n) + n log r(m)
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so that

r(m+ n) ≤ r(m)r(n) for all m,n ∈ N. (3.1)

For two functions r, u : N → R+ we define an equivalence relation by r � u if there

exist constants c1, c2 > 0 such that for large n, c1u(n) ≤ r(n) ≤ c2u(n). The class of

subgeometric rate functions, denoted by Λ, is the class of functions r : N→ R>0 such

that r � u for some u ∈ Λ0.

If r � u then (f, r)-regularity⇒ (f, u)-regularity,. As a consequence, without loss

of generality we can restrict our attention to rate functions r such that r ∈ Λ0.

We also note for any r ∈ Λ0, defining the partial sums R(n) =
n−1∑
k=0

r(k) we have

that

r(k − 1)

R(k)
+
R(k − 1)

R(k)
= 1

so that lim supk
r(k−1)
R(k)

= c ≤ 1. Further, since

r(k − 1)

R(k)
=

r(k − 1)

r(k − 1) +R(k − 1)

we have c = c
c+1

which implies c2 = 0. Therefore

lim
k

r(k)

R(k)
≤ r(1) lim

k

r(k − 1)

R(k)
= 0 (3.2)

for all r ∈ Λ0 and so r(k)/R(k)→ 0 for any r ∈ Λ.

3.1 Characterization of Subgeometric Ergodicity

The main theorem we use to try to construct conditions on subgeometric rates of

convergence is due to Tuominen and Tweedie [22].
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Theorem 3.1.1 (Theorem 2.1 of [22]). Suppose that {xt}t∈N is an irreducible and

aperiodic Markov chain on state space X with stationary transition probabilities given

by P . Let f : X → [1,∞) and r ∈ Λ be given. The following are equivalent:

(i) there exists a petite set C ∈ B(X ) such that

sup
x∈C

Ex[

τC−1∑
k=0

r(k)f(xk)] <∞

(ii) there exists a sequence (Vn) of functions Vn : X → [0,∞], a petite set C ∈

B(X ) and b ∈ R+ such that V0 is bounded on C,

V0(x) =∞⇒ V1(x) =∞,

and

PVn+1 ≤ Vn − r(n)f + br(n)1C , n ∈ N

(iii) there exists an (f, r)-regular set A ∈ B+(X ).

(iv) there exists a full absorbing set S which can be covered by a countable number

of (f, r)-regular sets.

To prove Theorem 3.1.1 we first need a fact of (f, r)-regularity. We first fix

f : X → [1,∞) and r ∈ Λ0, and denote the partial sums of r as

r0(n) =
n∑
k=0

r(k).

Proposition 3.1.2 (Proposition 3.1 of [22]). Suppose the conditions of (ii) in Theo-

rem 3.1.1 are satisfied with the sequence of functions (Vn), b ∈ R>0 and small set C.

Then,
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(i) For any B ∈ B+(X ) there exists a constant c(B) <∞ such that for all x ∈ X

Ex[

τB−1∑
k=0

r(k)f(xk)] ≤ c(B)(V0(x) + 1)]

(ii) If V0 is bounded on A ∈ B+(X ), then A is (f, r)-regular.

(iii) If ν is a probability measure such that ν(V0) <∞ then ν is (f, r)-regular.

Proof. We may assume r ∈ Λ0. Theorem 3.1.1(ii) is a Lyapunov drift criteria, so by

using the same reasoning as in Theorem 1.1.6 we have for any B ∈ B(X )

Ex[

τB−1∑
k=0

r(k)f(xk)] ≤ V0(x) + bEx[

τB−1∑
k=0

r(k)1C(xk)]. (3.3)

Using (3.1), (3.3) implies

Ex[r
0(τC)] ≤ crEx[r

0(τC − 1)] ≤ cr(V0(x) + b) <∞ (3.4)

with cr = r(1) + 1. Fixing B ∈ B+(X ) and using Proposition 1.3.2 gives

c0(B) = sup
x∈C

Ex[r
0(τB)] <∞.

Using again (3.1) and τB ≤ τC + θτCτB, where θ is the shift operator, yields

Ex[r
0(τB)] ≤Ex[r0(τC)] + Ex[

τC+τB∑
k=τC

r(k)]

≤Ex[r0(τC)] + sup
y∈C

Ey[r
0(τB)]Ex[r(τC)].
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Now using (3.3) and (3.4) gives

Ex[

τB−1∑
k=0

r(k)f(xk)] ≤V0(x) + bEx[r
0(τB)]

≤V0(x) + b(Ex[r
0(τC)] + sup

y∈C
Ey[r

0(τB)]Ex[r(τC)])

≤V0(x) + b(V0(x) + b)(1 + c0(B))

which completes the proof of (i). The other two results (ii) and (iii) follow immedi-

ately.

We return our attention to Theorem 3.1.1, now that we are able to prove it.

3.1.1 Proof of Theorem 3.1.1

We may assume that r ∈ Λ0. We first prove the hardest implication, (i)⇒(ii). We

define two sequences {Vn}, {Wn} of functions X → [0,∞) by

Vn(x) = Ex[

τC∑
k=1

r(n+ k)f(xk)]1CC (x) + r(n)f(x)

Wn = Ex[

τC∑
k=1

r(n+ k)f(xk)], n = 0, 1, 2...

From (3.1) the functions satisfy the bounds

V0 ≤Vn ≤ r(n)V0

W0 ≤Wn ≤ r(n)W0
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for all n ∈ N, and by (i) V0 is bounded on C since V0(x) = r(1)f(x)

∀x ∈ C. In addition, (i) directly implies that

sup
x∈C

W0(x) = b <∞.

Now noting that Vn = r(n)f + 1CcWn we get

PVn+1(x) =

∫
X
P (x, dy)Vn+1(y)

=

∫
CC

P (x, dy)Wn+1(y) + r(n+ 1)Pf(x)

=

∫
CC

P (x, dy)Ey[

τC∑
k=1

r(n+ 1 + k)f(xk)] + r(n+ 1)Pf(x)

=

∫
CC

P (x, dy)

(
Ey[

τC∑
k=1

r(n+ 1 + k)f(xk)] + r(n+ 1)f(y)

)
+ r(n+ 1)P (f1C)(x)

=Ex[

τC∑
k=1

r(n+ k)f(xk)]

=Wn(x)

which implies, together with Wn ≤ r(n)W0 and supx∈CW0(x) = b < ∞, that {Vn}

satisfies the set of drift conditions in (ii)

PVn+1 =Wn

=Vn − r(n)f + 1CWn

≤Vn − r(n)f + 1Cr(n)W0

≤Vn − r(n)f + r(n)b
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thereby completing the proof that (i)⇒(ii).To show that (ii)⇒(iv) we let

S = {x ∈ X : V0(x) <∞}

and then using the drift condition of (ii) in conjunction with V0(x) =∞⇒ V1(x) =∞

it follows that S is absorbing and so, by irreducibility, full. Applying Proposition

3.1.2(ii) the sets

Sn = {x : V0(x) ≤ n} n=0,1,2,...

are a countable collection of (f, r)-regular sets that cover S, which completes the

proof that (ii)⇒(iv). To finish the proof of Theorem 3.1.1 we note that (iv)⇒ (iii) is

trivial and (iii)⇒(i) follows by choosing a small set C ∈ B(X ) such that C ⊂ A.

3.2 Ergodicity as a Rate of Convergence

If a Markov chain {xt} satisfies Theorem 3.1.1 for (f, r) then r(n)‖P n(x0, ·)−π(·)‖f →

0 as n increases; see [22], [18]. The approach taken does not rely on the coupling

inequality, but instead on a first-entrance last-exit decomposition [12] of the transition

probabilities.

Lemma 3.2.1 (Section 13.2.3 of [12]). If a Markov chain has an atom α ∈ B+(X )

the transition probability over n steps from state x to set B is given by

P n(x,B) =Px(xn ∈ B, τα ≥ n)

+
n−1∑
j=1

j∑
k=1

Px(τα = k, xj ∈ α)Pα(xn−j ∈ B, τα ≥ n− j)
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Proof.

P n(x,B) =Px(xn ∈ B, τα ≥ n)

+
n−1∑
j=1

Px(τα ≤ j, xj ∈ α, xn ∈ B, xk /∈ α, k = j + 1, ..., n− 1)

The equality holds since the events {τα, xn ∈ B, xk /∈ α, k − j + 1, ..., n − 1} are

disjoint for each j ≤ n and their union over all j ≤ n is {τα ≤ n, xn = y}. Since

the event {τα ≤ j, xj ∈ α} is measurable with respect to {x0, ..., xj} and the event

{xn = y, xk /∈ αk = j + 1, ..., n − 1} is measurable with respect to {xj+1, .., xn}, we

can use the Markov property to condition the latter events on xj ∈ α to get

P n(x,B) =Px(xn ∈ B, τα ≥ n)

+
n−1∑
j=1

Px(τα ≤ j, xj ∈ α)Pα(xn−j ∈ B, τα ≥ n− j).

Now noting that the events {τα = k} are disjoint completes the proof

P n(x,B) =Px(xn ∈ B, τα ≥ n)

+
n−1∑
j=1

j∑
k=1

Px(τα = k, xj ∈ α)Pα(xn−j ∈ B, τα ≥ n− j).

Keeping in mind our goal of finding criteria for a Markov chain to be (f, r)-ergodic,

we represent the results of this lemma in a more useful way using convolutions, yield-

ing similar results to Theorem 13.2.5 of [12].
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Corollary 3.2.2. Suppose a Markov chain with atom α ∈ B+(X ) and invariant

distribution π satisfies Lemma 3.2.1. Define for any f : X → R>0 and n ∈ N


ax(n) = Px(τα = n)

u(n) = P n(α, α)

tf (n) = Eα[f(xn)1τα≥n.]

(3.5)

Then we have for all B ∈ B(X )

P n(x,B) = Px(xn ∈ B, τα ≥ n) + ax ∗ u ∗ t1B(n) (3.6)

and more specifically,

‖P n(x, ·)− π(·)‖f ≤Ex[f(xn)1τα≥n]

+ |ax ∗ u− π(α)| ∗ tf (n) + π(α)
∞∑

j=n+1

tf (j)
(3.7)

Proof. Noting that ax ∗u(j) = Px(τα ≤ j, xj ∈ α), (3.6) follows immediately from the

definitions (3.5).

By the characterization of the invariant distribution (1.7) for a Markov chain with

an atom α ∈ B+(X ) we have π(α) = (Eα[τα])−1 so that using the definitions (3.5) we

have

π(B) =π(α)
∞∑
k=0

Eα[1B(xk)1τα≥k]

=π(α)
∞∑
k=0

t1B(k)

= lim
k→∞

(π(α) ∗ t1B)(k).
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Now applying (3.6) we get the inequality

|P n(x,B)− π(B)| =|P n(x,B)− π(α)
∞∑
k=0

t1B(k)|

≤Px(xn ∈ B, τα ≥ n)

+ |ax ∗ u ∗ t1B(n)− π(α)
n∑
k=0

t1B(k)|+ π(α)
∞∑

k=n+1

t1B(k)

=Px(xn ∈ B, τα ≥ n)

+ |(ax ∗ u− π(α)) ∗ t1B(n)|+ π(α)
∞∑

k=n+1

t1B(k)

≤Px(xn ∈ B, τα ≥ n)

+ |ax ∗ u− π(α)| ∗ t1B(n) + π(α)
∞∑

k=n+1

t1B(k)

for all x ∈ X and B ∈ B(X ).

Since the Lebesgue integral is defined as the limit of sums of simple functions, the

result (3.7) follows from noting that the above inequality holds for all measurable set

B ∈ B(X ) and that

‖P n(x, ·)− π‖f = sup
g≤f
|
∫

(P n(x, dy)− π(dy))g(y)|.

We are now set to connect Theorem 3.1.1 to (f, r)-ergodicity by showing through

the inequality (3.7) that r(n)‖P n(x, ·) − π‖f → 0. Although Lemma 3.2.1, and

therefore (3.7), only apply to Markov chains with an atom we extend the results to

Markov chains without an atom by applying Nummelin’s Splitting Technique as in
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Section 1.2.

Theorem 3.2.3 (Theorem 4.1 of [22]). Suppose an aperiodic and irreducible Markov

chain {xt} satisfies (ii)-(iv) of Theorem 3.1.1 with f : X → [1,∞) and r ∈ Λ. Then

the Markov chain is (f, r)-ergodic so as in (1.5),

r(n)‖P n(x, ·)− π‖f → 0

Proof. We may assume without loss of generality that r ∈ Λ0. Let S(f, r) = {x ∈

X : x is (f, r)-regular}. By Proposition 3.1.2, S(f, r) = {x : V0(x) < ∞} is a full

and absorbing set where V0 is a function as described in Theorem 3.1.1(ii).

(i) First we deal with the case where the Markov chain {xt} has an atom α ∈ B(X ).

Therefore by Lemma 3.2.1, the inequality (3.7) holds and, with the definitions (3.5),

we have

r(n)‖P n(x, ·)− π(·)‖f ≤r(n)Ex[f(xn)1τα≥n]

+ r(n)|ax ∗ u− π(α)| ∗ tf (n) + r(n)π(α)
∞∑

j=n+1

tf (j).

To show the convergence of the first term we note that by the definition of S(f, r)

∞∑
n=0

r(n)Ex[f(xn)1τα≥n] = Ex[
τα∑
n=0

r(n)f(xn)] <∞

for all x ∈ S(f, r), therefore

r(n)Ex[f(xn)1τα≥n]→ 0 as n→∞.
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To show the convergence of the third term we have

∞∑
n=0

r(n)tf (n) = Eα[
∑
n=0

ταr(n)f(xn)] = Ey[
τα∑
n=0

r(n)f(xn)]

for any y ∈ α. The sum is finite since S(f, r) is full and absorbing and α ∈ B+(X ),

which implies that
∞∑

j=n+1

r(j)tf (j)→ 0 as n→∞.

Since
∞∑
n=0

r(n)tf (n) is finite, the second term r(n)|ax ∗ u− π(α)| ∗ tf (n) converges

to 0 if r(n)|ax ∗ u(n)− π(α)| → 0. Noting that for all x ∈ S(f, r)

∞∑
n=0

ax(n) =
∞∑
n=0

Px(τα = n) = Px(τα <∞) = 1 (3.8)

since x ∈ S(f, r)⇒ Ex[τα] <∞. It then follows from (3.8) that

|ax ∗ u(n)− π(α)| =|
n∑
k=0

ax(k)(u(n− k)− π(α))|+
∞∑

k=n+1

ax(k)π(α)

=|ax ∗ (u− π(α))(n)|+
∞∑

k=n+1

ax(k)π(α)

≤ax ∗ |u− π(α)|(n) +
∞∑

k=n+1

ax(k)π(α).

The summability of
∑∞

n=0 ax(n)r(n) = Eα(r(τα)) implies the RHS of the inequality

converges to 0 as n→∞ if r(n)|u(n)−π(α)| → 0. Theorem 4.1 of [22] and Proposition

2.1 of [16] both give r(n)|u(n)− π(α)| → 0 as a result; the derivation is omitted here

but the proof of Theorem 3.2.5 offers a similar result. This completes the proof for

the case when Markov chain {xt} has an atom.

(ii) We now deal with the case when the Markov chain {xt} ⊂ X does not have

an atom. A common method in [13], [22], [19], [3] is to use Nummelin’s Splitting
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Technique as in Section 1.2 to create an atom for the Markov chain {zt} = {xt, at} ⊂

X × {0, 1}. The new Markov chain {zt} is (f, r)-ergodic as in (i), and it follows that

{xt} is (f, r)-ergodic as well.

We show explicitly how the Nummelin’s Technique is to be used to show {xt} is

(f, r)-ergodic. By Theorem 3.1.1(i) {xt} has (m, δ, ν)-small set C, so as in Section 1.2

we define a new Markov chain {zt} = {(xt, at)} on X × {0, 1}. The created Markov

chain {zt} satisfies:

{at} are a sequence of random variables on {0, 1} independent of {xt}, except

when xt ∈ C.

1. If xt /∈ C then xt+1 ∼ P (xt, ·)

2. If xt ∈ C then

with probability δ : at = 1 and xt+m ∼ ν(·)

with probability (1− δ) : at = 0 and xt+m ∼ Pm(xt,·)−δν(·)
1−δ

The in-between steps xt+k, k = 1, 2, ...,m− 1 are conditions on xt, xt+m. What is

important to note is that the one step transition probabilities of the {xt} in the new

chain {zt} are left unchanged.

Knowing the distribution of at when xt ∈ C we can take that distribution to be

that of at regardless of xt, so that for all t ∈ N at ∼ h where

P (at = 1) =h(1) = δ

P (at = 0) =h(0) = 1− δ.
(3.9)

This forces at to be independent from xt including when xt lands in C. Therefore, we
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have for the transition probabilities of {zt}

P (zt+1 : xt, at ∼ h) =P (xt+1 : xt, at ∼ h)P (at+1 : xt+1, xt, at ∼ h) (3.10)

=P (xt, xt+1)h(at+1) (3.11)

since {at} are i.i.d. by assumption, and P (xt+1 : xt, at ∼ h) = P (xt, xt+1) as in

Section 1.2.

We now prove by induction that for all n ∈ N

P n(zn : x0, a0 ∼ h) = P n(x0, xn)h(an). (3.12)

Assume that (3.12) holds for all k ≤ n, then

P n+1(zn : x0, a0 ∼ h) =

∫
X
h(1)P (dy, 1 : x0)P n(zn : y, 1)

+ h(0)P (dy, 0 : x0)P n(zn : y, 0)

by the induction hypothesis and independence of at from xt

=

∫
X
h(1)P (x0, dy)P n(y, xn)h(an)

+ h(0)P (x0, dy)P n(y, xn)h(an)

=P n+1(x0, xn)h(an)

so by induction, (3.12) holds for all n.

All we really need to finish is for the transition probabilities of {zt} to converge

to πz(., ·). Unfortunately we can not just apply (i) since {zt} does not have an
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atom. With being C a (m, δ, ν)-small set, instead the m-skeleton {ztm} has an atom.

Defining

f (m) =
m−1∑
i=0

P if

rm(n) = r(nm)

we can get our desired result by applying (i) to {ztm} if we can show {ztm} satisfies

Theorem 3.1.1 with (f (m), rm). Fortunately Theorem 3.9 of [22] and Theorem 14.2.10,

Theorem 14.3.3 of [12] state that an aperiodic and irreducible Markov chain {xt} is

(f, r)-ergodic if and only if every m-skeleton {xtm+k} k = 0, 1, 2, ...,m−1 is (f (m), rm)-

ergodic.

So by (i) we know that {zt} has some invariant distribution πz(., ·) and is (f, r)-

ergodic, so that

lim
n→∞

P n((x, a) : x0, a0 ∼ h) = lim
n→∞

h(0)P n((x, a) : x0, 0) + h(1)P n((x, a) : x0, 1)

=(h(0) + h(1))πz(x, a) = πz(x, a).

However, by (3.12) we have

lim
n→∞

P n((x, a) : x0, a0 ∼ h) = lim
n→∞

P n(x0, x)h(0) = lim
n→∞

P n(x0, x)h(1)

which implies, with the assumed (f, r)-ergodicity of {zt}, that {xt} is (f, r)-ergodic

and that P n(x0, ·) has a limit which is an invariant distribution π(·) = πz(.,a)
h(a)

.

The last step in the proof suggests a simple relation between the case where a
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Markov chain {xt} satisfying Theorem 3.1.1 has an atom or not. Indeed we have the

following the result which allows us to focus only on Markov chains that have atoms.

Suppose {xt} satisfies the conditions of Theorem 3.1.1 with some f : X → [1.∞)

and r ∈ Λ. Therefore by Theorem 1.1.3 it has a small set C and so Nummelin’s

Splitting Technique can be applied. Let {zt = (xt, at)} ⊂ X × {0, 1} be the Markov

chain as in Section 1.2 where {at} are i.i.d. with distribution h.

Theorem 3.2.4. With the notation as above, {zt} and {xt} are (f, r)-ergodic, {zt}

has invariant distribution πz, {xt} has invariant distribution π, and there exists a

constant c(h) ∈ (0,∞) such that

r(n)‖P n(x0, ·)− π(·)‖f ≤ c(h)r(n)‖P n((., a) : x0, a0 ∼ h)− πz((., a))‖f (3.13)

for any a ∈ {0, 1}.

Proof. The (f, r)-ergodicity of both {xt} and {zt} follow from Theorem 3.2.3. In the

proof of Theorem 3.2.3 we have that πz(., a)/h(a) = π(·) which implies, together with

(3.12) that

r(n)‖P n(x0, ·)− π(·)‖f =
1

h(a)
r(n)‖P n((., a) : x0, a0 ∼ h)− πz((., a))‖f

for any a ∈ {0, 1}. The proof is finished by selecting c(h) = max{ 1
h(0)

, 1
h(1)
}.

The above theorem showcases the power of Nummelin’s Splitting Technique as it

allows us to restrict our focus on ergodicity to Markov chains with atoms.

We have used Theorem 3.1.1 to characterize (f, r)-ergodicity when a Markov chain

has an (f, r)-regular set (i.e. it is condition (iii) of Theorem 3.1.1). We wish now to
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use the same methods as before to show (f, r)-ergodicity when a Markov chain has

an (f, r)-regular initial distribution.

Theorem 3.2.5 (Theorem 4.2 of [13], Proposition 2.5 of [18]). Suppose that {xt} is

(f, r)-ergodic. If λ and µ are (f, r)-regular, then

∞∑
n=0

r(n)

∫ ∫
λ(dx)µ(dy)‖P n(x, ·)− P n(y, ·)‖f <∞. (3.14)

Proof. We may assume r ∈ Λ0.

(i) We first deal with the case where {xt} has an atom α ∈ B+(X ). By the triangle

inequality it is sufficient to show that

∞∑
n=0

r(n)

∫
λ(dx)‖P n(x, ·)− P n(α, ·)‖f <∞.

Using the definitions (3.5) and the equality (3.6) we have

‖P n(x, ·)− P n(α, ·)‖f ≤Ex(f(xn)1τα≥n) + |ax ∗ u− u| ∗ tf (n)

where u ∗ tf (n) =
n∑
j=0

P j(α, α)Eα[f(xn−j)1τα≥n−j] = ‖P n(α, ·)‖f .

Multiplying by r(n) and summing over n for the first term yields

∞∑
n=0

r(n)Ex[f(xn)1τα≥n] = Ex[
τα∑
n=0

r(n)f(xn)]

and for the second term, with r(n) ≤ r(n− j)r(j) by (3.1) yields

∞∑
n=0

r(n)|ax ∗ u− u| ∗ tf (n) =
∞∑
n=0

r(n)
n∑
j=0

|ax ∗ u− u|(j)tf (n− j)
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≤
∞∑
n=0

n∑
j=0

|ax ∗ u− u|(j)r(j)tf (n− j)r(n− j)

=
∞∑
n=0

|ax ∗ u− u|r ∗ rtf (n)

≤

(
∞∑
n=0

r(n)|ax ∗ u− u|(n)

)(
∞∑
n=0

r(n)tf (n)

)
.

To ensure the finiteness of the second term we note that

∞∑
n=0

r(n)|ax ∗ u− u|(n) =
∞∑
n=0

r(n)|Pα(xn ∈ α, τα ≤ n)− Pα(xn ∈ α)|

=
∞∑
n=0

r(n)|Pα(xn ∈ α)Pα(τα < n)

+ Pα(τα = n)− Pα(xn ∈ α)|

=
∞∑
n=0

r(n)

(
u(n)

∞∑
k=n

ax(k) + ax(n)

)

≤
∞∑
n=0

r(n)
∞∑
k=n

2ax(k) = 2
∞∑
k=0

ax(k)
k∑

n=0

r(n)

=2Ex[
τα∑
n=0

r(n)]

We now apply the bounds we attained in conjunction with the (f, r)-regular distri-

bution λ to get

∫
λ(dx)

∞∑
n=0

r(n)‖P n(x, ·)− P n(α, ·)‖f ≤
∫
λ(dx)Ex[

τα∑
n=0

r(n)f(xn)]

+ 2Ex[
τα∑
n=0

r(n)]
∞∑
n=0

r(n)tf (n)

=Eλ[
τα∑
n=0

r(n)f(xn)]
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+ 2Eλ[
τα∑
n=0

r(n)]Eα[
τα∑
n=0

r(n)f(xn)].

which is finite since λ is (f, r)-regular and the atom α is an (f, r)-regular set by lemma

1.1.5. Therefore we obtain the result we want in case {xt} has an atom.

(ii) The case when {xt} does not have an atom follows immediately from (i) and

Theorem 3.2.4.

3.3 Commentary

This section characterized subgeometric ergodicity with the particulalry important

Theorem 3.1.1 by Tuominen and Tweedie [22], which equates (f, r)-ergodicity with

both a dirft function PVk+1 ≤ Vk − r(k)f + r(k)b1C and bounded return time of

r(k)f(xk) to a petite set. The proofs follow a similar concept to Roberts and Ros-

nethal’s use of coupling inequality in Chapter 1; a first entrance last exit decompo-

sition of transition probabilities was used to prove ergodicity for Markov chains with

atoms, and then for atom-less Markov chains by making use of Nummelin’s Splitting

technique. Although the results of this chapter provide a useful and robust model,

the conditions are hard to check. The next section provides a construction that uses

Theorem 3.1.1 to provide more practical conditions to imply ergodicity for a large

class of functions.



54

Chapter 4

Practical Drift Conditions for Subgeometric Rates

In this section we discuss the methods of Douc et al. [18] and Hairer [5] that extend

the subgeometric ergodicity results of the last section. The results rely less on renewal

process or the coupling inequality and more on concavity of rate functions. It will we

be useful to assume one condition [18] hereafter.

CONDITION D(φ, V, C) There exists a function V : X → [1,∞], a concave

monotone nondecreasing differentiable function φ : [1,∞] → (0,∞], a set C ∈ B(X )

and a constant b ∈ R such that

PV + φ◦V ≤ V + b1C .

If an aperiodic and irreducible Markov chain {xt} satisfies D(φ, V, C) with a petite

set C, and if V (x0) < ∞, then {xt} satisfies Theorem 3.1.1(ii). Therefore {xt} has

invariant distribution π and is (φ◦V, 1)-ergodic so that

lim
n→∞
‖P n(x, ·)− π(·)‖φ◦V = 0
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for all x in the set of π-measure 1, {x : V (x) < ∞}. By using the results of the

previous section we can show a summability condition.

Proposition 4.0.1. If an aperiodic and irreducible Markov chain {xt} satisfies D(φ, V, C)

with a small set C and π(V ) <∞, then there exists some constant B > 0 such that

∞∑
n=0

‖P n(x, ·)− π(·)‖φ◦V ≤ B(1 + V (x))

for all x in {V <∞}, where π is the invariant distribution of {xt}.

Proof. The invariant distribution π of {xt} exists by D(φ, V, C) and Theorem 1.1.6.

Assuming π(V ) <∞, then by Jensen’s Inequality π(φ ◦V ) ≤ φ(π(V )) <∞ implying

π is a (φ ◦ V, 1)-regular distribution. D(φ, V, C) is a drift condition so by Theorem

1.1.6 there exists a petite A set with finite return time and by Proposition 1.3.2 the

petite set A is (φ ◦ V, 1)-regular, thus Theorem 3.1.1(i) is satisfied for (φ ◦ V, 1) and

{xt} is (φ ◦ V, 1)-ergodic. Using the methods of Theorem 1.1.6 we also have that the

distribution δx = 1x is (φ ◦ V, 1)-regular since Ex[
τB∑
n=0

φ ◦ V (xn)] ≤ V (x) + c(B). The

proof is completed by applying Theorem 3.2.5 with the (φ◦V, 1)-regular distributions

π and δx for any x in the full absorbing set {V <∞}.

4.1 Concave Rate Functions

To extend the results of Tuominen and Tweedie in the style of Douc et al. [18] and

Harier [5] we consider concave functions. Let φ : [1,∞) → (0,∞) be a concave

nondecreasing differentiable function. Define

Hφ(s) =

∫ s

1

dx

φ(x)
. (4.1)
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Then Hφ is a nondecreasing concave differentiable function on [1,∞). Since φ is

concave we have that φ(s) ≤ φ(1) + φ′(1)(s− 1) for all s ≥ 1, which implies that Hφ

increases to infinity. Thus we can define the inverse H−1
φ : [0,∞) → [1,∞) which is

also an increasing and differentiable function with (H−1
φ )′(x) = φ ◦H−1

φ (x). We also

define for k ∈ N, z ≥ 0 and s ≥ 1

rφ(z) =(H−1
φ )′(z) = φ ◦H−1

φ (z),

Hk(s) =

∫ Hφ(s)

0

rφ(w + k)dw = H−1
φ (Hφ(s) + k)−H−1

φ (k),

Vk =Hk ◦ V.

(4.2)

We will assume these definitions throughout this section. Starting from D(φ, V, C)

we will prove a string of statements on ergodicity and regularity using the definitions

in (4.2) and Theorem 3.1.1.

Proposition 4.1.1 (Proposition 2.1 of [18]). Assume D(φ, V, C) . Then rφ is log

concave and for all k ≥ 0, Hk is concave and

PVk+1 ≤ Vk − rφ(k) +
brφ(k + 1)

rφ(0)
1C . (4.3)

Proof. Noting that r′φ(z)/rφ(z) = φ′ ◦ H−1
φ (z) is non-increasing and positive since

H−1
φ is increasing and φ′ > 0 is non-increasing, it follows that rφ is log concave. This

implies that for any k ∈ N, the function z 7→ rφ(z + k)/rφ(z) is a decreasing function
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and so with

H ′k(s)φ(s) =H ′k(s)(H
−1
φ )′ ◦Hφ(s) =

dHk(H
−1
φ (x))

dx

∣∣∣∣∣
x=Hφ(s)

=rφ(Hφ(s) + k)

(4.4)

we have that H ′k(s) = rφ(Hφ(s) + k)/rφ(Hφ(s)) is decreasing and non negative which

means that Hk is concave for each k.

We now turn our focus to two inequalities. Applying (4.4) and that rφ is increasing

we have

Hk+1(s)−Hk(s) =

∫ 1

0

rφ(Hφ(s) + k + u)− rφ(k + u)du

≤rφ(Hφ(s) + k + 1)− rφ(k)

=φ(s)H ′k+1(s)− rφ(k)

so that we have the following inequality:

Hk+1(s)− φ(s)H ′k+1(s) ≤ Hk(s)− rφ(k). (4.5)

Noting that for a concave differentiable function g on [1,∞), if s+ x ≥ 1 with s ≥ 1

and x ∈ R then

g(s+ x)− g(s) ≤ g′(s)x (4.6)

since g′ is decreasing. Applying (4.6) to the concave function Hk+1, and Jensen’s
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Inequality we get for all k ≥ 0 and x ∈ {V <∞}

PVk+1(x) =PHk+1 ◦ V (x) ≤ Hk+1 ◦ PV (x)

≤Hk+1(V (x)− φ ◦ V (x) + b1C(x))

≤Hk+1(V (x))− φ ◦ V (x)H ′k+1(V (x)) + b1C(x)H ′k+1(V (x))

≤Hk+1(V (x))− φ ◦ V (x)H ′k+1(V (x)) + b1C(x)H ′k+1(1).

To the complete the proof we use (4.4) and (4.5) to show that H ′k+1(1) = rφ(1 +

k)/rφ(0) and

PVk+1(x) ≤ Vk(x)− rφ(k) +
brφ(k + 1)

rφ(0)
1C(x)

holds for all x ∈ {V <∞}, which is a full absorbing set by assumption.

To be able use these new functions we need a way to check if rφ is indeed a valid

subgeometric rate function.

Lemma 4.1.2 (Lemma 2.3 of [18]). If limt→∞ φ
′(t) = 0 then rφ defined as in (4.2)

belongs to the class of subgeometric functions Λ.

Proof. We have by (4.1) and (4.2) that

r′φ(x)/rφ(x) =φ′ ◦H−1
φ (x)(H−1

φ )′(x)/φ ◦H−1
φ (x)

=φ′ ◦H−1
φ (x).

With Hφ increasing and φ′ non-increasing we have

log rφ(n)− log rφ(0)

n
=

1

n

∫ n

0

r′φ(s)

rφ(s)
ds
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=
1

n

∫ n

0

φ′ ◦H−1
φ (s)ds,

and by fixing a k < n

≤k
n
φ′ ◦H−1

φ (0) +
n− k
n

φ′ ◦H−1
φ (k)

→ φ′ ◦H−1
φ (k) as n→∞

→ 0 as k →∞

sSince by the assumption in the hypothesis limt→∞ φ
′(t) = 0 and that by definition

H−1
φ increases to infinity.

We now link Theorem 3.1.1 with the Condition D(φ, V, C) .

Proposition 4.1.3 (Proposition 2.5 of [18], Theorem 4.1(3) of [5]). Let {xt} be an

aperiodic and irreducible Markov chain that satisfies D(φ, V, C) with a petite set C,

a function φ with limt→∞ φ
′(t) = 0, and a function V such that {V <∞} 6= ∅. Then

there exists an invariant probability measure π for the Markov chain and for all x in

the full absorbing set {V <∞}

lim
n→∞

rφ(n)‖P n(x, ·)− π(·)‖TV = 0

(i.e. the Markov chain is (1, rφ)-ergodic). In addition, {xt} satisfies the conditions

of Theorem 3.1.1 and for any probability measure λ such that λ(V ) < ∞ is (1, rφ)-

regular.

Proof. Since D(φ, V, C) is a drift condition, by Theorem 1.1.6 the invariant distribu-

tion π of {xt} exists. Further, by Proposition 4.1.1 and Lemma 4.1.2 {xt} satisfies
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the drift condition

PVk+1 ≤ Vk − rφ(k) +
brφ(k + 1)

rφ(0)
1C

with rφ ∈ Λ. As in Chapter 3 we can assume rφ ∈ λ0. By Corollary 1.1.4 we know

that the petite set C is κ-petite for a distribution a(·) with finite mean, where κ is a

maximal irreducibility measure. Therefore we have the inequality

1C(x) ≤
∑∞

k=1 P
k(x,B)

κ(B)

for all B ∈ B+(X ) and with the drift condition above by Theorem 1.1.6 we have

Ex[

τB−1∑
n=0

rφ(n)] ≤V0(x) +
bEx[

∑τB−1
n=0 rφ(n+ 1)1C(xn)]

rφ(0)

≤H0 ◦ V (x) +

b
∞∑
k=0

a(k)Ex[
∑τB−1

n=0 rφ(n+ 1)1B(xn+k)]

κ(B)rφ(0)

≤H0 ◦ V (x) +

b
∞∑
k=0

a(k)kEx[rφ(τB)]

κ(B)rφ(0)

where κ(B) > 0 for all sets reachable with positive probability, since κ(·) is a maximal

irreducibility measure , and
∞∑
k=1

a(k)k = ma < ∞, since a(·) is a distribution with

finite mean. To continue, we wish to compare the ratio between the partial sums of

rφ and rφ itself, and so for ease we define the partial sum

Rφ(k) =
k−1∑
n=0

rφ(n). (4.7)
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Since rφ is subgeometric we have that by (3.2)

lim
k→∞

rφ(k)

Rφ(k)
= 0.

Therefore for all δ > 0 there exists a constant c(δ) such that rφ(k) ≤ δRφ(k) + c(δ)

for all k ≥ 1, and so

Ex[Rφ(τB)] ≤ H0 ◦ V (x) + bma
(δEx[Rφ(τB)] + c(δ))

κ(B)rφ(0)

which means that for a small enough choice of δ we have that

Ex[Rφ(τB)] ≤ H0 ◦ V (x) + c(δ)bmaκ(B)−1rφ(0)−1

1− δbmaκ(B)−1rφ(0)−1
. (4.8)

The above implies that any set on which V is bounded is (1, rφ)-regular. Therefore

{V ≤ n} , n ∈ N are a countable collection of (1, rφ)-regular sets whose union is a

the full absorbing set {V < ∞}. Thus Theorem 3.1.1(iv) is satisfied for (1, rφ), so

the Markov chain is (1, rφ)-ergodic.

The only other part of the proof is that if λ(V ) < ∞ then λ is (1, rφ)-regular,

which follows directly from (4.8).
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4.2 Extension to Ultimately Non-decreasing Functions

Let Y be the class of pairs of ultimately nondecreasing functions Ψ1 and Ψ2 defined on

[1,∞) such that limx→∞Ψi(x) =∞ for at least one i ∈ {1, 2}, and for all x, y ∈ [1,∞)

Ψ1(x)Ψ2(y) ≤ x+ y (4.9)

We need to check now that these functions are valid subgeometric rate functions.

Lemma 4.2.1 (Lemma 2.7 of [18]). Using the notation as in D(φ, V, C) , assume φ :

[1,∞)→ (0,∞) is a non decreasing, differentiable, concave function with limt→∞ φ
′(t) =

0. For any nondecreasing function Ψ such that Ψ(x) ≤ ax for some constant a we

have Ψ ◦ rφ ∈ Λ, where rφ is as in (4.2).

Proof. By lemma 4.1.2 we know rφ ∈ Λ so then Ψ◦ rφ(x) ≤ arφ(x), implying Ψ◦ rφ ∈

Λ.

The final theorem in the paper by Douc et al. [18] summarizes their results, and

provides a flexible theorem with seemingly many applications.

Theorem 4.2.2 (Theorem 2.8 of [18]). Let {xt} be an aperiodic and irreducible

Markov chain. Assume that D(φ, V, C) holds with φ′(t) → 0 as t → ∞ and a petite

set C such that V is bounded on C. If (Ψ1,Ψ2) ∈ Y then there exists an invariant

measure π(·) and for all x in the full absorbing set {V <∞}

lim
n

Ψ1(rφ(n))‖P n(x, ·)− π(·)‖Ψ2(φ◦V ) = 0.

In addition if for any probability measure λ, λ(V ) <∞ then λ is (Ψ2(φ◦V ),Ψ1(rφ))-

regular.
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Proof. With (Ψ1,Ψ2) ∈ Y we have Ψ2(x)Ψ1(x) ≤ 2x so that for large enough x,

Ψi(x) ≤ 2x for i = 1, 2. Then by the previous lemma we have that Ψ1 ◦ rφ ∈ Λ.

Ex[

τC−1∑
n=0

Ψ1(rφ(n))Ψ2(φ ◦ V )] ≤Ex[
τC−1∑
n=0

rφ(n)φ(V (xn))]

≤Ex[
τC−1∑
n=0

rφ(n)]Ex[

τC−1∑
n=0

φ(V (xn))]

≤Ex[
τC−1∑
n=0

rφ(n)] (V (x) + b1C(x))

(4.10)

where the last line is due to D(φ, V, C) . By Proposition 4.1.1 we have that the

(Vk = Hk ◦ V ) satisfies a drift condition (4.3) and by the hypothesis C is bounded

on V , which means that the drift condition (4.3) satisfies Theorem 3.1.1(ii) so the

Markov chain is (1, rφ)-ergodic. Further, by satisfying Theorem 3.1.1(ii) with (1, rφ)

the hypothesis of Proposition 3.1.2 is satisfied and so implies that any set that is

bounded on V is (1, rφ)-regular.

Therefore, V bounded on the petite set C implies that C is (1, rφ)-regular, and

we have by (4.10) that C satisfies Theorem 3.1.1(i) with (Ψ2(φ ◦ V ),Ψ1(rφ)), so the

Markov chain is (Ψ2(φ ◦ V ),Ψ1(rφ))-ergodic.

The other part of the proof with λ being (Ψ2(φ ◦V ),Ψ1(rφ))-regular if λ(V ) <∞

follows from (4.10) and noting that petite set C is (Ψ2(φ ◦ V ),Ψ1(rφ))-regular.

The set of ultimately increasing functions includes is large class that include poly-

nomials, logarithms, and sub exponential functions which are mentioned in [18].
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4.3 Commentary

This section follows the results from [18] by Douc et al. and cleverly uses the results

by Touminen and Tweedie [22] to show ergodicity for a large class of rates and norms

by using ultimately nondecreasing functions in Theorem 4.2.2. Starting with PV ≤

V −φ◦V + b1C subgeometric ergodicity is proved for (rφ, φ◦V ) with some conditions

on φ in order to construct rφ, then (Ψ1(rφ),Ψ2(φ ◦ V )) ergodicity is established for

Ψ1,Ψ2 with some conditions like (4.9). This allows ergodicity to be checked for a wide

variety of rates and norms while only needing to satisfy one drift condition D(φ, V, C)

.
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Chapter 5

Ergodicity under Random-Time State-Dependant

Drift Conditions

This section is devoted to results that follow from the discussed methods. We draw

inspiration from the work of Meyn and Tweedie [12], Tuominen and Tweedie [22], and

Connor and Fort [3] who all discuss ergodicity in the context of a state dependent

drift condition on a deterministic time index. We wish to extend their work to obtain

results on ergodicity for random time state dependent drift conditions, we draw heav-

ily from their previous work and structure our proofs and results in a similar manner.

Connor and Fort have especially interesting results studying ergodicity with a drift

condition of the form P n(x)V (x) ≤ λV (x) + b1C(x) for some function deterministic

function n : X → [1,∞), which is similar to the drift conditions that we will study

except for considering n to be a random stopping time.

Our motivation for studying the random time case is that for many applications

information or control of a system is limited to random times. There has been signifi-

cant research on stochastic stabilization [21],[10], with stochastic stability of adaptive

quantizers studied in information theory [4],[6],[7] and control theory [9],[2],[14],[23].
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A specific example of quantizer control over an erasure channel is given in [24] where

a control of an adaptive quantizer is applied at event driven times and stochastic

stability is shown using drift conditions and martingales. Another notable example

comes from [17] which focuses on a control system where the transmission time from

the controller to the plant has a random delay, the closed loop and open loop stabil-

ity are related by studying a transmission time out τmax. Event triggered feedback

control systems [1],[8],[10],[20] where stopping times are event instances offers more

applications for a random time drift model.

5.1 Subgeometric Ergodicity

The second condition of Theorem 3.1.1 supposes a deterministic sequence of functions

(Vn) exists and satisfies a Foster-Lyapunov drift condition

PVn+1 ≤ Vn − r(n)f + br(n)1C , n ∈ N.

We wish to apply Theorem 3.1.1 to the case where the Foster-Lyapunov drift condition

holds not for every n but for a sequence of stopping times {τn}. Our intention is to

reveal a relation between the stopping times {τn} where a drift condition holds and

the rate function r so as to imply (f, r)-ergodicity. To this end we borrow a hypothesis

proposed by Yüksel and Meyn [24].

Unfortunately the techniques we used that rely on petite sets become unavailable

in the random time drift setting as a petite set A for {xn} is not necessarily petite

for {xτn}. We therefore rely on working with the small sets that are present in the

drift conditions, and must insist that our drift function is bounded on that small set.

To be able to relax the condition that V is bounded on C we can place a condition
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of independence on the stopping times.

Lemma 5.1.1. Suppose {xt} is an aperiodic and irreducible Markov chain. if there

exists sequence of stopping times {τn} independent from {xt} then any C that is small

for {xt} is petite for {xτn}

Proof. Let C be (m, δ, ν)-small for {xt}. Assuming N ≥ m, we have that

P τ1(x, ·) =
∞∑
k=1

P (τ1 = k)P k(x, ·) (5.1)

≥
∞∑
k=m

P (τ1 = k)

∫
Pm(x, dy)P k−m(y, ·) (5.2)

≥
∞∑
k=m

P (τ1 = k)

∫
1C(x)δν(dy)P k−m(y, ·) (5.3)

which is a well defined measure. Therefore defining

κ(·) =

∫
ν(dy)

∞∑
k=m

P (τ1 = k)P k−m(y, ·)

we have that C is (1, δ, κ(·))-small for {xτn}.

Independence of stopping times {τn} from {xt} is a restrictive condition that event

triggered systems can not fulfill. One useful example where independence of stopping

times can be enforced is given in [17] where a control system over an unreliable

network is affected by variable transmission delays between controller and plant. We

suspect there are less restrictive methods to preserve petiteness in random sampling.

Proposition 5.1.2. Let {xt} be an aperiodic and irreducible Markov chain with a

small set C. Suppose there are functions V : X → (0,∞) with V bounded on C,
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f, g : X → [1,∞), a constant b ∈ R and r ∈ Λ such that for an increasing sequence

of stopping times {τn}

E[V (xτn+1) : xτn ] ≤V (xτn)− δ(xτn) + b1C(xτn) (5.4)

E[

τn+1−1∑
k=τn

f(xk)r(k) : xτn , τn] ≤δ(xτn), (5.5)

then {xt} satisfies Theorem 3.1.1 with (f, r) and is (f, r)-ergodic.

Proof. We may assume r ∈ Λ0. We first note that a sampled Markov chain {xτn} is

still a Markov chain and so we can define sampled hitting times γB = min{n > 0 :

τn ∈ B} for all B ∈ B+(X ). Since {xτn} satisfies a drift condition by Theorem 1.1.6

we have that

Ex[

γC−1∑
n=0

δ(xτn)] ≤V (x) + bEx[

γB−1∑
n=0

1C(xτn)]

≤V (x) + b

which is finite since V is bounded on C by assumption.

With τB ≤ τγB for all B ∈ B+(X ) by definition, we have

Ex[

τC−1∑
n=0

f(xn)r(n)] ≤ Ex[

γC−1∑
n=0

δ(xτn)] < V (x) + b

so the set C is a petite set that satisfies

sup
x∈C

Ex[

τC−1∑
n=0

r(n)f(xn)] ≤ sup
x∈C

V (x) + b <∞
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which means that the Markov chain {xn} satisfies Theorem 3.1.1(i) and is (f, r)-

ergodic.

We note that if the stopping times satisfy Lemma 5.1.1 then C is petite for the

sampled Markov chain {xτn} as well. This gives an alternate proof where we can drop

the condition that V is bounded on C, we just apply Theorem 1.1.6 to {xτn} and

note by (5.5) that {xt} satisfies Theorem 3.1.1(i) with (f, r).

The second inequality (5.5) may be hard to check as it does not provide a criteria

to check the relation between the stopping times {τn} and the rate function r.

Theorem 5.1.3. Let {xt} be an aperiodic and irreducible Markov chain with a small

set C. Suppose there exists a function V : X → (0,∞) with infx∈C V (x) = ε > 0,

constants b ∈ R and λ ∈ (0, 1) such that for an increasing sequence of stopping times

{τn}

E[V (xτn+1) : xτn ] ≤λV (xτn) + b1C(xτn). (5.6)

Then for any r ∈ Λ such that supk E[
∑τk+1

n=τk
r(n− τk) : xτk ] <∞ and supk E[r(τk+1−

τk) : xτk ] ≤ λ−1 we have that {xt} satisfies Theorem 3.1.1 with (1, r) and is (1, r)-

ergodic.

Proof. We may assume r ∈ λ0 or at least that r satisfies r(m + n) ≤ r(m)r(n). We

note that {xτn} is an aperiodic and irreducible Markov chain satisfying a univariate

condition as in Section 2.1 so that by Lemma 2.1.1 V is bounded on C. Defining

γB = min{n > 0 : xτn ∈ B} for B ∈ B(X ) gives by (2.1) that

Ex[λ
−γBV (xτγB )] ≤ V (x) + Ex[

γB−1∑
n=0

b1C(xτn)]
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for any B ∈ B+(X ).

Since V is bounded above and below on C we have that C ⊆ {ε ≤ V ≤ L} for

some L and so

sup
x∈A

Ex[λ
−γCε] ≤ L+ b.

Therefore for any r ∈ Λ such that supk E[
∑τk+1

n=τk
r(n− τk) : xτk ] = M <∞ we have

sup
x∈C

Ex[

τC−1∑
n=0

r(n)] ≤ sup
x∈A

Ex[

τγC−1∑
n=0

r(n)]

= sup
x∈A

Ex[

γC−1∑
k=0

E[

τk+1−1∑
n=τk

r(n− τk)r(τk) : xτk , xτk−1
, . . . , x0]]

≤ sup
x∈C

Ex[

γC−1∑
k=0

Mr(τk)]

and if supk E[r(τk+1 − τk) : xτk ] ≤ λ−1 then since r(m + n) ≤ r(m)r(n) by (3.1) we

have

sup
x∈C

Ex[

τB−1∑
n=0

r(n)] ≤ sup
x∈A

Ex[

γC−1∑
k=0

ME[r(τk − τk−1)r(τk−1) : xτk−1
, xτk−2

, . . . , x0]]

≤ sup
x∈C

Ex[

γC−1∑
k=1

Mλ−1r(τk−1) +Mλ−1]

so by iterating the above two steps we get

≤ sup
x∈C

Ex[

γC−1∑
k=1

Mλ−k]

≤ sup
x∈C

MEx[λ
−γC − λ−1]/(λ−1 − 1)

≤M
ε

L+ b− λ−1

λ−1 − 1
.
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Therefore C ∈ B+(X ) is a petite set such that supx∈C Ex[
∑τC

n=0 r(n)] and so {xt}

satisfies Theorem 3.1.1(i) with (1, r) and is (1, r)-ergodic.

We note just like in the previous theorem if the stopping times satisfy Lemma

5.1.1 then C is a petite set for {xτn} and by Theorem 1.1.4 we can focus on bounding

return times for a petite set A ⊆ {ε ≤ V ≤ L} instead of C. This allows us to get rid

of the condition that V is below on C.

One difficulty is that supk Ex[r(τk+1 − τk) : xτk ] < λ−1 which may not be easy to

satisfy. We consider some options of modifying r to relax this condition. Suppose

supk Ex[r(τk+11 − τk) : xτk ] < M then by Jensen’s inequality we have

E[r(τk+1 − τk)1/s : τk]
s ≤ E[r(τk+1 − τk)s/s : τk] < M

for any s > 1. By taking s large enough such that M1/s ≤ λ−1 we have that r1/s

satisfies the bound. Further, if r is subgeometric then so is r1/s for any fixed s, and

so a suitable rate is obtained. Note that just scaling r by λ−1M−1 will not work as

the relation r(m+ n) ≤ r(m)r(n) will not hold for the scaled rate.

We note that Theorem 5.1.3 above is useful for proving (1, r)-ergodicity and Propo-

sition 5.1.2 is really only useful for proving (f, 1)-ergodicity, where r, f satisfy the

respective hypothesis. To extend our ability to prove more rates we use results by

Douc et al. [18] on the class of pairs of ultimately non decreasing functions defined

in Chapter 4.

Proposition 5.1.4. Suppose {xt} is an aperiodic and irreducible Markov chain that

is both (1, r)-ergodic and (f, 1)-ergodic for some r ∈ Λ and f : X → [1,∞). Suppose

Ψ1,Ψ2 : X → [1,∞) are a pair of ultimately non decreasing functions, in other words
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they satisfy Ψ1(x)Ψ2(y) ≤ x + y and Ψi(x) → ∞ for one of i = 1, 2. Then {xt} is

(Ψ1 ◦ f,Ψ2 ◦ r)-ergodic.

Proof. Since Ψ2(x) ≤ Ψ1(x)Ψ2(x) ≤ 2x we have that Ψ2 ◦ r ≤ 2r and so Ψ2 ◦ r ∈ Λ.

Since {xt} is irreducible and aperiodic there is only one full absorbing set S, and with

{xt} both (1, r) and (f, 1) ergodic we have by Theorem 3.1.1(iv) that the full absorbing

set S has two countable partitions {Rn} and {Fn} where {Rn} is a collection of (1, r)-

regular sets and {Fn} is a collection of (1, f)-regular sets. We can then intersect the

two partitions by

G(n,m) = Rn ∩ Fm

to get a third countable partition {G(n,m)} of the full absorbing set S. We then note

that since Ψ1(x)Ψ2(y) ≤ x+ y we have

sup
x∈G(n,m)

Ex[

τB−1∑
n=0

Ψ2 ◦ r(n)Ψ1 ◦ f(xn)] ≤ sup
x∈Rn

Ex[

τB−1∑
n=0

r(n)] + sup
x∈Fm

Ex[

τB−1∑
n=0

f(xn)]

which is finite for any B ∈ B+(X ) since Rn is (1, r)-regular and Fm is (f, 1)-regular.

Therefore {G(n,m)} is a countable collection of (Ψ1◦f,Ψ2◦r)-regular sets whose unions

is the full absorbing set S, so {xt} satisfies Theorem 3.1.1(iv) with (Ψ1 ◦ f,Ψ2 ◦ r)

and is (Ψ1 ◦ f,Ψ2 ◦ r)-ergodic.

5.2 Geometric Ergodicity

We now give attention to a Theorems that will be extremely helpful in proving geo-

metric ergodicity. We note that the proof of Theorem 3.2.4 does not use properties

that follow from the rates being subgeometric.

The theorem we re-introduce is just picking apart the useful parts of an explicit
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construction using Nummelin’s Splitting Technique.

Theorem 5.2.1 (Adaptation of 3.2.4). Suppose {xt} is an aperiodic and irreducible

Markov chain with a (m, δ, ν)-small set C such that supx∈C Ex[τC ] < ∞. Then we

have:

(i) There exists an aperiodic and irreducible Markov chain {zt} = {(xt, at)} on

X ×{0, 1} where {at} is i.i.d., independent from {xt}, and at ∼ h. In particular with

C (m, δ, ν)-small, P (at = 1) = h(1) = δ.

(ii) There exists a reachable set S = C × 1 for {zt} such that Pm((x, 1), ·) =

Pm((y, 1), ·) for all x, y ∈ C, and supx∈C Ex[τC ] ≤ supx∈C E(x,a)[τS] <∞, and by The-

orem 1.3.1, {zt} has an invariant distribution πz, {xt} has an invariant distribution π.

(iii) P (zn : x0, at ∼ h) = P (xn : x0)h(an) for all n.

If in addition {zt}(or {xt}) is ergodic for some f -norm then {xt}(or {zt}) is

ergodic with the same rate and for the same f -norm. In particular there exists a

constant c(h) > 0 such that if ‖P ((., ·) : x0, a0 ∼ h)− πz((., ·))‖f → 0 then

‖P n(x0, ·)− π(·)‖f ≤ c(h)‖P ((., ·) : x0, a0 ∼ h)− πz((., ·))‖f

Proof. (i) By Theorem 3.1.1(i) {xt} has (m, δ, ν)-small set C, so as in Section 1.2 we

define a new Markov chain {zt} = {(xt, at)} on X ×{0, 1}. The created Markov chain

{zt} satisfies:

{at} ⊆ {0, 1} are a sequence random variables independent of {xt}, except when
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xt ∈ C.

1. If xt /∈ C then xt+1 ∼ P (xt, ·)

2. If xt ∈ C then

with probability δ : at = 1 and xt+m ∼ ν(·)

with probability (1− δ) : at = 0 and xt+m ∼ P (xt,·)−δν(·)
1−δ

The inbetween steps xt+k, k = 1, 2, ...,m− 1 are conditions on xt, xt+m. What is

important to note is that the one step transition probabilities of the {xt} in the new

chain {zt} are left unchanged.

Knowing the distribution of at when xt ∈ C we can take that distribution to be

that of at regardless of xt, so that for all t ∈ N at ∼ h where

P (at = 1) =h(1) = δ

P (at = 0) =h(0) = 1− δ.
(5.7)

Therefore, we have for the transition probabilities of {zt}

P (zt+1 : xt, at ∼ h) =P (xt+1 : xt, at ∼ h)P (at+1 : xt+1, xt, at ∼ h) (5.8)

=P (xt, xt+1)h(at+1) (5.9)

since {at} are i.i.d. by assumption, and P (xt+1 : xt, at ∼ h) = P (xt, xt+1) as in

Section 1.2, which gives the result (i).

(iii) We now prove by induction that for all n ∈ N

P n(zn : x0, a0 ∼ h) = P n(x0, xn)h(an). (5.10)



5.2. GEOMETRIC ERGODICITY 75

Assume that (5.10) holds for all k ≤ n, then

P n+1(zn : x0, a0 ∼ h) =

∫
X
h(1)P (dy, 1 : x0)P n(zn : y, 1)

+ h(0)P (dy, 0 : x0)P n(zn : y, 0)

by the induction hypothesis and independence of at from xt

=

∫
X
h(1)P (x0, dy)P n(y, xn)h(an)

+ h(0)P (x0, dy)P n(y, xn)h(an)

=P n+1(x0, xn)h(an)

so by induction, (5.10) holds for all n.

(ii) To prove (ii) we note that supx∈C E(x,a)[τS] ≤
∑∞

n=0(1−δ)nδn(m+supx∈C Ex[τC ]),

by Nummelin’s splitting technique used in (i).

Now we deal with the case where {zt} is ergodic with some f -norm.

lim
n→∞

P n((x, a) : x0, a0 ∼ h) = lim
n→∞

h(0)P n((x, a) : x0, 0) + h(1)P n((x, a) : x0, 1)

=(h(0) + h(1))πz(x, a) = πz(x, a).

However, by (5.10) we have

lim
n→∞

P n((x, a) : x0, a0 ∼ h) = lim
n→∞

P n(x0, x)h(0) = lim
n→∞

P n(x0, x)h(1)

which implies, with the assumed ergodicity of {zt}(or {xt}), that {xt}(or {zt}) is



5.2. GEOMETRIC ERGODICITY 76

ergodic and that P n(x0, ·) has a limit which is an invariant distribution π(·) = πz(.,a)
h(a)

.

Now πz(., a)/h(a) = π(·) implies, together with (3.12) that

‖P n(x0, ·)− π(·)‖f =
1

h(a)
‖P n((., a) : x0, a0 ∼ h)− πz((., a))‖f (5.11)

for any a ∈ {0, 1}. The proof is finished by selecting c(h) = max{ 1
h(0)

, 1
h(1)
}.

This theorem and its proof, especially the last step, give a relation between the

ergodicity in the case where a Markov chain has an atom and the case where it does

not. Indeed, the last statement of the theorem allows us to focus only on Markov

chains that have atoms when dealing with ergodicity.

Theorem 5.2.2. Let {xt} be an aperiodic and irreducible Markov chain with a small

set C. If there exists a function V : X → [1,∞), constants b ∈ R and 0 < λ < 1 such

that for an increasing sequence of stopping times {τn}

E[V (xτn+1)|xτn ] ≤ λV (xτn) + b1C(xτn)

and for all n

P (τn+1 − τn = k : xτn) ≤ Bβk, β < 1

then ‖P n(x, ·)−P n(y, ·)‖TV → 0 with a geometric rate for all x, y ∈ X . If in addition

π(V ) <∞ for the invariant distribution π(·) of {xt}, then xt is geometrically ergodic.

Proof. We first note that a sampled Markov chain {xτn} is still a Markov chain and

so we can define sampled hitting times γB = min{n > 0 : τn ∈ B} for all B ∈ B+(X ).
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Since the sampled chain satisfies a univariate drift condition as in Section 2.1, {Mn}

is supermartingale where

Mn = λ−nV (xτn)−
n−1∑
k=0

b1C(xτk),

and so we have for all B ∈ B+(X ),

Ex[λ
−γB ≤]Ex[λ

−γBV (xτγB )] ≤ V (x) +

γB−1∑
n=0

1C(xτn).

Since {xτn} satisfies a drift condition, by Lemma 2.1.1 V is bounded on C by some

M > 0 and therefore

sup
x∈C

Ex[λ
−γA ] ≤M + b (5.12)

If we fix a θ > 0 small enough such that (1−θ) > β, we have that for all ρ ∈ (1, (1−θ)
β

)

Ex[ρ
τn+1−τn ] ≤ ρN +

∞∑
k=N

B(βρ)k

≤ ρN +
B(βρ)N

(1− βρ)

= ρN(1 +
BβN

θ
)

for all N > 0. Now for some N∗ large enough we have that

(1 +BβN
∗
/θ)λ < 1,
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in particular we can take

N∗ = dlogβ
(
(λ−1 − 1)θ/B

)
e

. Therefore for all ρ such that

ρ <
(
(1 +BβN

∗
/θ)λ

) −1
N∗ (5.13)

and ρβ < (1− θ) still holds, in particular

ρ < min{1− θ
β

,
(
(1 +BβN

∗
/θ)λ

) −1
N∗ }

we have that Ex[ρ
τn+1−τn ] < λ−1, and so

Ex[ρ
τγC ] = Ex[E[ρτN : γC = N ]] ≤ Ex[λ

−γC ]. (5.14)

Combining (5.12) and (5.14) we have that C ∈ B+(X ) is a (m, δ, ν)-small set with

bounded return time. Therefore we can apply Theorem 5.2.1 to get an aperiodic

and irreducible Markov chain {zt} = {(xt, at)} with a set S = C × {1} such that

Pm((x, 1), ·) = Pm((y, 1), ·) for all x, y ∈ X , P (at = 1) = δ and satisfying (i) − (iii)

of Theorem 5.2.1.

We would like to use the first entrance last exit decomposition to bound our

converge rates but that requires having a Markov chain with an atom. To this end

we define a new time index J : N→ N for {zt}
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J(k + 1) =

 J(k) +m, if (xk, ak) ∈ S

J(k) + 1, else

so that {zJ(t)} is an aperiodic and irreducible Markov chain with S as an atom.

We note that for {zJ(t)} = {(xJ(t), aJ(t))} we have J(τS) = τS, so by defining a

sequence of stopping times τ k+1
C = min{n > τ kC : xn ∈ C}, τ 0

C = τC we have

Ez0 [ρ
J(τS)] =E(x0,a0)[ρ

τS ]

=
∞∑
k=1

(1− δ)kδE(x,0)[ρ
τkC ] + δEx0 [ρ

τC ]

≤
∞∑
k=1

(1− δ)kδE(x,0)[E(x
τk−1
C

,0)[ρ
τkC−τ

k−1
C ]ρτ

k−1
C ] + δEx0 [ρ

τC ]

≤
∞∑
k=1

(1− δ)kδE(x,0)[

(
sup
x∈C

E(x,0)[ρ
τC ]

)
ρτ

k−1
C ] + δEx0 [ρ

τC ]

≤
∞∑
k=1

k(1− δ)kδ
(
ρm + sup

x∈C
Ex[ρ

τC1{τC≥m}]

)k
+ δEx0 [ρ

τC ]

(5.15)

where m comes from C being (m, δ, ν)-small, so by Nummelin’s Splitting technique

we do not know explicitly how the Markov Chain acts for m − 1 steps after hitting

C. In fact we have that for all n ≥ m

Ez0 [ρ
J(τS)] ≤

∞∑
k=1

k(1− δ)kδ
(
ρn + ρn sup

x∈C
Ex[λ

−τC+n1{τC≥n}]

)k
+ δEx0 [ρ

τC ]

≤
∞∑
k=1

k(1− δ)kδ [ρn + ρnλn(M + b)]k + δEx0 [ρ
τC ]

(5.16)

Increasing n and shrinking ρ sufficiently will make the sum finite. We now prove that
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{zt}, and therefore {xt}, is geometrically ergodic with a rate ρ defined as to make

Ez0 [ρ
J(τS)] finite.

Using the definitions (3.5) repeated below


az(n) = Pz(τS = n)

u(n) = P n(S, S)

tf (n) = ES[f(xn)1τS≥n.]

(5.17)

and the first entrance last exit equality (3.6) we have

‖P J(n)(z, ·)− P J(n)(S, ·)‖TV ≤Ez(1τS≥n) + |az ∗ u− u| ∗ t1(J(n))

where u ∗ t1(n) =
n∑
j=0

P j(S, S)ES[1τS≥n−j] = ‖P n(S, ·)‖TV .

The first term will converge to 0 since Ez[ρ
τS ] is bounded, but to handle the second

term we use

|az ∗ u− u|(J(n)) =|PS(zJ(n) ∈ S, τS ≤ J(n)− PS(zJ(n) ∈ S)|

=|PS(zJ(n) ∈ S)PS(τS < J(n)) + PS(τS = J(n))− PS(zJ(n) ∈ S)|

=

(
u(J(n))

∞∑
k=n

az(J(k)) + az(J(n))

)

≤
∞∑

k=J(n)

2az(k)

=2Ez[1(τS≥J(n))]

We note that by (5.16) we have Ez0 [ρ
J(τS)] <∞. Therefore with the bound above
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and the property of convolutions that f ∗ g(n)→ (limn f(n))(
∑

n g(n)) we have that

ρJ(n)‖P J(n)(z, ·)− P J(n)(S, ·)‖TV ≤E(x0,a)[ρ
J(n)1τS≥J(n)]

+ 2E(x0,a)[ρ
J(·)1τS≥J(·)] ∗ ES[ρJ(·)1τS≥J(·)](n)

→ 0 + 2
(

lim
n
E(x0,a)[ρ

J(n)1τS≥J(n)]
)
ES[

τS∑
n=0

ρJ(n)]

= 0

where ES[
τS∑
n=0

ρJ(n)] = ES[
τS∑
n=0

ρn] ≤ ES [ρτS ]−ρ
ρ−1

< ∞. This proves that by the triangle

inequality and Theorem 5.2.1 that

ρJ(n)‖P J(n)(x, ·)− P J(n)(y, ·)‖TV → 0

for all x, y ∈ X .

To translate ergodicity of {xJ(t)} to ergodicity of {xt} we use the m-skeleton {xtm}.

We note that bJ(t+ 1)/mc ≤ bJ(t)/mc+ 1 so that if T (t) = min{k > 0 : J(k) > tm}

ρtm‖P tm(x, ·)−P tm(y, ·)‖TV ≤ ρmρbJ(T (t))/mcm‖P bJ(T (t))/mcm(x, ·)−P bJ(T (t))cm(y, ·)‖TV .

We then have for the original chain {xt} that

ρt‖P t(x, ·)− P t(y, ·)‖TV ≤ ρmρbt/mcm‖P bt/mcm(x, ·)− P bt/mcm(y, ·)‖TV .

Using that by (5.16), E(x,a)[ρ
τS ] ≤ M0 + Ex[ρ

τC ] for some M0 > 0 we can achieve

geometric ergodicity towards the invariant distribution π(·) if Eπ[ρτC ] < ∞. From
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(5.12) and (5.14) we get that

Eπ[ρτC ] ≤
∫
π(dx)(V (x) + b))

so that if π(V ) <∞ or equivalently supx∈B Ex[
τB∑
n=0

V (xn)] <∞ for some small set B,

we achieve

ρn‖P n(x, ·)− π(·)‖TV → 0.

Unfortunately the rate of ergodicity relies on the constants m, δ for some (m, δ, ν)-

small set A, so the rate ρ can not be made explicit using only the information in the

drift condition. Naively by looking at (5.16), we could achieve faster ergodic rates if

we could make δ arbitrarily close to 1 which corresponds to a small set Cδ such that

‖Pm(x, .)− Pm(y, .)‖ < (1− δ) for all x, y ∈ Cδ.

5.3 Commentary

The previous chapters provide a robust and meaningful characterization of geometric

and subgeometric ergodicity, however to apply the results a drift condition must be

satisfied at deterministic times. This section aims to use similar methods as previous

results due to Roberts and Rosenthal [19], Tuominen and Tweedie [22], Meyn and

Tweedie [13], and Douc et al. [18], to show how ergodicity can follow from random

time drift conditions. We aim to improve the results of this chapter by trying to

find a parallel of the results in [3] by Connor and Fort, which use the drift condition

P n(x)V (x) ≤ λV (x) + b1C(x), for random time drift conditions.
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Chapter 6

Conclusion

We conclude by summarizing the three approaches taken to studying ergodicity of

aperiodic and irreducible Markov chains.

Section 2 describes how geometric ergodicity under the TV -norm follows from a

simple drift condition as in [19] by appealing to the Coupling Inequality and Num-

melin’s Splitting Technique. Geometric ergodicity is an extremely strong result; how-

ever, in practice, drift conditions are not usually straightforward to check. While the

results of Section 2 are important to theory they do not provide a robust enough

framework to explore varied ergodic rates in practical conditions.

Section 3 characterizes subgeometric ergodicity and relates it to the concept of

regularity as in [13], [12], [22]; it also provides the equivalence of regularity to a range

of conditions in Theorem 3.1.1. This allows a way to study a large class of ergodic

rates and provides several ways of checking whether a Markov chain is ergodic with

a certain rate or norm. The results from this section provide a robust theoretical

framework and show how flexible the criteria for subgeometric ergodicity can be, but

a discussion of the practicality of these conditions is not included.

Section 4 follows extensions of Section 3 to a large class of rate functions by
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exploiting concavity and offers constructive ways of fulfilling the criteria of the pre-

vious section. These results are more explicit and varied than the rest, and focus on

practical criteria to check for subgeometric ergodicity.

The central concepts of drift conditions and petite sets connect the three methods

and provide cohesion between the style and ideas used. We also provide a couple

of results in Section 5, including a criteria to check for subgeometric ergodicity that

relies on observations of a Markov chain only on a sequence of stopping times.



BIBLIOGRAPHY 85

Bibliography

[1] K. J. Aström and B. Bernhardsson. Comparison of Riemann and Lebesgue sam-

pling for first order stochastic systems. In Proceedings of the IEEE Conference

on Decision and Control, pages 2011–2016, December 2002.

[2] R. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems.

IEEE Transactions on Automatic Control, 45:1279–1289, July 2000.

[3] S.B. Connor and G. Fort. State-dependent Foster-Lyapunov criteria for subgeo-

metric convergence of Markov chains. stochastic processes and their applications,

119:4176–4193, October 2009.

[4] G. Fort, S. P. Meyn, E. Moulines, and P. Priouret. ODE methods for skip-

free Markov chain stability with applications to MCMC. Annals of Applied

Probability, pages 664–707, 2008.

[5] M. Hairer. Convergence of Markov processes. Lecture Notes, 2010.

[6] J. C. Kieffer. Stochastic stability for feedback quantization schemes. IEEE

Transactions on Information Theory, 28:248–254, March 1982.



BIBLIOGRAPHY 86

[7] J. C. Kieffer and J. G. Dunham. On a type of stochastic stability for a class

of encoding schemes. IEEE Transactions on Information Theory, 29:793–797,

November 1983.

[8] M. Lemmon. Event-triggered feedback in control, estimation, and optimization.

In Networked Control Systems, ser. Lecture Notes in Control and Information

Sciences, A. Bemporad, M. Heemels, and M. Johansson, Eds., pages 293–358.

Springer Verlag, 2010.
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