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Abstract

We consider a distributed detection system transmitting a binary source over a Gaus-

sian multiple access channel (MAC). We model the network via binary sensors whose

outputs are generated by binary symmetric channels of different noise levels. We

aim to find the optimal constellation design for each sensor under individual power

constraints. We begin by analyzing a version of the problem where there are two

sensors sending a uniform source over the channel. In an introductory investigation,

we assume each sensor uses all available power, but can change the relative angle be-

tween the constellations. Although explicit analysis of error probability in this setup

is infeasible, an upper bound on the error probability is optimized, and is numerically

shown to coincide very well with the true optimal rotation angle. Interestingly, this

upper bound ignores all information in the imaginary axis, and could be equivalently

achieved by using less power if both sensors were sharing a one-dimensional MAC.

This led to the problem formulation of optimal power allocation for one-dimensional

constellation designs.

We next consider two binary sensors sending a non-uniform source over a one

dimensional Gaussian MAC. We prove an optimal constellation design under individ-

ual sensor power constraints which minimizes the error probability of detecting the

source. Three distinct cases arise for this optimization based on the parameters in the
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problem setup. In the most notable case (Case III), the optimal signaling design is

to not necessarily use all of the power allocated to the more noisy sensor (i.e., whose

output has less correlation to the source). We compare the error performance of the

optimal one dimensional constellation to orthogonal signaling. The results show that

the optimal one dimensional constellation achieves lower error probability than using

orthogonal channels.

Finally, we extend the problem to N sensors (N ≥ 2) by making a simplify-

ing assumption that the detection (fusion) center will not use maximum-a-posteriori

(MAP) detection, but instead will use a simplified rule where the real line can only

be split into left and right decision regions by a single decision boundary. Under this

assumption, we characterize the optimization of any individual sensor’s power allo-

cation when the rest are fixed. This optimization is also divided into three distinct

cases which directly mirror those from the two sensor problem. In the equivalent

situation to Case III, the sensor should not necessarily use all of its power. How-

ever, unlike the two sensor case, the optimal power allocation does not generally

have a closed form expression, and instead must be found numerically. We use the

individual sensor optimization results to form an iterative algorithm for the joint op-

timization of all N sensors. We use numerical examples to compare the algorithm

to other signaling designs, observing that the algorithm achieves consistently lower

error probability than any design that also uses the simplified detection. Further,

the algorithm is only slightly outperformed in some situations, particularly at high

signal-to-noise ratio (SNR), by signaling techniques such as orthogonal signaling or

using MAP detection, which typically require more power, bandwidth and overall

implementation complexity.
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Chapter 1

Introduction

Wireless sensor networks are widely used for monitoring the state of real world phe-

nomena. This includes both the estimation of a real valued parameter (such as

temperature or rain fall measurements) and the detection of an event occurring (such

as the occurrence of forest fires or a security breach). In this thesis, we focus on the

hypothesis testing problem described by distributed detection of an event occurring.

When working with generalized distributed detection problems, the error proba-

bility of the system cannot in general be expressed analytically. As a result, previous

work on distributed detection typically uses related or proxy metrics for system error

analysis. For example, [1] uses error exponents to evaluate the performance of various

detection schemes, [2] uses the J-divergence (i.e., the Jeffreys-divergence [3]), while [4]

and [5] use the deflection coefficient as the metric for optimization.

Previous work in this area employs a variety of signaling structures for the sen-

sors. For example, [2] uses orthogonal channels for each sensor, while [5] uses a single

MAC for the entire network. Works such as [5–8] fix a signaling design and analyze

detection schemes at the fusion center. Other works optimize the sensors’ signaling

techniques under certain constraints. For example, [2] optimizes power allocation for
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a network that uses orthogonal signaling and on-off keying for each sensor, under total

and average power constraints. Alternatively, [4] assumes fixed power at each sensor,

and analyzes the optimal rotation angle to send the signals. In [9], the problem of

distributed mean-squared error estimation of a Gaussian source sent over a symmetric

Gaussian sensor network is analyzed; it is shown that uncoded transmission (scalar

coding) is optimal in the sense that it achieves Shannon’s optimal performance theo-

retically achievable among all source-channel block codes of sufficiently large lengths.

The distributed detection setup in this thesis can be seen as a discretization of the

distributed estimation system in [9] if we use a uniformly distributed source and

symmetric sensor channels. The source and sensor readings can be represented as

one bit quantizations of their continuous counterparts in [9]. Further, [10] extends

the distributed estimation problem of [9] to include fading and asymmetric sensors,

providing a sufficient condition under which uncoded transmission is optimal.

Throughout the above mentioned works, there is not much emphasis put on gen-

eralized constellation design for distributed detection problems. We aim to solve the

source-channel signaling problem of finding an optimized constellation design to min-

imize error probability under a given source and channel model. This is similar in

principle to works such as [11–19], where general constellation design is optimized

for a chosen criterion. In [11], the optimal joint binary constellation design for two

correlated sources was derived. In [12] and [13], the authors used a minimum inter-

constellation distance criterion for optimizing constellations for multiple sources. In

contrast, [16–19] optimized M -ary constellations for a single source.
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1.1 Contributions

We investigate constellation design and provide various optimality results for dis-

tributed detection problems involving a binary source sent over a Gaussian MAC.

We model hypothesis testing for an event of interest occurring as a non-uniformly

distributed binary source, and the sensor noises are modelled as passing the source

through independent memoryless binary symmetric channels, introducing sensor er-

rors.

In Chapter 2, we investigate the effect of rotation angle between binary constel-

lations in a two sensor network transmitting a uniform binary source. We derive an

explicit angle, θ∗ub, which minimizes an upper bound on the error probability, and is

numerically shown to perform identically to the true error probability. We also remark

that the upper bound ignores all information in the imaginary axis; this motivates

the study of optimal power allocation for one-dimensional constellation designs. More

detailed derivations and analysis of this initial investigation can be found in [20].

Next, in Chapter 3, we analyze a two sensor communication network sharing

a single MAC. With this setup, we analytically derive an optimal one dimensional

constellation design to minimize the system error probability under individual power

constraints for each sensor. In addition, we show using numerical and simulation

results that the derived optimal one dimensional constellation achieves lower error

probability than using orthogonal channels. Our most notable result is that in certain

cases (which is dominant when the source is nearly uniformly distributed), the noisier

sensor should use some but not all of its allocated power. The results of this chapter

have been published in [21] and [22].

Finally, in Chapter 4, we extend the two sensor problem described in Chapter 3
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to an arbitrary number of sensors. Under a simplifying assumption on the detection

scheme, the optimization of any individual sensor’s constellation is characterized.

This individual optimization is iteratively applied to jointly optimize the constella-

tions of all sensors. The performance of this algorithm is compared to other designs,

where it is typically shown to be the best performing design, and is only slightly

outperformed in some situations (typically high SNR) by schemes which use more

power and bandwidth, such as orthogonal channels.

The MATLAB code used to generate all numerical results in this thesis can be

found at https://github.com/lsardellitti/SensorNetworkMatlabTests.
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Chapter 2

Preliminaries and Motivation

To begin formulation of the problem, we first define a generalized mathematical model

of the situation, to give a unified notation for all specific versions of the problem which

are addressed in this work.

2.1 General Problem Description and Notation

Let X be a binary event that is to be observed by a sensor network. Without loss

of generality, we assume its distribution is such that p1 ≜ Pr(X = 1) ≤ 0.5. We

also define p0 ≜ Pr(X = 0) = 1 − p1. For some integer N ≥ 2, there are N sensors,

X1, ..., XN observing the source X. We will use the notation XN ≜ (X1, ..., XN)

to represent the random vector of the sensor readings. The sensors are modelled as

passing X through memoryless binary symmetric channels. This is expressed as Xi =

X ⊕Zi, i = 1, ..., N , where ⊕ denotes addition modulo-2, with Zi being independent

Bernoulli noise processes with means (or channel crossover probabilities) ϵi for each

i = 1, ..., N , respectively. It is also assumed that X is independent from (Z1, ..., ZN).

For additional notation, we also define the vectors or tuples ZN ≜ (Z1, ..., ZN) and

ϵN ≜ (ϵ1, ..., ϵN). Without loss of generality, we assume that the sensors are ordered in
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increasing noise levels, which is equivalent to decreasing correlation to the source, X,

expressed as: 0 < ϵ1 ≤ ... ≤ ϵN < 0.5. The sensors, unable to communicate with each

other, encode their data independently using binary constellations. The constellations

for the sensors are represented as follows: Ci = {c0,i, c1,i}, i = 1, ..., N , where for

s ∈ {0, 1}, cs,i ∈ S denotes the constellation point for Sensor i assigned to Xi = s

in the real or complex signal space S ∈ {R,C}. For each i = 1, ..., N , let Si ∈ Ci

be the random variable associated to each sensor’s chosen constellation point. Also

let Pmax
i be the power constraint for Sensor i, i.e., E[∥Si∥2] ≤ Pmax

i , i = 1, ..., N ,

where ∥ · ∥ is the ℓ2-norm in the signal space S. In this setup, each sensor has its

own power allotment, as opposed to having a common power constraint on the entire

network. To simplify notation, the vector of power allocations is defined as Pmax ≜

(Pmax
1 , ..., Pmax

N ). The communication channel used to send the sensors’ signals to

the detection (fusion) center is modelled as a multiple access additive noise channel,

where the received signal, R at the detection center is given by

R =
N∑
i=1

Si + Z, (2.1)

where Z is a random variable in the signal space S modelling the channel noise. The

event X is reconstructed at the fusion center using some deterministic detection rule

x̂ : S → {0, 1}, so the detected bit is represented by the random variable X̂ ≜ x̂(R).

Since the detection rule is deterministic, we partition the signal space into the subsets

D0 and D1 = Dc
0, called “decision regions”, where Ds ≜ {r ∈ S | x̂(r) = s}, s = 0, 1.

We additionally introduce the following notation to simplify the algebraic expres-

sions which will be used in the forthcoming analysis. First, we define the following

notation for describing all possible combinations of sensor readings: B ≜ {0, 1}N ,
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where any element in this set b = (b1, ..., bN) ∈ B is such that bi ∈ {0, 1}, i ∈ 1, ..., N

denotes the bit in position i, i.e., the reading from Sensor i. For ease of notation, we

also use the string notation b = b1...bN . We use this to define the following notation

for the sensors’ conditional probabilities pb|i ≜ Pr(XN = b | X = i). We also define

the combined constellation C = {
∑N

i=1 ci | ci ∈ Ci, i = 1, ..., N} as all possible additive

combinations of the binary constellations for each sensor. The combined constellation

points are indexed by b ∈ B using the notation ab ∈ C, representing the constellation

point associated to the combined sensor readings XN = b.

2.2 Preliminary Investigation - Two Sensor Uniform Source NOMA

To begin analysis into the problem of optimal constellation design, we start with a

simplified problem to gain insight on the nature of the optimization. The first problem

to investigate is a two sensor, uniform source, Gaussian channel distributed detection

problem. Both sensors are assumed to share a 2-dimensional channel, and are able

to use it in a non-orthogonal-multiple-access (NOMA) scheme by varying the angle

between the constellations, similar to inter constellation rotation as described by [12].

These specifications are described by the following realizations of the parameters

described in the Section 2.1: p1 = 0.5, N = 2, S = C. The constellations for

the sensors are parameterized as follows: C1 = {c0,1, c1,1} = {−
√
P1,
√
P1} and

C2 = {c0,2, c1,2} = {−
√
P2e

jθ,
√
P2e

jθ}, where j is the imaginary unit and θ ∈ [0, π
2
] is

the rotation between the two constellations. The signals are sent through a Gaussian

MAC as described in (2.1), where the channel noise, Z, is a complex (bivariate)

Gaussian noise variable with independent zero mean components of equal variance

given by σ2 = N0

2
. It is also assumed that Z is independent of the sensor signals S1
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and S2. To recover the original data source, maximum-likelihood (ML) detection is

used (which is optimal as the source is uniform), described by

x̂(r) = argmax
s∈{0,1}

fR(r | X = s),

where fR(· |X = s), s = 0, 1 are the conditional probability density functions (pdfs)

of the received signal R given the source event X = s. The decision regions, D0 and

D1, formed from ML detection are generally complex and have a curved boundary

between them, as shown in Figure 2.1.

Figure 2.1: Decision regions for θ = π
2
(yellow region is D1). The red points represent

the superimposed constellation points alm ∈ C (ϵ1 = 0.15, ϵ2 = 0.17, P1 = 1, P2 = 1.5,
N0 = 1).
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The complexity of the decision regions makes it infeasible to analyze the error

probability of ML detection directly. An upper bound was formed based on simpli-

fying the decision regions to being half planes, or so called “planar” decision regions.

Instead of ML detection, the decision regions are D0 = D0,planar ≜ {r | Re(r) ≤ 0}.

This yields the following expression for the upper bound on the error probability for

any θ ∈ [0, π
2
]:

P ub
e (θ) = ϵ1+(1−ϵ1−ϵ2)Q

(√
P1 +

√
P2 cos(θ)

σ

)
+(ϵ2−ϵ1)Q

(√
P1 −

√
P2 cos(θ)

σ

)
,

where Q is the Gaussian tail distribution function, defined as

Q(x) =
1√
2π

∫ ∞

x

e−
u2

2 du.

This upper bound was optimized over θ ∈ [0, π
2
], yielding the following minimizer:

θ∗ub = cos−1(min{pcf, 1}),

where

pcf ≜
N0

4
√
P1P2

ln

(
1− ϵ2 − ϵ1
ϵ2 − ϵ1

)
,

is called the power-correlation-factor. The error probability achieved by this opti-

mized upper bound is indistinguishable from a numerical optimization over rotation

angle using the ML detection scheme, seen in [20, Section IV]. Further, we note that

the decision regions calculated for the optimal ML detection were indeed planar as

well. The details of the derivation and optimization of this upper bound can be found

in [20]. Figure 2.2 shows the combined constellation and ML decision regions at θ∗ub.
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Figure 2.2: Combined constellation and decision regions at θ∗ub (yellow region is D1).
The red points represent the superimposed constellation points alm ∈ C (ϵ1 = 0.1,
ϵ2 = 0.15, P1 = 1, P2 = 1, N0 = 1).

We observe that the numerically optimized rotation angle and corresponding ML

detection regions are identical to those derived from optimizing the upper bound. This

implies that the optimal signaling design ignores all information in the imaginary axis.

Hence, the same error performance could be recreated using less power by sending the

points co-linearly. This initial investigation led to the main direction of this research

to investigate optimal power allocation in a single multiple access channel instead of

constellation rotation. The largest question that was raised from this investigation is

whether this result extends to more complex situations such as non-uniform sources

or more than two sensors. These questions are answered in the following chapters.
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Chapter 3

Two User Gaussian MAC Sensor Networks

Informed by the initial investigation of Chapter 2, we approach a general version of

the two sensor problem where the sensors share a single Gaussian MAC.

3.1 System Model

This chapter uses the problem set up as described in Section 2.1, with the specifica-

tions being N = 2 and S = R. A block diagram depicting the overall system model

is shown in Figure 3.1.

Figure 3.1: Block diagram showing the two sensor MAC system.
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3.1.1 Channel Model

The sensors’ signals are sent through a Gaussian MAC, where the received signal, R,

is expressed as in (2.1), with the noise Z modelled as a real valued Gaussian noise

variable with zero mean and variance σ2 = N0

2
. It is assumed that Z is independent

of the sensor signals S1 and S2.

3.1.2 Maximum-a-Posteriori Detection

The event X is reconstructed at the fusion center using (optimal) MAP detection.

For a received signal r ∈ R, the detected bit is determined as follows:

x̂(r) = argmax
i∈{0,1}

Pr(X = i | R = r)

= argmax
i∈{0,1}

Pr(X = i)fR(r | X = i)

= argmax
i∈{0,1}

pi
∑

(l,m)∈{0,1}2
plm|ifR(r|S1 + S2 = alm)

= argmax
i∈{0,1}

pi
∑

(l,m)∈{0,1}2
plm|ifZ(r − alm), (3.1)

where fR and fZ are the probability density functions (pdfs) of the received signal R

and channel noise variable Z, respectively, plm|i ≜ Pr(X1 = l, X2 = m|X = i), and

alm ∈ C denotes the superimposed constellation symbol associated with X1 = l and

X2 = m. In the case of a tie, we arbitrarily choose to detect a 0, since the probability

of a tie is zero because the noise is a continuous random variable. The conditional

probabilities, plm|i, can be expressed as follows:

p11|0 = p00|1 = ϵ1ϵ2, p00|0 = p11|1 = (1− ϵ1)(1− ϵ2),

p01|0 = p10|1 = (1− ϵ1)ϵ2, p10|0 = p01|1 = ϵ1(1− ϵ2).

(3.2)
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3.2 Summary of Main Results

For fixed parameters p1, ϵ1, ϵ2, N0, P
max
1 and Pmax

2 , we show that the optimal con-

stellation design for C1 and C2 which achieve the minimum error probability, P ∗
e , are

expressed as Ci = {c0,i, c1,i} =
{
−
√

p1
p0
P ∗
i ,
√

p0
p1
P ∗
i

}
for i ∈ {1, 2}, where the optimal

power1 allocations P ∗
i are separated into three cases. The conditions for each case

are given in Table 3.1 and the optimization results are summarized in Table 3.2.

Table 3.1: Case Characterization Conditions

Case Condition D0

I 0 ≤ p1 ≤ ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

R
II ϵ1ϵ2

1−ϵ1−ϵ2+2ϵ1ϵ2
< p1 ≤ ϵ1−ϵ1ϵ2

ϵ1+ϵ2−2ϵ1ϵ2
(−∞, x∗]

III ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

< p1 ≤ 0.5 (−∞, x∗]

For Cases II and III in Table 3.1, the decision boundary, x∗, is the unique root of

(3.6) corresponding to P ∗
1 and P ∗

2 .

Table 3.2: Optimal Power Allocation Results

Case P ∗
1 P ∗

2 P ∗
e limN0→0 P

∗
e

I 0 0 p1 p1

II
√

Pmax
1

√
Pmax
2 see (3.21) see (3.35)

III
√

Pmax
1 min(

√
Pmax
2 , P̃2) see (3.34) ϵ1

1Even though in this chapter, each Pi, i ∈ {1, 2}, corresponds to the square root of the power
E[∥Si∥2] with upper bound constraint Pmax

i as specified in Chapter 2, we will still refer to it as
“power” for the sake of simplicity.
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In Table 3.2, we used the quantities

P̃2 ≜
N0p1p0

2
√

Pmax
1

ln
(1− ϵ1 − ϵ2)

2 − Λ

(ϵ2 − ϵ1)2 − Λ
, (3.3)

with

Λ ≜
(p0 − p1)

2

p0p1
(1− ϵ1)(1− ϵ2)ϵ1ϵ2.

Note that the expression for P̃2 is always real valued when the conditions of Case III

are met. Also note that because of the assumption 0 < ϵ1 ≤ ϵ2 < 0.5, the conditions

for the three cases are numerically consistent, i.e., we have that

0 <
ϵ1ϵ2

1− ϵ1 − ϵ2 + 2ϵ1ϵ2
<

ϵ1 − ϵ1ϵ2
ϵ1 + ϵ2 − 2ϵ1ϵ2

≤ 0.5,

where the last inequality holds with equality if and only if ϵ1 = ϵ2. The most inter-

esting result is that in Case III, the optimal power allocation is not to necessarily use

all of the available power for Sensor 2. The remainder of this chapter is dedicated to

proving these results and illustrating them via numerical examples and simulations.

3.3 Proof of Main Results

First, we use Theorem 3.1 to show that the constellation design optimization prob-

lem can be restricted to a set of asymmetric constellations, parameterized by each

sensor’s power allocation. Then we analyze the boundary points between the decision

regions D0 and D1 (decision boundaries) using this optimal asymmetric design. The

characterization of these decision boundaries splits the problem into the three cases

given in Table 3.1. For Case I, Proposition 3.2 shows the trivial nature of the decision
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boundaries, and thus also the optimization in this case. For Case II, Propositions 3.6

and 3.7 derive bounds on the decision boundaries which are used in Theorem 3.8 to

show that using all allocated power for both sensors is optimal. Finally, in Case III,

Propositions 3.10 and 3.11 establish properties of the decision boundaries which are

used in Theorem 3.14 to give the globally optimal power allocation for Sensor 2. Com-

bining this result with Theorems 3.15 and 3.16, which show that the error probability

decreases in both sensor powers until reaching the global minimum, yields the overall

optimal power allocation under the given power constraints.

Theorem 3.1. For any combination of binary constellations C = C1+C2, there exists

a constellation pattern C∗ = C∗1 + C∗2 which has equal error probability, equal or better

power consumption, with the composition C∗i =
{
−
√

p1
p0
Pi,

√
p0
p1
Pi

}
, for some Pi ∈ R,

i ∈ {1, 2}.

Proof. In a Gaussian MAC using MAP detection, the error probability is the same

for constellations that are translations of each other. Hence, constellations with the

same distances between constellation points will have the same error performance.

The distances between the points in the joint constellation C are determined by the

distances between the points in the individual constellations Ci = {c0,i, c1,i}, i ∈ {1, 2}.

Let the constellation distance, di be defined as follows:

di ≜ c1,i − c0,i, i ∈ {1, 2}. (3.4)

We will minimize the average power consumption for each sensor while maintaining

constellation distance di. This is computed by using the constraint from (3.4):

P 2
i = E[S2

i ] = p0c
2
0,i + p1c

2
1,i = c21,i − 2p0dic1,i + p0d

2
i .
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This is a simple quadratic function of c1,i, which is minimized at c1,i = p0di, c0,i =

−p1di. Substituting this back into the expression of P 2
i , we see that the minimum

power has the form P ∗
i
2 = p1p0d

2
i . Finally, rearranging for di =

1√
p1p0

P ∗
i shows that

the minimum power constellation has the form:

c0,i = −
√

p1
p0
Pi, c1,i =

√
p0
p1
Pi, i ∈ {1, 2}.

Using Theorem 3.1, we can restrict the optimization search to constellations which

take the following asymmetric form. Ci = {c0,i, c1,i} =
{
−
√

p1
p0
Pi,

√
p0
p1
Pi

}
, where

Pi ∈ [0,
√
Pmax
i ] for i ∈ {1, 2}. To simplify notation, we define the following two

symbols which represent these optimal asymmetric parameters:

α ≜
√

p0
p1
, β ≜

√
p1
p0
. (3.5)

The relationship α+β = 1√
p0p1

will be used often in the remaining analysis. The prob-

lem has now been reduced to finding the optimal power allocations, Pi ∈ [0,
√

Pmax
i ]

for i ∈ {1, 2}.

3.3.1 Decision Boundaries

To analyze the error probabilities, we first must understand the behaviour of the

decision regions D0 and D1. To characterize these regions, we take the difference

between the two terms in (3.1) and manipulate the expressions to give the following
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explicit expression in terms of the problem parameters:

Pr(X = 1 | R = r)− Pr(X = 0 | R = r)

=
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)fZ(r − alm)

=
1

σ
√
2π

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)e
−(r−alm)2

N0 .

We are interested in the sign of this expression, so we simplify using the following

forms of the restricted constellation points:

a11 = α(P1 + P2), a01 = −βP1 + αP2,

a10 = αP1 − βP2, a00 = −β(P1 + P2),

which gives the following function of x, which can be called a “detection discrim-

inator” since it has the same sign as the original expression for any fixed P1 and

P2:

w(x) = ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 + ce
2(α+β)P2x

N0 + d, (3.6)

where

a ≜ āe
−α2(P1+P2)

2

N0 , b ≜ b̄e
− (αP1−βP2)

2

N0 ,

c ≜ c̄e
− (βP1−αP2)

2

N0 , d ≜ d̄e
−β2(P1+P2)

2

N0 ,

and

ā ≜ p1p11|1 − p0p11|0, b̄ ≜ p1p10|1 − p0p10|0,

c̄ ≜ p1p01|1 − p0p01|0, d̄ ≜ p1p00|1 − p0p00|0.

(3.7)

Using (3.6), we characterize the decision regions as D0 = {x ∈ R | w(x) ≤ 0} = Dc
1.

Note that by the assumptions on p1, ϵ1 and ϵ2, we have that d̄ < 0, which implies that
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w(x) is negative as x → −∞ for any P1 and P2 (hence the MAP rule detects a 0).

Thus, we can completely determine these regions by the boundary points between D0

and D1. These boundary points are the same as where w(x) crosses from negative to

positive, or vice-versa. Thus, it is relevant to analyze the set X = {x ∈ R | w(x) = 0}.

Note that applying the results of [23, Corollary 3.2], we know that the size of this set

is restricted to |X | ∈ {0, 1, 2, 3}. Unfortunately, there is not a general way to solve

for the values x ∈ X analytically. However, the problem can be split into three cases

which can be analyzed without knowing these values explicitly. The decision regions

can be expressed as unions of intervals using these boundary points. For example, if

X = {x}, then D0 = (−∞, x], whereas if X = {x1, x2, x3}, with x1 < x2 < x3 then

D0 = (−∞, x1] ∪ [x2, x3].

3.3.2 Case I: 0 ≤ p1 ≤ ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

The following proposition characterizes the decision boundaries in this case, which is

an essential step of analyzing the error probability.

Proposition 3.2. In Case I, there are no real solutions to the equation w(x) = 0,

where w(x) is given in (3.6).

Proof. Each of the following inequalities hold due to the condition of Case I, and

p1 ≤ 0.5, 0 < ϵ1 ≤ ϵ2 < 0.5:

ā = p1p11|1 − p0p11|0 = p1(1− ϵ1)(1− ϵ2)− (1− p1)ϵ1ϵ2

= (1− ϵ1 − ϵ2 + 2ϵ1ϵ2)

(
p1 −

ϵ1ϵ2
1− ϵ1 − ϵ2 + 2ϵ1ϵ2

)
≤ 0

=⇒ a ≤ 0,
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b̄ = p1p10|1 − p0p10|0 = p1(1− ϵ1)ϵ2 − (1− p1)ϵ1(1− ϵ2)

= (ϵ1 + ϵ2 − 2ϵ1ϵ2)

(
p1 −

ϵ1 − ϵ1ϵ2
ϵ1 + ϵ2 − 2ϵ1ϵ2

)
< 0

=⇒ b < 0,

c̄ = p1p01|1 − p0p01|0 = p1ϵ1(1− ϵ2)− (1− p1)(1− ϵ1)ϵ2

= (ϵ1 + ϵ2 − 2ϵ1ϵ2)

(
p1 −

ϵ2 − ϵ1ϵ2
ϵ1 + ϵ2 − 2ϵ1ϵ2

)
< 0

=⇒ c < 0,

d̄ = p1p00|1 − p0p00|0 = p1ϵ1ϵ2 − (1− p1)(1− ϵ1)(1− ϵ2)

= (1− ϵ1 − ϵ2 + 2ϵ1ϵ2)

(
p1 −

1− ϵ1 − ϵ2 + ϵ1ϵ2
1− ϵ1 − ϵ2 + 2ϵ1ϵ2

)
< 0

=⇒ d < 0.

Thus w(x) < 0 ∀x ∈ R and w(x) has no real roots.

Since there are no roots of (3.6), there are also no decision boundaries in Case I.

Thus, no matter what the received signal is, the optimal detection will always be

X̂ = 0 (i.e., D0 = R). Hence, the error probability is only dependent on the source

probability p1. In this case, the senors are not able to send any useful data, so they

should not send anything at all. We conclude that the optimal power allocation and

corresponding error performance are expressed as follows:

P ∗Case I
1 = 0, P ∗Case I

2 = 0, P ∗Case I
e = p1.
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3.3.3 Case II: ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

< p1 ≤ ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

Using a similar approach as in the proof of Proposition 3.2, we can show the following

properties about the coefficients of (3.6) in this case:

a > 0, b ≤ 0, c ≤ 0, d < 0.

We use these observations to characterize the decision regions in this case through

the following proposition.

Proposition 3.3. In Case II, there is exactly one real root to w(x) in (3.6) for any

P1, P2 > 0. Further, this root is also a decision boundary between D0 and D1.

Proof. Let P1, P2 > 0. First we show that there exists at least one real solution to

w(x) = 0. We use the fact that w(x) is continuous and that its asymptotic behaviours

are:

lim
x→−∞

w(x) = d, lim
x→∞

w(x) =∞.

Since d < 0 and w(x) is continuous, it must have at least one root. Next we show

that w(x) can have at most one root by showing that once it becomes non-negative,

the derivative is always strictly positive, so it can never have another zero. Assume

w(x) ≥ 0, we then have:

dw

dx
=

2(α + β)

N0

(
(P1 + P2)ae

2(α+β)(P1+P2)x
N0 + P1be

2(α+β)P1x
N0 + P2ce

2(α+β)P2x
N0

)
=

2(α + β)

N0

(
(P1 + P2)w(x)− P2be

2(α+β)P1x
N0 − P1ce

2(α+β)P2x
N0 − (P1 + P2)d

)
> 0.

This shows that w(x) has exactly one real root, and this root is a boundary point

between D0 and D1 as desired.
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Since there is a unique decision boundary, the decision regions will have the form

D0 = (−∞, x], where x is the root of (3.6) corresponding to P1 and P2. We can

express the error probability at any P1, P2 > 0 using the following expression:

Pe(P1, P2) =
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)Q

(
alm − x

σ

)
+ p0plm|0, (3.8)

where Q is the Gaussian tail distribution function, alm are the constellation points

and x is the root of (3.6) corresponding to P1 and P2. We also give the following

upper bound on the error probability.

Proposition 3.4. If P1, P2 > 0 and x is the corresponding unique decision boundary,

then for any x̂ ∈ R, the following is an upper bound on the error probability

P UB

e,x̂(P1, P2) ≜
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)Q

(
alm − x̂

σ

)
+ p0plm|0. (3.9)

Proof. This expression corresponds to the error probability associated to using a

decision boundary x̂. Since the true decision boundary, x, from the MAP detection

rule is optimal, this must be an upper bound.

We now define the following functions, where ā, b̄ and c̄ are as defined in (3.7).

K(P1) ≜
N0

2(α + β)P1

ln
ā

−c̄
− α− β

2
P1, (3.10)

L(P2) ≜
N0

2(α + β)P2

ln
ā

−b̄
− α− β

2
P2. (3.11)

Note that these are well defined if c̄ ̸= 0 and b̄ ̸= 0, respectively. These functions are

used often in the optimization proof, such as the in following proposition.
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Proposition 3.5. For any P1, P2 > 0 the following two statements are true if b̄ ̸= 0

and c̄ ̸= 0, respectively:

x ⋚ αP1 − L(P2) =⇒ ae
2(α+β)P2x

N0 + b ⋚ 0, (3.12)

x ⋚ αP2 −K(P1) =⇒ ae
2(α+β)P1x

N0 + c ⋚ 0, (3.13)

where the symbol ⋚ means that the statements hold for any of the relations <, > or

=, consistently in the each line.

Proof. We prove (3.12) using the definition of L from (3.11). Assume P1, P2 > 0,

b̄ ̸= 0, then if x satisfies

x ⋚ αP1 − L(P2)

=⇒ ae
2(α+β)P2x

N0 + b ⋚ ae
2(α+β)P2(αP1−L(P2))

N0 + b,

where

ae
2(α+β)P2(αP1−L(P2))

N0 + b = ae
2α(α+β)P1P2−2(α+β)P2L(P2)

N0 + b

= ae
2α(α+β)P1P2+(α2−β2)P2

2
N0

−ln ā
−b̄ + b

= − b̄e
−(αP1−βP2)

2

N0︸ ︷︷ ︸
=b

a

ā
e

α2(P1+P2)
2

N0︸ ︷︷ ︸
=1

+b

= −b+ b = 0.

The proof of (3.13) follows the same steps, using the definition of K from (3.10).

This result is used to determine the properties of the decision boundaries by its
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influence on the expression in (3.6), as seen in the following proposition.

Proposition 3.6. In Case II, for P1, P2 > 0, if x is the corresponding root of (3.6),

b̄ ̸= 0 and c̄ ̸= 0, then the following two inequalities hold:

x > αP1 − L(P2), (3.14)

x > αP2 −K(P1). (3.15)

Proof. Using Proposition 3.5, we have

x ≤ αP1 − L(P2) =⇒ ae
2(α+β)P2x

N0 + b ≤ 0 =⇒ w(x) < 0,

x ≤ αP2 −K(P1) =⇒ ae
2(α+β)P1x

N0 + c ≤ 0 =⇒ w(x) < 0.

Hence, x could not be a zero of (3.6) in either of these cases, showing the desired

result.

As seen in the above proof, a direct consequence of applying Proposition 3.5 gives

a lower bound on the values of the decision boundary. We also require the following

additional result about these lower bounds.

Proposition 3.7. In Case II, let P̄1, P
′
1, P̄2 and P ′

2 be arbitrary real numbers such

that 0 < P̄1 < P ′
1, 0 < P̄2 < P ′

2. Then the root of (3.6), x, satisfies the following two

inequalities as a function of P2 and P1, respectively:

inf
P1∈[P̄1,P ′

1]
x− αP1 + L(P2) > 0, for b̄ ̸= 0, P2 > 0, (3.16)

inf
P2∈[P̄2,P ′

2]
x− αP2 +K(P1) > 0, for c̄ ̸= 0, P1 > 0. (3.17)
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Proof. To prove (3.16), let P̄1 and P ′
1 be arbitrary real numbers such that 0 < P̄1 < P ′

1.

For any P1 ∈ [P̄1, P
′
1] and P2 > 0, the root of (3.6), x, satisfies x− αP1 + L(P2) > 0

from (3.14) of Proposition 3.6; therefore

inf
P1∈[P̄1,P ′

1]
x− αP1 + L(P2) ≥ 0. (3.18)

Next, we define the function

wL(x, P1) ≜ ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 ,

which is uniformly continuous in both P1 over [P̄1, P
′
1] and x over [αP̄1−L(P2), αP

′
1−

L(P2)]. By (3.12), wL(x, P1) = 0 at all points (x, P1) on the line x = αP1 − L(P2).

Thus, for any d′ > 0, there exists δ > 0 such that for any P1 ∈ [P̄1, P
′
1] and x that

satisfies

αP1 − L(P2) < x < αP1 − L(P2) + δ, (3.19)

we have

wL(x, P1) < d′.

If (3.18) holds with equality, then there exists P1 ∈ [P̄1, P
′
1] with corresponding

root of (3.6), x, that satisfies (3.19). In particular, for d′ = −d̄e−
β2(P ′

1+P2)
2

N0 , which is

a positive constant with respect to P1 and x, we obtain

ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 < −d̄e−
β2(P ′

1+P2)
2

N0 < −d

=⇒ ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 + d < 0

=⇒ w(x) < 0,
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where the last inequality holds because c < 0 in the expression of w(x) in (3.6) for

Case II. This contradicts x being the root of (3.6), completing the proof. The proof

of (3.17) is omitted as it follows the same steps as above.

This result shows that the decision boundary is bounded away from the lower

bound over any finite interval of power allocation. This is a small, but essential result

for the main proof as it guarantees that the sequence of powers we use will grow large

enough to reach the necessary value. The results of Propositions 3.5, 3.6 and 3.7 are

used to prove the following main theorem characterizing the optimization in this case.

Theorem 3.8. In Case II, Pe(P1, P2) is decreasing in P1 and P2 for P1, P2 > 0.

Proof. We will show the following two statements:

1. If 0 < P1 < P ′
1, 0 < P2, then Pe(P1, P2) > Pe(P

′
1, P2).

2. If 0 < P1, 0 < P2 < P ′
2, then Pe(P1, P2) > Pe(P1, P

′
2).

To show Statement 1, fix 0 < P1 < P ′
1, 0 < P2. Let x and x′ be the roots of (3.6)

corresponding to the pairs (P1, P2) and (P ′
1, P2), respectively. We define the following

sequence {P1,i}∞i=0 recursively.

P1,0 = P1, P1,i+1 =


P ′
1, b̄ = 0

1
α

(
xi + L(P2)

)
, b̄ ̸= 0

where xi is the root to (3.6) corresponding to P1,i, b̄ is from (3.7) and L is as defined

in (3.11). Note that if b̄ ̸= 0 and P1,i < P ′
1, applying (3.16) gives

P1,i+1 − P1,i =
1

α

(
xi + L(P2)

)
− P1,i
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≥ 1

α
inf

P̄1∈[P1,P ′
1]
x̄− αP̄1 + L(P2)

(3.16)
> 0,

where x̄ denotes the root of (3.6) for (P̄1, P2). This shows that the sequence {P1,i}∞i=0

increases by at least this constant if P1,i < P ′
1. Therefore there exists i′ large enough

such that P1,i′ ≥ P ′
1. Hence, it is sufficient to show that for all i

Pe(P1,i, P2)− Pe(P1,i+1, P2) > 0.

Using the upper bound in Proposition 3.4, it is sufficient to show

Pe(P1,i, P2)− P UB

e,xi
(P1,i+1, P2) > 0

⇐⇒ P UB

e,xi
(P1,i, P2)− P UB

e,xi
(P1,i+1, P2) > 0,

since Pe(P1,i, P2) = P UB
e,xi

(P1,i, P2) by its definition.

It is now sufficient to show P UB
e,xi

is decreasing in P1 over (P1,i, P1,i+1). The deriva-

tive of this expression is:

dP UB
e,xi

dP1

=
−e

−x2i
N0

σ
√
2π

(
α

(
ae

2α(P1+P2)xi
N0 + be

2(αP1−βP2)xi
N0

)
−β
(
ce

2(−βP1+αP2)xi
N0 + de

−2β(P1+P2)xi
N0

))
.

(3.20)

If b̄ = 0, this derivative is negative for any P1 (since this is equivalent to b = 0). If

b̄ ̸= 0, then we apply (3.12) from Proposition 3.5 and conclude that

P1 < P1,i+1 =
1

α

(
xi + L(P2)

)
⇐⇒ xi > αP1 − L(P2)
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=⇒ ae
2(α+β)P2xi

N0 + b > 0

=⇒ ae
2α(P1+P2)xi

N0 + be
2(αP1−βP2)xi

N0 > 0

=⇒
dP UB

e,xi

dP1

< 0.

The proof of Statement 2 is omitted as it follows the exact same steps as above,

replacing the roles of L(P2) with K(P1), b̄ with c̄, and applying (3.13) and (3.17)

instead of (3.12) and (3.16).

Thus the optimal power allocation and corresponding error performance can be

expressed as follows, where plm|i are as given in (3.2), x∗ is the root to (3.6) and a∗lm

are the constellation points corresponding to P ∗
1 and P ∗

2 .

P ∗Case II
1 =

√
Pmax
1 , P ∗Case II

2 =
√
Pmax
2 ,

P ∗Case II
e =

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q

(
a∗lm − x∗

σ

)
+ p0plm|0. (3.21)

The corresponding optimal decision region is D0 = (−∞, x∗].

3.3.4 Case III: ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

< p1 ≤ 0.5

First note that the condition of this case implies ϵ1 ̸= ϵ2. Also using the same

reasoning as in the proof of Proposition 3.2, we make the following observations

about the coefficients of w(x) in (3.6):

a > 0, b > 0, c < 0, d < 0.
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We define the following functions of P1, where ā, b̄, c̄ and d̄ are as defined in (3.7):

P̃2(P1) ≜
N0

2(α + β)2P1

ln
ād̄

b̄c̄
, (3.22)

Kα(P1) ≜
N0

2(α + β)P1

ln
ā

−c̄
− α− β

2
P1, (3.23)

Kβ(P1) ≜
N0

2(α + β)P1

ln
−d̄
b̄

+
α− β

2
P1. (3.24)

The condition for Case III combined with the other assumptions on the problem’s

parameters ensure that these functions are real valued for all P1 > 0. Also note that

expanding (3.22) at P1 =
√
Pmax
1 gives the expression in (3.3). We begin with the

following result which is used numerous times over the analysis of this case.

Proposition 3.9. For any P1, P2 > 0 the following two statements are true:

x ⋚ αP2 −Kα(P1) =⇒ ae
2(α+β)P1x

N0 + c ⋚ 0, (3.25)

x ⋚ −βP2 +Kβ(P1) =⇒ be
2(α+β)P1x

N0 + d ⋚ 0. (3.26)

Proof. These statements follow directly from rearranging these equations and using

the definitions of Kα and Kβ in (3.23) and (3.24), respectively. The steps are the

same as in the proof of Proposition 3.5.

This result is used for many of the remaining proofs in this section. For example,

(3.25) and (3.26) directly apply to give the following bounds on the roots of (3.6).

Proposition 3.10. In Case III, for any P1, P2 > 0, if x is a corresponding root
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of (3.6), then it must satisfy


x ∈

(
αP2 −Kα(P1),−βP2 +Kβ(P1)

)
, P2 < P̃2(P1)

x = αP2 −Kα(P1) = −βP2 +Kβ(P1), P2 = P̃2(P1)

x ∈
(
− βP2 +Kβ(P1), αP2 −Kα(P1)

)
, P2 > P̃2(P1)

(3.27)

Proof. First we note that these intervals are valid and have non-zero length since

−βP2 +Kβ(P1)−
(
αP2 −Kα(P1)

)
= Kα(P1) +Kβ(P1)− (α + β)P2

= (α + β)
(
P̃2(P1)− P2

)
,

so

P2 ≶ P̃2(P1) =⇒ αP2 −Kα(P1) ≶ −βP2 +Kβ(P1).

If x is outside these intervals, then we apply (3.25) and (3.26) from Proposition 3.9

to see that w(x) ̸= 0, so x could not be a root of (3.6).

For a fixed P1 > 0, the bounds described in Proposition 3.10 form two lines with

respect to P2, intersecting at P̃2(P1). These bounds are illustrated in Figure 3.2.

Another important property about these bounds is given in the following propo-

sition, which is similar to the results of Proposition 3.7.

Proposition 3.11. In Case III, for any P1 > 0, let P̄2 and P ′
2 be arbitrary real

numbers such that 0 < P̄2 < P ′
2 < P̃2(P1), where P̃2(P1) is as defined in (3.22). Then

the root of (3.6), x, satisfies the following two inequalities:

inf
P2∈[P̄2,P ′

2]
x− αP2 +Kα(P1) > 0, (3.28)

inf
P2∈[P̄2,P ′

2]
Kβ(P1)− βP2 − x > 0. (3.29)
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Figure 3.2: The roots of (3.6), x1, x2 and x3, as a function of P2 in Case III (p1 = 0.4,
ϵ1 = 0.01, ϵ2 = 0.05, N0 = 1, P1 = 1). The decision regions can be read as: for

P2 < P thr
2

△
≈ 1.6, D0 = (−∞, x3]. Otherwise, D0 = (−∞, x1] ∪ [x2, x3].

Proof. The details of this proof follow the same steps as Proposition 3.7.

The above results are referred to multiple times in the remaining proofs in this

section. For example, Propositions 3.9 and 3.10 are used to prove the following result

about the number of decision boundaries.

Proposition 3.12. In Case III, for any P1, P2 > 0, there will be one or three boundary

points between D0 and D1. Further, if P2 ∈ [0, P̃2(P1)] there is exactly one boundary

point between D0 and D1.

Proof. Let P1, P2 > 0. We have the following asymptotic behaviours of w(x) in (3.6):

lim
x→−∞

w(x) = d, lim
x→∞

w(x) =∞.
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Since d < 0, and w is continuous, we conclude that there must be an odd number of

crossing points. Combing this fact with [23, Corollary 3.2] yields that there are one

or three crossing points. Now let P2 ∈ [0, P̃2(P1)]. We assume w(x) = 0, and perform

the following derivative analysis:

dw

dx
=

2(α + β)

N0

(
(P1 + P2)ae

2(α+β)(P1+P2)x
N0 + P1be

2(α+β)P1x
N0 + P2ce

2(α+β)P2x
N0

)
=

2(α + β)

N0

(
(P1 + P2)w(x)− P2be

2(α+β)P1x
N0 − P1ce

2(α+β)P2x
N0 − (P1 + P2)d

)
=
−2(α + β)

N0

(
P2(be

2(α+β)P1x
N0 + d) + P1(ce

2(α+β)P2x
N0 + d)

)
> 0.

This last inequality is true since Propositions 3.9 and 3.10 imply

be
2(α+β)P1x

N0 + d ≤ 0.

Therefore w(x) is strictly increasing at any zero, and hence must only have one root,

and this root must be a boundary point between D0 and D1 as desired.

Using Proposition 3.12, we conclude that the error probability in Case III can

have two possible expressions based on the number of decision boundaries. If there is

a single decision boundary, x, then the error expression will have the same form as in

(3.8). If there are three decision boundaries, x1 < x2 < x3, then the error expression

has the following form:

Pe(P1, P2) =
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)

(
Q

(
alm − x1

σ

)

−Q

(
alm − x2

σ

)
+Q

(
alm − x3

σ

))
+ p0plm|0. (3.30)
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Now we define the following two functions of x, for any fixed P1 and P2:

g(x)≜(p1p11|1−p0p11|0)Q
(
αP1 + αP2 − x

σ

)
+(p1p01|1−p0p01|0)Q

(
−βP1 + αP2 − x

σ

)
,

h(x)≜(p1p10|1−p0p10|0)Q
(
αP1 − βP2 − x

σ

)
+(p1p00|1−p0p00|0)Q

(
−βP1 − βP2 − x

σ

)
.

These functions are significant because they decompose the error expression. For

example, if P1 and P2 are fixed with a unique corresponding root of (3.6), x, the error

probability can be written as

Pe(P1, P2) = g(x) + h(x) +
∑

(l,m)∈{0,1}2
p0plm|0.

Further, they have the following unique minimizers with analytic expressions corre-

sponding to the bounds given in Proposition 3.10.

Proposition 3.13. In Case III, for any P1, P2 > 0, g(x) is minimized at x = αP2 −

Kα(P1) and h(x) is minimized at x = −βP2 +Kβ(P1).

Proof. Let P1, P2 > 0. The following are expressions for the derivatives:

dg

dx
=

1

σ
√
2π

e
−x2

N0

(
ae

2α(P1+P2)x
N0 + ce

2(−βP1+αP2)x
N0

)
dh

dx
=

1

σ
√
2π

e
−x2

N0

(
be

2(αP1−βP2)x
N0 + de

−2β(P1+P2)x
N0

)
.

Next, we apply the results of Proposition 3.9 to show

x ≶ αP2 −Kα(P1) =⇒ 0 ≶ae
2(α+β)P1x

N0 + c

=⇒ 0 ≶ae
2α(P1+P2)x

N0 + ce
2(−βP1+αP2)x

N0
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=⇒ 0 ≶
dg

dx
,

and

x ≶ −βP2 +Kβ(P1) =⇒ 0 ≶be
2(α+β)P1x

N0 + d

=⇒ 0 ≶be
2(αP1−βP2)x

N0 + de
−2β(P1+P2)x

N0

=⇒ 0 ≶
dh

dx
.

The properties of the functions g and h make them useful in proving the following

theorem about global optimality with respect to P2.

Theorem 3.14. In Case III, Pe

(
P1, P̃2(P1)

)
< Pe(P1, P2), ∀P1 > 0, P2 ̸= P̃2(P1).

Proof. Fix P1 > 0. Let ãlm be the constellation points and x̃ be the root of (3.6)

corresponding to P1 and P̃2(P1). Let P2 ̸= P̃2(P1). Let alm be the constellation points

and X denote the set of roots of (3.6) corresponding to P1 and P2. First we analyze

the case where |X | = 1. Let X = {x}. In this case, the error expression, Pe(P1, P2),

will have the same form as given in (3.8). Also, since there is a unique root, x̃, at

P̃2(P1), Pe

(
P1, P̃2(P1)

)
takes the form of (3.8) as well. Therefore, we must show

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q

(
ãlm − x̃

σ

)
<

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q

(
alm − x

σ

)
⇐⇒ g

(
αP2 −Kα(P1)

)
+ h
(
− βP2 +Kβ(P1)

)
< g(x) + h(x).

This result follows immediately from Proposition 3.13, since x ̸= αP2 − Kα(P1)

and x ̸= −βP2 +Kβ(P1) for P2 ̸= P̃2(P1) from Proposition 3.10.
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For the case that |X | = 3, we represent this as X = {x1, x2, x3} such that x1 <

x2 < x3. Further we note that the decision regions are represented in terms of these

boundaries as D1 = (x1, x2) ∪ (x3,∞). This gives rise to the following expression for

the error probability, also noting that it can be expressed in terms of g and h:

Pe(P1, P2) =
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)

(
Q

(
alm − x1

σ

)

−Q

(
alm − x2

σ

)
+Q

(
alm − x3

σ

))
+ p0plm|0

= g(x1)− g(x2) + g(x3) + h(x1)− h(x2) + h(x3) +
∑

(l,m)∈{0,1}2
p0plm|0.

Hence we must show

g
(
αP2 −Kα(P1)

)
+ h
(
− βP2 +Kβ(P1)

)
<

g(x1)− g(x2) + g(x3) + h(x1)− h(x2) + h(x3). (3.31)

First note that by applying Proposition 3.13, we have

g
(
αP2 −Kα(P1)

)
+ h
(
− βP2 +Kβ(P1)

)
< g(x3) + h(x1). (3.32)

Now we will show

g(x1)− g(x2) + h(x3)− h(x2) ≥ 0. (3.33)

Since |X | = 3 it is implied that P2 > P̃2(P1) by taking the contra-positive of

Proposition 3.12. Then we can apply Proposition 3.10 which gives the bounds

x2 ∈
(
−βP2+Kβ(P1), αP2−Kα(P1)

)
. Finally, applying the same derivative analysis
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as in Proposition 3.13 shows that g(x) is decreasing on [x1, x2] and h(x) is increasing

on [x2, x3]. This implies (3.33). Combining (3.32) with (3.33) implies (3.31).

This gives an analytic expression for the global minimizer of the error probability

with respect to P2. The main intuition behind this result relies on splitting the error

function into two simpler parts, which are shown to be minimized along the same

linear bounds in Figure 3.2. Since the two lines intersect at P̃2(P1), this value (along

with its corresponding decision boundary) minimizes both parts of the error function,

hence the entire error function is also minimized.

Although we have found a global minimum with respect to P2, it is still necessary

to determine the optimal constellation when there is not enough power to use the

global minimum, i.e., if
√
Pmax
2 < P̃2(P1). The following theorem provides a sufficient

result for this situation.

Theorem 3.15. In Case III, if 0 < P1, 0 < P2 < P ′
2 < P̃2(P1), then Pe(P1, P2) >

Pe(P1, P
′
2).

Proof. Fix 0 < P1, 0 < P2 < P ′
2 < P̃2. Let x and x′ be the roots of (3.6) corresponding

to P2 and P ′
2, respectively. We define the following sequence {P2,i}∞i=0 recursively.

P2,0 = P2,

P2,i+1 = min

(
1

α

(
xi +Kα(P1)

)
,
1

β

(
Kβ(P1)− xi

))
,

where xi is the root of (3.6) corresponding to P2,i. Note that (3.27) implies P2,i ≤ P̃2

for any i ≥ 0, so there is always a unique xi. If P2,i < P ′
2, applying (3.28) and (3.29)
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means one of the following two statements must be true:

P2,i+1 − P2,i =
1

α

(
xi +Kα(P1)

)
− P2,i

≥ 1

α
inf

P̄2∈[P2,P ′
2]
x̄− αP̄2 +Kα(P1)︸ ︷︷ ︸

≜K′
α

(3.28)
> 0,

or

P2,i+1 − P2,i =
1

β

(
Kβ(P1)− x1

)
− P2,i

≥ 1

β
inf

P̄2∈[P2,P ′
2]
Kβ(P1)− βP̄2 − x̄︸ ︷︷ ︸

≜K′
β

(3.29)
> 0,

so

P2,i+1 − P2,i ≥ min(K ′
α, K

′
β) > 0.

where x̄ denotes the root of (3.6) for (P1, P̄2). This means that the sequence {P2,i}∞i=0

increases by at least this fixed constant if P2,i < P ′
2. Therefore, there exists i′ large

enough such that P2,i′ ≥ P ′
2. Hence, it is sufficient to show that for all i

Pe(P1, P2,i)− Pe(P1, P2,i+1) > 0.

Using the upper bound in Proposition 3.4 (which is valid for exactly the same reasons

as before), it is sufficient to show

Pe(P1, P2,i)− P UB

e,xi
(P1, P2,i+1) > 0

⇐⇒ P UB

e,xi
(P1, P2,i)− P UB

e,xi
(P1, P2,i+1) > 0,

since Pe(P1, P2,i) = P UB
e,xi

(P1, P2,i) by definition in (3.9). It is now sufficient to show
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P UB
e,xi

is decreasing in P2 over (P2,i, P2,i+1). We have

dP UB
e,xi

dP2

=
−e

−x2i
N0

σ
√
2π

(
α

(
ae

2α(P1+P2)xi
N0 +ce

2(−βP1+αP2)xi
N0

)
−β
(
be

2(αP1−βP2)xi
N0 +de

−2β(P1+P2)xi
N0

))
,

where applying Proposition 3.9 gives

P2 < P2,i+1 ≤
1

α

(
xi +Kα(P1)

)
=⇒ xi > αP2 −Kα(P1)

=⇒ 0 < ae
2(α+β)P1xi

N0 + c

=⇒ 0 < ae
2α(P1+P2)xi

N0 + ce
2(−βP1+αP2)xi

N0 ,

and

P2 < P2,i+1 ≤
1

β

(
Kβ(P1)− xi

)
=⇒ xi < −βP2 +Kβ(P1)

=⇒ 0 > be
2(α+β)P1xi

N0 + d

=⇒ 0 > be
2(αP1−βP2)xi

N0 + de
−2β(P1+P2)xi

N0 ,

so

=⇒
dP UB

e,xi

dP2

< 0.

Combining Theorems 3.14 and 3.15 we can conclude that in Case III, the optimal
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power allocation for P2 given P1 > 0 is

P ∗
2 (P1) = min

(√
Pmax
2 , P̃2(P1)

)
Now that we have the optimal P2 allocation for a fixed P1 we characterize the opti-

mization with respect to P1 using the following theorem.

Theorem 3.16. In Case III, Pe

(
P1, P

∗
2 (P1)

)
is decreasing in P1, for all P1 > 0.

Proof. Let P1 > 0. We can express the optimal power allocation for P2 as the following

function of P1:

P ∗
2 (P1) =


√
Pmax
2 P1 < P thresh

1

P̃2(P1) P1 ≥ P thresh
1

where

P thresh
1 ≜

N0

2(α + β)2
√

Pmax
2

ln
ād̄

b̄c̄
.

We analyze this in two cases. First, assume P1 < P thresh
1 . Since P ∗

2 (P1) =√
Pmax
2 < P̃2(P1), Proposition 3.12 implies that there is a unique root, x, to (3.6)

corresponding to P1 and P2. Hence, by the same reasoning as in Theorem 3.8 it is

sufficient to show P UB
e,x is decreasing in P1. Unlike the previous proof, we can see

immediately from the expression given in (3.20) that this derivative is negative for

all P1 because b̄ > 0 in Case III. Next, for P1 ≥ P thresh
1 we have

P ∗
2 (P1) =

N0

2(α + β)2P1

ln
ād̄

b̄c̄
.

Let x∗ be the root to (3.6) for P1 and P ∗
2 (P1). (3.27) implies x∗ = αP ∗

2 (P1)−Kα(P1) =

−βP ∗
2 (P1)+Kβ(P1). Substituting these relationships into the expression for the error
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probability given in (3.8) yields

Pe

(
P1, P

∗
2 (P1)

)
= āQ

(
1

σ

(
αP1 + Pa −

α− β

2
P1

))

+ c̄Q

(
1

σ

(
− βP1 + Pa −

α− β

2
P1

))

+ b̄Q

(
1

σ

(
αP1 − Pb −

α− β

2
P1

))

+ d̄Q

(
1

σ

(
− βP1 − Pb −

α− β

2
P1

))

+
∑

(l,m)∈{0,1}2
p0plm|0,

where we define

Pa ≜
N0

2(α + β)P1

ln
ā

−c̄
, Pb ≜

N0

2(α + β)P1

ln
−d̄
b̄
,

noting that

dPa

dP1

= −Pa

P1

,
dPb

dP1

= −Pb

P1

.

Then derivative analysis on the error probability yields

dPe

dP1

= − 1

σ
√
2π

((
α + β

2
− Pa

P1

)
āe

−(
α+β
2 P1+Pa)2

N0 +

(
− α + β

2
− Pa

P1

)
c̄e

−(−α+β
2 P1+Pa)2

N0

+

(
α + β

2
+

Pb

P1

)
b̄e

−(
α+β
2 P1−Pb)

2

N0 +

(
− α + β

2
+

Pb

P1

)
d̄e

−(
α+β
2 P1+Pb)

2

N0

)

= −e
−(

α+β
2 P1)

2

N0

σ
√
2π

(
e

−P2
a

N0

((α + β

2
− Pa

P1

)
āe

−(α+β)P1Pa
N0 +

(
− α + β

2
− Pa

P1

)
c̄e

(α+β)P1Pa
N0

)

+ e
−P2

b
N0

((α + β

2
+

Pb

P1

)
b̄e

(α+β)P1Pb
N0 +

(
− α + β

2
+

Pb

P1

)
d̄e

−(α+β)P1Pb
N0

))
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= −e
−(

α+β
2 P1)

2

N0

σ
√
2π

(
e

−P2
a

N0

((α + β

2
− Pa

P1

)√
−āc̄−

(
− α + β

2
− Pa

P1

)√
−āc̄

)
+ e

−P2
b

N0

((α + β

2
+

Pb

P1

)√
−b̄d̄−

(
− α + β

2
+

Pb

P1

)√
−b̄d̄

))

= −α + β

σ
√
2π

e
−(

α+β
2 P1)

2

N0

(
e

−P2
a

N0

√
−āc̄+ e

−P2
b

N0

√
−b̄d̄

)
< 0.

The implication of this result is that the less noisy sensor should use all available

power. Further, we note P̃2(P1) is decreasing in P1. This results in the generally

intuitive behaviour to allocate more power to the more reliable sensor, and less to the

worse sensor.

Combining the results of Theorems 3.14, 3.15 and 3.16 implies that the optimal

power allocation and corresponding error performance can be expressed as follows,

where x∗ is the root of (3.6), and a∗lm are the corresponding constellation points to

P ∗
1 and P ∗

2 :

P ∗Case III
1 =

√
Pmax
1 ,

P ∗Case III
2 = min

(√
Pmax
2 , P̃2(

√
Pmax
1 )

)
,

P ∗Case III
e =

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q

(
a∗lm − x∗

σ

)
+ p0plm|0. (3.34)

The corresponding decision region is D0 = (−∞, x∗]. If P ∗
2 = P̃2(

√
Pmax
1 ) = P̃2 as

in (3.3), then the decision boundary has the explicit form x∗ = αP̃2 −Kα(
√

Pmax
1 ).



3.3. PROOF OF MAIN RESULTS 41

3.3.5 High SNR Behaviour

For this analysis it is defined that high SNR means N0 → 0. This is a reasonable

assumption since each sensor’s SNR should be growing at similar rates, and one sensor

should not have infinitely more power than the other. In Case I, there is nothing to

consider, since the error probability is constant. In Cases II and III, the high SNR

behaviour can be analyzed by considering a system that knows which point in the

constellation C was sent. Note this is equivalent to knowing X1 and X2 perfectly,

except if two constellation points are identical, i.e., alm = al′m′ for some l ̸= l
′
or

m ̸= m
′
. Also note that the high SNR behaviour of only sending Sensor i is always

ϵi, i ∈ {1, 2}. In the case that both sensor values are used, the following is the MAP

detection rule for knowing X1 = x1 and X2 = x2:

x̂(x1, x2) = argmax
i∈{0,1}

Pr(X = i | X1 = x1, X2 = x2)

= argmax
i∈{0,1}

pipx1x2|i.

The decision rules can be expressed in terms of the constants defined in (3.6) as

ā > 0 ⇐⇒ x̂(1, 1) = 1, b̄ > 0 ⇐⇒ x̂(1, 0) = 1,

c̄ > 0 ⇐⇒ x̂(0, 1) = 1, d̄ > 0 ⇐⇒ x̂(0, 0) = 1.

Case II

Based on the values of ā, b̄, c̄, d̄ in this case, we have the following detection rule:

x̂(1, 1) = 1, x̂(1, 0) = 0,
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x̂(0, 1) = 0, x̂(0, 0) = 0.

Since x̂(1, 0) = x̂(0, 1), it does not matter if these two constellation points are identical

(and these are the only two constellation points which can possibly be identical).

Finally, the high SNR behaviour is calculated to be

lim
N0→0

P ∗
e (P

∗
1 , P

∗
2 ) = p1(p00|1 + p01|1 + p10|1) + p0p11|0

= ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2). (3.35)

Case III

In this case, there are two interesting cases to consider. First, for the optimal allo-

cation P2 = P ∗
2 , we have that P ∗

2 → 0 for high SNR; so the error performance in

this case approaches the performance of only sending Sensor 1, which is ϵ1. In the

alternative case that both sensors use all their power, the detection rule is as follows:

x̂(1, 1) = 1, x̂(1, 0) = 1,

x̂(0, 1) = 0, x̂(0, 0) = 0.

If no constellation points are identical, X̂ = X1, which implies

lim
N0→0

Pe(
√

Pmax
1 ,

√
Pmax
2 ) = ϵ1, Pmax

1 ̸= Pmax
2 .

However, if Pmax
1 = Pmax

2 = Pmax for some Pmax > 0, then a01 = a10. Let P s
e ,

s ∈ {0, 1} be the error probability if we decide to detect s for 10/01. Since p1 ≤ p0
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and

P 0
e = ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2)

P 1
e = ϵ1ϵ2 + p0(ϵ1 + ϵ2 − 2ϵ1ϵ2)

=⇒ P 0
e ≤ P 1

e ,

we conclude to decide 0, and the final expression for the high SNR behaviour is

lim
N0→0

Pe

(√
Pmax,

√
Pmax

)
= ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2).

These results are demonstrated in Figure 3.10, where the curve for using both sensors

at their max power has a larger end behaviour than the derived optimal constellation

design. Note that in Case II, P 0
e < ϵ1, but in Case III, ϵ1 < P 0

e < ϵ2.

3.4 Numerical and Simulation Results

In this section, we illustrate the results of this chapter numerically for specific pa-

rameter sets of the problem setup. We show that the theoretical results proven in the

previous section are also supported by simulated experiments. In what follows, the

SNR is defined as the geometric average of the available power allocations, reported

in dB
(
i.e., SNR (dB) = 10 log10(SNR)

)
:

SNRmax ≜

√
Pmax
1 Pmax

2

N0

. (3.36)

Even though Sensor 2 does not necessarily use all of its allocated power, defining the

SNR this way is sensible because the sensors have independent power constraints. If
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the sensors had a joint power constraint, it would be more appropriate to use the true

SNR.

3.4.1 Simulated Validation of Main Results

The experimental data is produced by sending 500,000 independent source bits via

two simulated sensors and MAC, then using the MAP detection rule given in (3.1),

the error probability is calculated. We will show in two ways that the simulations

overlap with the theoretical results. First we show that the minimization problem is

solved at the correct value of P2 in Case III. Then we show that the error probability

when using the derived optimal constellation design overlaps with the simulation

results at any SNR in Case II. We always use the optimal asymmetric constellation

designs for these simulations, Ci = {c0,i, c1,i} = {−βPi, αPi} for i ∈ {1, 2}. To

calculate the theoretical error probability, the decision boundaries are calculated by

numerically solving for the roots of (3.6). Then, these values are used to calculate

the appropriate error expression, (3.8) or (3.30), based on the number of roots.

The error probability as a function of P2 and SNR are shown in Figures 3.3 and 3.4,

respectively. These plots show that the simulated and theoretical error performance

overlap very well, while also noting that the simulated minimum power allocation for

P2 coincides with the theoretical results.

3.4.2 Simulated Comparison to Orthogonal Signaling

In this section, we compare the error probability of the MAC signaling system derived

in this paper to an alternative signaling method of using independent (orthogonal)

channels for the sensors. To set up the orthogonal signaling, it is assumed that the
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Figure 3.3: Theoretical and simulated error probability in Case III (p1 = 0.45, ϵ1 =
0.01, ϵ2 = 0.05, P1 = 1, N0 = 1).

sensor network would have access to two independent zero-mean Gaussian commu-

nication channels with variance N0

2
. Note that we define the SNR in the orthogonal

case to be the same as in (3.36). Even though there is more total noise when con-

sidering both orthogonal channels, this is a realistic comparison. If a system has

access to two orthogonal channels with the same noise power, it can choose to only

use one of the channels, which is exactly the equivalent MAC we are comparing to.

We use two variations of orthogonal constellations as baseline comparisons. First, we

use a simple symmetric binary phase-shift keying (BPSK) constellation design (i.e.,

Ci = {c0,i, c1,i} = {−
√

Pmax
i ,

√
Pmax
i } for i ∈ {1, 2}). We also use the results of [11]

which give an optimal orthogonal constellation design to be asymmetric BPSK with

Ci = {c0,i, c1,i} = {−β
√

Pmax
i , α

√
Pmax
i } for i ∈ {1, 2}, with α and β as defined

in (3.5). To detect the source, the receiver uses the MAP detection rule which is

the two dimensional extension of (3.1). Since we have not analyzed the orthogonal
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channels case theoretically, we rely on simulation results to draw conclusions. In

Figures 3.4 and 3.5, the error probabilities are compared under two parameter sets,

to show Cases II and III, respectively. Each data point is generated from 500,000

independent simulated source bits being sent through the channel. Figure 3.5, also

includes the error probabilities associated with using the maximum power symmetric

constellation design over the MAC.

Figure 3.4: Error probability as a function of SNR in Case II (p1 = 0.3, ϵ1 = 0.1, ϵ2 =
0.15, Pmax

1 = 1, Pmax
2 = 1).

From these graphs we can see that in both Cases II and III, the derived optimal

MAC constellation has better error performance than orthogonal signaling. However,

in Case III (Figure 3.5), orthogonal signaling can perform better than the sub-optimal

multiple access symmetric constellation design. These results demonstrate that using

a MAC optimally can have increased performance, while using less power and band-

width. In Figure 3.4, the maximum SNR gain of the derived optimal constellation
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Figure 3.5: Error probability as a function of SNR in Case III (p1 = 0.4, ϵ1 = 0.01, ϵ2 =
0.05, Pmax

1 = 1, Pmax
2 = 2).

compared to the next best option is about 2.4 dB. In Figure 3.5, the maximum SNR

gain is approximately 0.97 dB, occurring around 0.036 error probability.

3.4.3 Analysis of Cases Based on Parameters p1, ϵ1 and ϵ2

We analyze the behaviour of Cases I-III as a function of the parameters ϵ1, ϵ2 and

p1. By fixing p1, we illustrate the case type regions as a colour map of ϵ1 and ϵ2.

Examples of these graphs are shown in Figure 3.6.

We make the following observations from these diagrams. Case I occurs at large ϵ1

and ϵ2 values, while Case III is characterized by small ϵ1 and large ϵ2. The boundaries

between these regions are given exactly by the threshold equations given in Table 3.1.

As p1 increases, the Case I region becomes smaller, while Case III becomes larger.

Finally, at p1 = 0.5, Case I disappears entirely, and Case II is equivalent to ϵ1 = ϵ2.
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(a) p1 = 0.05 (b) p1 = 0.2

(c) p1 = 0.4 (d) p1 = 0.5

Figure 3.6: Case type regions for different values of p1.

This can intuitively be explained by noting that for any p1 < 0.5, as ϵ1, ϵ2 → 0.5,

X1 and X2 become uniformly distributed and independent from the source X. This

effectively removes the source information, making it useless to send over the channel

(Case I). However, if p1 = 0.5, X1 and X2 are uniformly distributed for any ϵ1 and

ϵ2, so there is no statistical redundancy in the source (as it is unbiased) that can be

lost when observed by the sensors. Hence it is always beneficial to send the signals,

which explains why Case I disappears at p1 = 0.5.
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3.4.4 Error Performance vs. (P1, P2) and (ϵ1,ϵ2)

For the following examples, the constellations are parameterized by the optimal asym-

metric design, Ci = {c0,i, c1,i} = {−βPi, αPi}, i ∈ {1, 2}. Figures 3.7 and 3.8 show

the error probability as a function of P1 and P2 in Cases II and III, respectively.

Figure 3.7: Error probability as a function of P1 and P2 in Case II (p1 = 0.3, ϵ1 =
0.1, ϵ2 = 0.15, N0 = 1).

In Figure 3.7, increasing P1 and P2 always decreases the error probability, which

reinforces the dervied optimal power allocation to use all available power. Figure 3.8

illustrates the following properties of Case III. First, we can see that for any fixed

P1 (vertical slice of the graph), the minimum occurs at P2 = P̃2(P1), the red curve.

Further, moving upward from P2 = 0 to P2 = P̃2(P1), we also see that the error

probability decreases in P2. Finally, we can see that moving rightward along the op-

timal power allocation curve, P̃2(P1), the optimal error probability decreases with P1,
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Figure 3.8: Error probability as a function of P1 and P2 in Case III (p1 = 0.4, ϵ1 =
0.01, ϵ2 = 0.05, N0 = 1).

which reinforces exactly the same optimal power allocation as proven. For example,

if Pmax
1 = Pmax

2 = 1, then reading Figure 3.8 shows the optimal power allocations are

P ∗
1 = 1 and P ∗

2 = P̃2(1) ≈ 0.76.

Next, we show how the optimal error probability changes with respect to the

sensor noise parameters, ϵ1 and ϵ2. We fix the other parameters, p1, N0, P
max
1 and

Pmax
2 , then for each pair (ϵ1, ϵ2), choose the constellation power allocations P ∗

1 and

P ∗
2 . Figure 3.9 shows the error probability as function of ϵ1 and ϵ2.

When analyzing Figure 3.9, note that referencing Figure 3.6b, we can identify the

regions of the three cases separated by the same line boundaries. We observe that

in the Case I region (upper right corner) the error probability takes a constant value

of 0.2, which is also the largest error probability across all regions. In the remaining

regions (Cases II and III), it is intuitive that the error probability decreases for smaller
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Figure 3.9: Error probability as a function of ϵ1 and ϵ2 (p1 = 0.2, Pmax
1 = 1, Pmax

2 = 1,
N0 = 1). The region and boundary curves for each case are the same as in Figure 3.6b.

values of ϵ1 and ϵ2. A more insightful observation is that the error probability is more

sensitive to ϵ1 than ϵ2. Especially in the Case III region, we see that varying ϵ1 has a

much larger impact on the error probability than ϵ2. Thus, having one very reliable

sensor and one very poor sensor can perform better than two moderately accurate

sensors.

3.4.5 Error Probability vs. Signal to Noise Ratio

To demonstrate this system’s SNR response, we vary N0 to produce various SNR

values as defined in (3.36). We also compare the derived optimal constellation design

to other common power allocations. For the following example, the constellations are

parameterized by the optimal asymmetric design, Ci = {c0,i, c1,i} = {−βPi, αPi},

i ∈ {1, 2}. Figure 3.10 shows the error probability of various constellation designs in
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Case III as a function of N0, expressed in terms of the SNR.

Figure 3.10: Error probability as a function of SNR in Case III (p1 = 0.4, ϵ1 =
0.01, ϵ2 = 0.05, Pmax

1 = 1, Pmax
2 = 1).

We make the following observations from this plot. First, at low SNR, the optimal

and both max curves are identical. This is because for large enough values of N0,√
Pmax
2 < P̃2 as defined in (3.3), so P ∗

2 (
√

Pmax
1 ) =

√
Pmax
2 . Next, at high SNR, the

optimal and P1 max curves become asymptotically equal. This is because as N0 → 0,

P ∗
2 (
√
Pmax
1 ) → 0. At intermediate SNR (around 0-7 dB in this case), the optimal

power allocation performs better than any of the alternatives. The largest SNR gain

of using the derived optimal constellation is about 2.7 dB, occurring around 0.026

error probability.
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Chapter 4

Multi User Gaussian MAC Sensor Networks

In this chapter, we investigate a generalized version of the problem setup in Chapter 3,

where the number of sensors is an arbitrary N ≥ 2. We first note that for N > 2, there

is no guarantee that analytical solutions to the problem will exist. The focus of this

chapter is on describing the existence of an optimization solution to an individual

sensor optimization and how to numerically calculate it. Further, this individual

minimization can be applied iteratively to form an algorithm for minimizing all N

sensors.

4.1 Problem Setup

This chapter uses the most generalized setup described in Section 2.1 with signal space

S = R. A block diagram showing the system model is given in Figure 4.1. We are

interested in finding the optimal constellation design for each sensor, Ci, i ∈ {1, ..., N}

which minimizes the error probability. Theorem 3.1 trivially generalizes to the N

sensor case, hence we can again restrict the optimization search to constellations of

the form Ci = {−βPi, αPi}, i ∈ {1, ..., N}, with α and β as defined in (3.5). Thus, the
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Figure 4.1: Block diagram showing the N ≥ 2 sensor MAC system.

problem has also become a power allocation optimization for each Pi ≤
√

Pmax
i .1 In

conjunction with the sensor readings, B, as defined in Section 2.1, for i ∈ {1, ..., N},

s ∈ {0, 1} we define Bi
s ≜ {b ∈ B | bi = s}, i.e., all possible combinations where

Sensor i reads the value s.

We make the following simplifying assumption about the detection rule in the N

sensor case. Instead of using MAP detection at the fusion center, we assume that

there will be at most one decision boundary between D0 and D1, i.e., each these

regions must be a single interval on the real line. This assumption ensures that the

final solution is feasible to implement, as the number of possible decision boundaries

grows with the number of sensors. Additionally, it will be shown numerically that

the constellations optimized using this assumption will still perform comparably to

using MAP detection, while generally using less power.

1Even though in this chapter, each Pi, i ∈ {1, ..., N}, corresponds to the square root of the power
E[∥Si∥2] with upper bound constraint Pmax

i as specified in Chapter 2, we will still refer to it as
“power” for the sake of simplicity.
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With these assumptions, the error probability for any power allocation P1, ..., PN

will have the following expression:

Pe(P1, ..., PN) =
∑
b∈B

kbQ

(
ab − x

σ

)
+ p0pb|0, (4.1)

where x ∈ R is a function of P1, ..., PN such that this function is minimized (not

necessarily uniquely), for each b ∈ B, kb ≜ p1pb|1 − p0pb|0, where pb|s, s = 0, 1 are

the conditional probabilities and ab ∈ C represents the constellation points associated

to sensor readings b and as defined in Section 2.1. Although there does not neces-

sarily exist x ∈ R which minimizes (4.1), we give the following proposition to fully

characterize this minimization.

Proposition 4.1. For P1, ..., PN > 0 there exists x ∈ R which minimizes (4.1) if and

only if p1 >
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

.

Proof. Assume p1 >
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

. First, note that this is equivalent to k1...1 > 0.

Also note that k0...0 = p1
∏N

i=1 ϵi − p0
∏N

i=1 (1− ϵi) < 0. The derivative of (4.1) with

respect to x is analyzed to be

d

dx
Pe(P1, ..., PN) =

1

σ
√
2π

∑
b∈B

kbe
−

(ab−x)2

N0 .

We arrive at the following expressions for the end behaviours of this derivative.

lim
x→−∞

d

dx
Pe(P1, ..., PN) = lim

x→−∞

k0...0

σ
√
2π

e
− (a0...0−x)2

N0 ,

lim
x→∞

d

dx
Pe(P1, ..., PN) = lim

x→∞

k1...1

σ
√
2π

e
− (a0...0−x)2

N0 .

By the above analysis of the signs of k0...0 and k1...1, we conclude
d
dx
Pe(P1, ..., PN) ↑ 0
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as x → −∞ and d
dx
Pe(P1, ..., PN) ↓ 0 as x → ∞. Since Pe is a smooth function

of x, this immediately implies there must be some minimizer x ∈ R. Conversely, if

p1 ≤
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

, then k1...1 ≤ 0. Further, for any b = b1...bN ∈ B,

kb = p1
∏
i|bi=0

ϵi
∏
i|bi=1

(1− ϵi)− p0
∏
i|bi=1

ϵi
∏
i|bi=0

(1− ϵi)

≤ p1

N∏
i=1

(1− ϵi)− p0

N∏
i=1

ϵi = k1...1 ≤ 0.

Combining this result with k0...0 < 0 gives d
dx
Pe(P1, ..., PN) < 0 for any x ∈ R, and

thus Pe could not admit a minimizer. Note that this corresponds to the optimal

decision rule being always detecting a 0.

Note that if there does not exist a minimizer of (4.1), this means that the optimal

detection rule will be to trivially always detect a 0. This is analogous to Case I in

Chapter 3, where the error probability is p1 regardless of what any sensor sends, so

they should not send anything at all.

4.2 Isolated Optimization of a Single Sensor

In this section, we assume every sensor except one has already fixed their power

allocation, and analyze the optimization of the remaining sensor. First, we assume

p1 >
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

, so that the optimization is not trivial and the error expression

will always have the form as given in (4.1). For any fixed P1, ..., PN , and i ∈ {1, ..., N}

we define the following functions of x:

gP1,...,PN
0,i (x) =

∑
b∈Bi

0

kbQ
(ab − x

σ

)
, (4.2)
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gP1,...,PN
1,i (x) =

∑
b∈Bi

1

kbQ
(ab − x

σ

)
. (4.3)

Note that these functions change based on the power allocations P1, ..., PN since the

constellation points depend on the powers. These functions decompose the error

probability given in (4.1) and have many useful properties which make them feasible

to analyze. For example, if x is a corresponding minimizer of (4.1) for P1, ..., PN , then

for each i we have

Pe(P1, ..., PN) = gP1,...,PN
0,i (x) + gP1,...,PN

1,i (x) +
∑
b∈B

p0pb|0, (4.4)

which follows directly from their definitions. The derivatives of these functions with

respect to x are

d

dx
gP1,...,PN
0,i (x) =

1

σ
√
2π

∑
b∈Bi

0

kbe
−

(ab−x)2

N0 , (4.5)

and

d

dx
gP1,...,PN
1,i (x) =

1

σ
√
2π

∑
b∈Bi

1

kbe
−

(ab−x)2

N0 . (4.6)

The most used property about these functions is given in the following proposition.

Proposition 4.2. For P1, ..., PN > 0, for any i = 1, ..., N , g0,i and g1,i have the

following scaled translation invariance properties:

gP1,...,PN
0,i

(
x− β(Pi − P ′

i )
)
= g

P1,...,P ′
i ,...,PN

0,i (x), ∀x ∈ R, P ′
i > 0,

gP1,...,PN
1,i (x+ α

(
Pi − P ′

i )
)
= g

P1,...,P ′
i ,...,PN

1,i (x), ∀x ∈ R, P ′
i > 0.

Proof. Let P1, ..., PN > 0, i ∈ {1, ..., N}. These properties follow directly from the
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fact that for every b ∈ Bi
0, the contribution of Pi to ab is −βPi, and for every b ∈ Bi

1,

the contribution of Pi to ab is αPi. Combining this with the definitions given in (4.2)

and (4.3) immediately implies the desired result.

These properties are a fundamental part of the analysis when proving the pro-

ceeding results. For example, it is used to show the following optimization result,

which is analogous to Case II from Chapter 3.

Theorem 4.3. For P1, ..., Pi−1, Pi+1, ..., PN > 0 fixed, if

ϵi ≤
p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
< 1− ϵi, (4.7)

then the error function given in (4.1) is decreasing in Pi.

Proof. First note that the second inequality in (4.7) is equivalent to the inequal-

ity condition in Proposition 4.1, to guarantee that the detection rule is not-trivial.

Next, we will show (4.7) implies that gP1,...,PN
0,i is decreasing in x for any Pi. For any

b1...0...bN ∈ Bi
0

kb1...0...bN = p1ϵi

( ∏
s|bs=0

ϵs
∏

s|bs=1

(1− ϵs)

)
− p0(1− ϵi)

( ∏
s|bs=1

ϵs
∏

s|bs=0

(1− ϵs)

)
≤ p1ϵi

∏
s ̸=i

(1− ϵs)− p0(1− ϵi)
∏
s ̸=i

ϵs

= ϵi

(
p0
∏
s ̸=i

ϵs + p1
∏
s̸=i

(1− ϵs)

)
− p0

∏
s ̸=i

ϵs ≤ 0,

where the last inequality is equivalent to a simple rearrangement of (4.7). Combining

this result with k0...0 < 0 and the expression given in (4.5) shows d
dx
gP1,...,PN
0,i (x) < 0

for any Pi and x. Now let 0 ≤ Pi < P ′
i , with x and x′ being the respective minimizers
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for the error expression as given in (4.1). Using Proposition 4.2, we have

g
P1,...,P ′

i ,...PN

1,i

(
x+ α(P ′

i − Pi)
)
= gP1,...,Pi,...,PN

1,i (x).

Since gP1,...,PN
0,i is decreasing in x, we also have

g
P1,...,P ′

i ,...PN

0,i

(
x+ α(P ′

i − Pi)
)
= gP1,...,Pi,...,PN

0,i

(
x+ (α + β)(P ′

i − Pi)
)

< gP1,...,Pi,...,PN
0,i (x).

Since x′ must minimize the error function as expressed in (4.4), we conclude that

g
P1,...,P ′

i ,...,PN

0,i (x′) + g
P1,...,P ′

i ,...,PN

1,i (x′)

≤ g
P1,...,P ′

i ,...,PN

0,i

(
x+ α(P ′

i − Pi)
)
+ g

P1,...,P ′
i ,...,PN

1,i

(
x+ α(P ′

i − Pi)
)

< gP1,...,Pi,...,PN
0,i (x) + gP1,...,Pi,...,PN

1,i (x)

=⇒ Pe(P1, ..., P
′
i , ..., PN) < Pe(P1, ..., Pi, ..., PN).

Now we characterize the optimization in the remaining case using Proposition 4.4,

followed by the main results of Theorems 4.5 and 4.6. Note that this case is analogous

to Case III from Chapter 3.

Proposition 4.4. For P1, ..., Pi−1, Pi+1, ..., PN > 0, if

ϵi >
p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
, (4.8)

then there exist values x∗
0 and x∗

1 with x∗
0 ≥ x∗

1 which minimize gP1,...,PN
0,i and gP1,...,PN

1,i
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for Pi = 0, respectively. Further, for Pi > 0, gP1,...,PN
0,i is minimized at x = x∗

0 − βPi

and gP1,...,PN
1,i is minimized at x = x∗

1 + αPi.

Proof. Let P1, ..., Pi−1, Pi+1, ..., PN > 0, and Pi = 0. We analyze the end behaviours

of the derivative expressions of (4.5) and (4.6). There are four limits of interest,

corresponding to the left and right end behaviours of the two derivatives. We have

lim
x→−∞

d

dx
gP1,...,PN
0,i (x) = lim

x→−∞

1

σ
√
2π

∑
b∈Bi

0

kbe
−

(ab−x)2

N0

= lim
x→−∞

1

σ
√
2π

e
− (a0...0−x)2

N0

∑
b∈Bi

0

kbe
(a0...0−x)2−(ab−x)2

N0

= lim
x→−∞

1

σ
√
2π

e
− (a0...0−x)2

N0

∑
b∈Bi

0

kbe
(a0...0−ab)(a0...0+ab−2x)

N0 ,

noting that a0...0 < ab for any b ∈ Bi
0, b ̸= 0...0, so this limit simplifies to

lim
x→−∞

d

dx
gP1,...,PN
0,i (x) = lim

x→−∞

k0...0

σ
√
2π

e
− (a0...0−x)2

N0 .

This implies that if k0...0 < 0, then d
dx
gP1,...,PN
0,i ↑ 0 as x→ −∞. Using the exact same

reasoning, combined with the facts that a11...0...11 > ab for all b ∈ Bi
0, b ̸= 11...0...11,

a00...1...00 < ab for all b ∈ Bi
1, b ̸= 00...1...00 and a1...1 > ab for all b ∈ Bi

1, b ̸= 1...1, we

arrive at the following conclusions about the end behaviours:

d

dx
gP1,...,PN
0,i ↑ 0 as x→ −∞ if k0...0 < 0,

d

dx
gP1,...,PN
0,i ↓ 0 as x→∞ if k11...0...11 > 0,

d

dx
gP1,...,PN
1,i ↑ 0 as x→ −∞ if k00...1...00 < 0,

d

dx
gP1,...,PN
1,i ↓ 0 as x→∞ if k1...1 > 0.
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Since these are both smooth functions, if the left end behaviour has a negative deriva-

tive, and the right behaviour has a positive derivative, then they each must admit

a respective minimizer. These inequality conditions can be expressed as follows in

terms of the parameters p0, p1 and ϵs, s ∈ 1, ..., N :

k0...0 < 0 ⇐⇒ p1

N∏
s=1

ϵs − p0

N∏
s=1

(1− ϵs) < 0

⇐⇒ (1− ϵi)

(
− p1

∏
s ̸=i

ϵs − p0
∏
s ̸=i

(1− ϵs)

)
< −p1

∏
s ̸=i

ϵs

⇐⇒ 1− ϵi >
p1
∏

s ̸=i ϵs

p1
∏

s ̸=i ϵs + p0
∏

s ̸=i(1− ϵs)
≜ K1

By the same reasoning, we obtain

k00...1...00 < 0 ⇐⇒ ϵi >
p1
∏

s ̸=i ϵs

p1
∏

s̸=i ϵs + p0
∏

s ̸=i(1− ϵs)

k11...0...11 > 0 ⇐⇒ ϵi
(4.8)
>

p0
∏

s̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
≜ K0

k1...1 > 0 ⇐⇒ 1− ϵi >
p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)

By the assumption 0 < ϵi < 0.5, we have 1 − ϵi > ϵi. Additionally, the assumption

p0 ≥ p1 givesK0 ≥ K1. Thus, if (4.8) holds, then k0...0 < 0, k11...0...11 > 0, k00...1...00 < 0

and k1...1 > 0, implying that gP1,...,PN
0,i and gP1,...,PN

1,i admit minimizers x∗
0 and x∗

1, respec-

tively. To show x∗
0 ≥ x∗

1, we first show that for Pi = 0, d
dx
gP1,...,PN
1,i (x) > d

dx
gP1,...,PN
0,i (x)

for all x ∈ R. First we note that any b ∈ Bi
0 has the form b = b1...0...bN and bijectively

maps into Bi
1 as b1...1...bN . Further for Pi = 0, it is clear that ab1...0...bN = ab1...1...bN .
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Thus, it is sufficient to show kb1...1...bN > kb1...0...bN for any b1, ..., bN ∈ {0, 1}. We have

kb1...1...bN − kb1...0...bN = p1pb1...1...bN |1 − p0pb1...1...bN |0 − (p1pb1...0...bN |1 − p0pb1...0...bN |0)

= (1− ϵi)p1pb1...bi−1bi+1...bN |1 − ϵip0pb1...bi−1bi+1...bN |0

− ϵip1pb1...bi−1bi+1...bN |1 + (1− ϵi)p0pb1...bi−1bi+1...bN |0

= (1− 2ϵi)(p1pb1...bi−1bi+1...bN |1 + p0pb1...bi−1bi+1...bN |0) > 0.

Now let x∗
1 be a minimizer for gP1,...,PN

1,i . For any x < x∗
1 we must have gP1,...,PN

0,i (x) >

gP1,...,PN
0,i (x∗

1), otherwise

gP1,...,PN
0,i (x) ≤ gP1,...,PN

0,i (x∗
1) and gP1,...,PN

1,i (x) ≥ gP1,...,PN
1,i (x∗

1)

=⇒ gP1,...,PN
1,i (x∗

1)− gP1,...,PN
0,i (x∗

1) ≤ gP1,...,PN
1,i (x)− gP1,...,PN

0,i (x),

but this contradicts d
dx
gP1,...,PN
1,i (x) > d

dx
gP1,...,PN
0,i (x). Thus any minimizer of gP1,...,PN

0,i

must satisfy x∗
0 ≥ x∗

1. Now, let Pi > 0. The desired result follows immediately from

applying Proposition 4.2 (with P ′
i = 0) since

gP1,...,PN
0,i (x− βPi) = g

P1,...,Pi−1,0,Pi+1,...,PN

0,i (x) ∀x ∈ R,

and

gP1,...,PN
1,i (x+ αPi) = g

P1,...,Pi−1,0,Pi+1,...,PN

1,i (x), ∀x ∈ R.

Although the condition in (4.8) may be restrictive for small N , we observe the
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following behaviour as N becomes large.

lim
N→∞

p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
= lim

N→∞

1

1 + p1
p0

∏
s ̸=i

1−ϵs
ϵs

≤ lim
N→∞

1

1 + p1
p0
(1−ϵN

ϵN
)N−1

= 0,

where the last equality holds, so long as the value of ϵN does not approach 0.5.

Thus, as the number of sensors grows, the condition of (4.8) becomes less restrictive.

Another limitation when trying to practically apply the results of Proposition 4.4 is

that the optimal values x∗
0 and x∗

1 generally do not have an analytical form. However,

since the functions are smooth, we know that the minimizers must be at critical points

of the respective functions. We denote the critical points of each function as

Xs =

{
x ∈ R

∣∣∣∣∣ d

dx
gP1,...,PN
s,i (x) =

1

σ
√
2π

∑
b∈Bi

s

kbe
−

(ab−x)2

N0 = 0

}
, s = 0, 1. (4.9)

Applying [23, Corollary 3.2], we get |Xs| < 2N−1, s = 0, 1. We also know that if (4.8)

holds, then there must be at least one point in each of these sets. Thus, to find x∗
s,

we can numerically calculate the values x ∈ Xs, and exhaustively find the minimizer

of the respective function, i.e. x∗
s = argminx∈Xs

gP1,...,PN
s,i . Although Proposition 4.4

only gives optimality with respect to x, it can easily be used to determine optimality

with respect to Pi, as demonstrated in the following theorem.

Theorem 4.5. For P1, ..., Pi−1, Pi+1, ..., PN > 0 fixed, if (4.8) holds, the error func-

tion given in (4.1) as a function of Pi is minimized at P ∗
i =

x∗
0−x∗

1

α+β
, with optimal

decision boundary x∗ =
αx∗

0+βx∗
1

α+β
, where x∗

0 and x∗
1 are minimizers of gP1,...,0...,PN

0,i and

gP1,...,0,...,PN
1,i , respectively. Further, if x∗

0 and x∗
1 are unique minimizers, then P ∗

i is also
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a unique minimizer.

Proof. Assume P1, ..., Pi−1, Pi+1, ..., PN > 0, and (4.8) holds. The pair (P ∗
i , x

∗) as

given in the statement of this theorem is the intersection of the two lines of optimality

for gP1,...,PN
0,i and gP1,...PN

1,i as given in Proposition 4.4. I.e., x∗ minimizes both functions:

g
P1,...,P ∗

i ,...,PN

0,i (x∗) ≤ g
P1,...,P ∗

i ,...,PN

0,i (x), g
P1,...,P ∗

i ,...,PN

1,i (x∗) ≤ g
P1,...,P ∗

i ,...,PN

1,i (x), ∀x ∈ R.

Further, Proposition 4.2 implies that the minimum values of the functions gP1,...,PN
0,i

and gP1,...PN
1,i remain the same for any Pi. Thus for any Pi ≥ 0 and associated decision

boundary, x ∈ R, minimizing (4.1), we obtain

g
P1,...,P ∗

i ,...,PN

0,i (x∗) ≤ gP1,...,Pi,...,PN
0,i (x) and g

P1,...,P ∗
i ,...,PN

1,i (x∗) ≤ gP1,...,Pi,...,PN
1,i (x).

Noting that if x∗
0 and x∗

1 are unique minimizers and Pi ̸= P ∗
i , at least one of these must

be strict inequalities. Since the expression for the error probability is decomposed as

a sum of these functions as given in (4.4), we conclude

Pe(P1, ..., P
∗
i , ..., PN) ≤ Pe(P1, ..., Pi, ..., PN),

where the inequality is strict if x∗
0 and x∗

1 are unique minimizers.

Although this result gives a minimizing power allocation, we must account for

the problem’s constraints, and give a characterization of optimality when there is not

enough power to use the results of Theorem 4.5, i.e., if P ∗
i >

√
Pmax
i . Unfortunately,

there is not a general characterization that can be found for this situation, since the

functions gP1,...,PN
0,i and gP1,...PN

1,i can be very complex and have numerous critical points.
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However, using a simplifying assumption, we can deduce the following result which

mirrors the fallback power allocation of Case III in Chapter 3.

Theorem 4.6. Let P1, ..., Pi−1, Pi+1, ..., PN > 0 fixed and (4.8) holds. If gP1,...,0,...,PN
0,i

and gP1,...,0,...,PN
1,i have unique critical points x∗

0 and x∗
1, respectively, then the error

function given in (4.1) is decreasing as function of Pi until reaching its (unique)

minimum value attained at P ∗
i , as given in Theorem 4.5.

Proof. Let P1, ..., Pi−1, Pi+1, ..., PN > 0. Assume (4.8) holds, and gP1,...,0,...,PN
0,i and

gP1,...,0,...,PN
1,i have unique critical points (thus also unique minimizers) x∗

0 and x∗
1, re-

spectively. The analysis of the end behaviours of the derivatives (4.5) and (4.6) in

the proof of Proposition 4.4 combined with Proposition 4.2, gives that for any Pi ≥ 0

x ⋚ x∗
0 − βPi =⇒ d

dx
gP1,...,PN
0,i (x) ⋚ 0,

x ⋚ x∗
1 + αPi =⇒ d

dx
gP1,...,PN
1,i (x) ⋚ 0.

Note that from the definition of P ∗
i , for any Pi < P ∗

i , x
∗
1 + αPi < x∗

0 − βPi. Further,

since Pe(P1, ..., PN) = gP1,...,PN
0,i (x) + gP1,...,PN

1,i (x) +
∑

b∈B p0pb|0, for any Pi < P ∗
i , the

corresponding minimizer of (4.1), x, must satisfy x ∈ (x∗
1 + αPi, x

∗
0 − βPi), otherwise

the derivative would be non zero. Now, let Pi < P ′
i < P ∗

i , with x and x′ the minimizers

of (4.1) for Pi and P ′
i , respectively. We must break the following into two case. First

we assume x+ (α + β)(P ′
i − Pi) ≤ x∗

0 − βPi. We apply Proposition 4.2 to obtain

g
P1,...,P ′

i ,...PN

1,i

(
x+ α(P ′

i − Pi)
)
= gP1,...,Pi,...,PN

1,i (x),
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and

g
P1,...,P ′

i ,...PN

0,i

(
x+ α(P ′

i − Pi)
)
= gP1,...,Pi,...,PN

0,i

(
x+ (α + β)(P ′

i − Pi)
)

< gP1,...,Pi,...,PN
0,i (x),

where the last inequality holds since gP1,...,PN
0,i is decreasing over (−∞, x∗

0− βPi) com-

bined with the above assumption. Next, since x′ must minimize (4.1) for P ′
i , which

has the form as given in (4.4), we conclude

g
P1,...,P ′

i ,...,PN

0,i (x′) + g
P1,...,P ′

i ,...,PN

1,i (x′)

≤ g
P1,...,P ′

i ,...,PN

0,i

(
x+ α(P ′

i − Pi)
)
+ g

P1,...,P ′
i ,...,PN

1,i

(
x+ α(P ′

i − Pi)
)

< gP1,...,Pi,...,PN
0,i (x) + gP1,...,Pi,...,PN

1,i (x)

=⇒ Pe(P1, ..., P
′
i , ..., PN) < Pe(P1, ..., Pi, ..., PN).

Alternatively, if we instead assume x + (α + β)(P ′
i − Pi) > x∗

0 − βPi, which notably,

is equivalent to x∗
0 − βP ′

1 < x+ α(P ′
1 − P1), we have

g
P1,...,P ′

i ,...PN

1,i (x∗
0 − βP ′

i ) < g
P1,...,P ′

i ,...,PN

1,i (x+ α(P ′
1 − P1))

= gP1,...,Pi,...,PN
1,i (x),

and

g
P1,...,P ′

i ,...PN

0,i (x∗
0 − βP ′

i ) = gP1,...,Pi,...,PN
0,i (x∗

0 − βPi)

< gP1,...,Pi,...,PN
0,i (x),
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where the equalities are direct applications of Proposition 4.2 and the inequalities

follow since g
P1,...,P ′

i ,...PN

1,i is increasing on (x∗
1 + αP ′

1,∞) combined with the relation

x∗
1 + αP ′

1 < x∗
0 − βP ′

i , and gP1,...,PN
0,i is decreasing over (−∞, x∗

0 − βPi). Using similar

reasoning the the previous case, we conclude

g
P1,...,P ′

i ,...,PN

0,i (x′) + g
P1,...,P ′

i ,...,PN

1,i (x′)

≤ g
P1,...,P ′

i ,...,PN

0,i (x∗
0 − βP ′

i ) + g
P1,...,P ′

i ,...,PN

1,i (x∗
0 − βP ′

i )

< gP1,...,Pi,...,PN
0,i (x) + gP1,...,Pi,...,PN

1,i (x)

=⇒ Pe(P1, ..., P
′
i , ..., PN) < Pe(P1, ..., Pi, ..., PN).

Although this does not fully characterize all situations where there is not enough

power to use the optimal allocation as given in Theorem 4.5, the assumption of

both functions of interest having a single critical point is realized in many parameter

combinations of the problem setup. As a result, a simple and practical way to handle

not having enough power is to use all available power. There is no clear way to

analyze the fallback allocation when there is not enough power and these functions

have multiple critical points. The best approach is an exhaustive search of all critical

point pairs, (x0, x1) ∈ X0 × X1, where these sets are as defined in (4.9). For each

pair, it must be verified whether the corresponding power allocation (Pi = x0−x1

α+β
,

with decision boundary x = αx0+βx1

α+β
) is valid (less than

√
Pmax
i ). Then the error

probability would be calculated for each valid pair, and the minimum over these

values and
√

Pmax
i would be chosen.
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4.3 Extension of N = 2

Although the results in this section were derived under the simplifying assumption

of a single decision boundary as opposed to MAP detection, we herein demonstrate

how they can be applied to the N = 2 sensor case, and produce the same results

as in Chapter 3 where MAP detection was used. First we note that the condition

p1 ≤
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

simplifies to p1 ≤ ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

, which is exactly the condition

for Case I. Next, we note that the condition ϵ1 ≤
p0

∏
s̸=1 ϵs

p0
∏

s ̸=1 ϵs+p1
∏

s ̸=1(1−ϵs)
simplifies to

ϵ1 ≤ p0ϵ2
p0ϵ2+p1(1−ϵ2)

, but p0ϵ2
p0ϵ2+p1(1−ϵ2)

≥ ϵ2, so this condition is always true (since ϵ1 ≤ ϵ2),

concluding that Sensor 1 should always use all of its power. Finally, the condition

ϵ2 ≤
p0

∏
s ̸=2 ϵs

p0
∏

s ̸=2 ϵs+p1
∏

s̸=2(1−ϵs)
simplifies to ϵ2 ≤ p0ϵ1

p0ϵ1+p1(1−ϵ1)
which can be rewritten as

p1 ≤ ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

, which is exactly the boundary between Cases II and III. In Case III,

we note that gP1,P2

0,2 = h and gP1,P2

1,2 = g. Thus the respective minimizers at P2 = 0, x∗
0

and x∗
1 are Kβ(P1) and Kα(P1), respectively. Applying Theorem 4.5 gives the optimal

power allocation for P2 is P̃2(P1). Finally, since the minimizers, x∗
0 and x∗

1 are unique,

Theorem 4.6 shows that the error probability decreases until P̃2, giving the same final

optimization as in Chapter 3.

4.4 Algorithmic Optimization of All Sensors

The joint optimization problem of optimizing each sensor’s power is infeasible to an-

alyze and deduce results about global optimally. Instead, we apply the results of Sec-

tion 4.2 to form an iterative algorithm to optimize individual sensor powers and con-

verge to at least a locally optimal solution. First, we check if p1 ≤
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

.

Proposition 4.1 implies that the optimization would be trivial in this case, as the

detection rule is always 0, so each sensor should not send anything. Similarly to



4.4. ALGORITHMIC OPTIMIZATION OF ALL SENSORS 69

Case I of the two sensor optimization, the optimal error probability would be p1.

Otherwise, if p1 >
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1 (1−ϵi)

, for each sensor, we must determine whether we

can apply the optimization described by Theorems 4.3 or 4.5. This is equivalent to

determining whether (4.7) or (4.8) holds for each i = 1, ..., N . To characterize which

sensors satisfy which condition, we first show that

p0
∏

s ̸=i′ ϵs

p0
∏

s ̸=i′ ϵs + p1
∏

s ̸=i′(1− ϵs)
≤

p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
, for i′ > i.

Let i′ > i. Since 0 < ϵi ≤ ϵi′ < 0.5, we have

1− ϵi
ϵi
≥ 1− ϵi′

ϵi′

=⇒ p1
p0

∏
s ̸=i′

1− ϵs
ϵs
≥ p1

p0

∏
s ̸=i

1− ϵs
ϵs

=⇒ 1

1 + p1
p0

∏
s ̸=i′

1−ϵs
ϵs

≤ 1

1 + p1
p0

∏
s ̸=i

1−ϵs
ϵs

=⇒
p0
∏

s̸=i′ ϵs

p0
∏

s ̸=i′ ϵs + p1
∏

s ̸=i′(1− ϵs)
≤

p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs + p1
∏

s ̸=i(1− ϵs)
.

Combining this with ϵ1 ≤ ϵ2 ≤ ... ≤ ϵN shows that once (4.8) holds for some Sensor n,

each Sensor i > n will also satisfy (4.8). The first sensors (if any) which satisfy

(4.7) must use all available power. For the remaining sensors (Sensors n to N),

we apply an initial condition, then beginning at Sensor n, each power allocation is

individually optimized using Theorem 4.5. This process is repeated until either the

error probability difference reaches a convergence threshold, or a maximum number

of iterations have been completed. These steps are explained in detail in Algorithm 1.

The parameters which can be changed when running this algorithm are the initial

power allocations, PN
0 , maximum number of iterations, mmax, objective function,
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Algorithm 1 Numerical Optimization of All Sensors

if p1 ≤
∏N

i=1 ϵi∏N
i=1 ϵi+

∏N
i=1(1−ϵi)

then

Pi ← 0, ∀i = 1, ..., N
-return

end if
PN ← PN

0

for i← 1 to N do
if ϵi >

p0
∏

s ̸=i ϵs

p0
∏

s ̸=i ϵs+p1
∏

s ̸=i(1−ϵs)
then

break
end if
Pi ←

√
Pmax
i

end for
imin ← i
P prev
e ← 1

for m← 1 to mmax do
for i← imin to N do

x∗
0 ← argmin gP1,...,PN

0,i

x∗
1 ← argmin gP1,...,PN

1,i

Pi ← x∗
0−x∗

1

α+β

if Pi >
√

Pmax
i then

Pi ←
√

Pmax
i

end if
end for
if obj

(
P prev
e − Pe(P1, ..., PN)

)
< cthresh then

break
end if
P prev
e ← Pe(P1, ..., PN)

end for

obj(·) and the convergence threshold, cthresh. For the numerical results demonstrated

in the proceeding sections, we used the parameters mmax = 500, obj(x) = ex − 1 and

cthresh = 10−9. Different initial power allocations, PN
0 ≜ (P0,1, P0,2, . . . , P0,N), were

investigated to determine an optimal starting point, the results of which can be seen

in the following sections.

Since the corresponding error probability at each step in this algorithm cannot be
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increasing (since each point is the solution of a respective minimization problem), and

the error is bounded below by 0, this sequence of error probabilities must converge

as m → ∞. Thus, this algorithm will always approach at least a local minimum of

the overall optimization problem. However, we note that the convergence of the error

probability does not mean that the corresponding optimal power allocations neces-

sarily converge to a finite value. For example, it is possible that the power allocation

for some sensors (especially those with smaller ϵi values) will have constantly increas-

ing values of Pi as the algorithm iterates until reaching its corresponding maximum

power. Additionally, the convergence of this algorithm changes based on the starting

power allocations for the sensors that have non-trivial optimizations. One way to

deal with this variation is to try multiple starting points and use the one with the

best convergence error probability.

4.4.1 Algorithm Visualization

We now give a visualization of how the algorithm performs the optimization, and how

the power allocations evolve through the iterations. There are different ways that the

algorithm can converge based the initial power allocations, as will be shown in the

following section. We will be focusing on starting with low initial power, and show how

the optimization proceeds in this case. Specifically, we set N = 5 and use an initial

value of PN
0 = (1, 0.1, 0.1, 0.1, 0.1). In the following figures, an “iteration” refers to a

loop through individually optimizing each sensors power once, while a “step” refers

to a single individual sensor’s power optimization. Figure 4.2 shows how the power

allocations for each sensor changes across each iteration, while Figure 4.3 shows how

the error probability improves at each step.
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Figure 4.2: Power allocation as the algorithm is iterated (N = 5, p1 = 0.45 ϵN =
(0.1, 0.2, 0.2, 0.3, 0.3), N0 = 1, Pmax

i = 1 ∀i, PN
0 = (1, 0.1, 0.1, 0.1, 0.1)).

Figure 4.3: Error probability as the algorithm is iterated (N = 5, p1 = 0.45 ϵN =
(0.1, 0.2, 0.2, 0.3, 0.3), N0 = 1, Pmax

i = 1 ∀i, PN
0 = (1, 0.1, 0.1, 0.1, 0.1)).
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We observe the following general trends in these figures. First, we note that the

algorithm converges within the first few iterations, and after the fourth iteration, the

error fluctuations are negligible. Another interesting result about the power alloca-

tions is that the sensors with the same noise parameters converge to the same power

allocation. This is intuitive since the symmetry of the situation should mean that

one sensor is not preferred over the other. Finally, we see that the power allocations

for each sensor are increasing as they converge to their optimal values. This is not

the case for every starting position, but in general this is seen when using the small

starting power allocations. This further explains why this is a good starting point

for the optimization, since the interim results do not tend to overshoot where the

algorithm will converge to.

4.5 High SNR Analysis

For this section we define high SNR as N0 → 0. First, we analyze the case where MAP

detection is used, and we assume that the power allocations to each sensor are such

that no constellation points are identical. Note that in this section, “constellation

points” will always refer to the combined constellation, C, from superimposing each

sensor’s binary constellation. With these assumptions, we can see that the situation

can be viewed as the fusion center having full knowledge of each of the sensors’

readings. In other words, we treat the problem as if there were no noise in the

channel over which the sensors are sending their data. For any b ∈ B, the MAP

detected bit will be

x̂(b) = argmax
i∈{0,1}

Pr(X = i | XN = b)
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= argmax
i∈{0,1}

Pr(X = i,XN = b)

= argmax
i∈{0,1}

Pr(X = i)Pr(XN = b | X = i)

= argmax
i∈{0,1}

pipb|i, (4.10)

where X is the binary source. Therefore, the high SNR error probability is calculated

using the law of total probability to be

lim
N0→0

Pe =
∑
b∈B

Pr
(
X ̸= x̂(b), XN = b

)
=
∑
b∈B

Pr
(
X ̸= x̂(b)

)
Pr
(
XN = b | X ̸= x̂(b)

)
=
∑
b∈B

min
i∈{0,1}

pipb|i, (4.11)

where the last equality comes from the MAP detection rule given in (4.10) and the

fact that the source is binary, so there is only one other option for detection. Note

that this expression can have different explicit forms (in terms of the parameters ϵi)

depending on how each sensor reading combination is detected as given in (4.10).

Although some rules about this can be established, such as the all zero reading,

b = 0...0 with always be detected as a 0, there are many different cases that would

need to be accounted for to write (4.11) as an explicit function of the parameters.

Next, we are interested in the high SNR behaviour of the simplified detection used

in the algorithmic optimization. We first observe that since MAP detection is optimal,

we already have a lower bound on this value, given in (4.11). The true expression for

this error probability is much more complicated, and depends heavily on the relative

positions of the constellation points for the sensor readings. Since there is only one
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decision boundary, the high SNR behaviour is to split the constellation points into

left and right groups to minimize a similar expression as in (4.11). To formalize this,

let b1, ..., b2N be an ordering of B such that ab1 < ... < ab
2N
. Note that again for

simplicity we are assuming that no constellation points are identical. We know that

in all cases b1 = 0...0, and as mentioned earlier, we always know the MAP detection

rule will detect this as a 0. If the first M constellation points are detected as a 0 for

some integer M > 0, then the high SNR error probability under this detection rule

parameterized by M , limN0→0 Pe|M , is given by the following expression:

lim
N0→0

Pe|M =
M∑
i=1

Pr(X = 1, XN = bi) +
2N∑

i=M+1

Pr(X = 0, XN = bi)

= p1

M∑
i=1

Pr(XN = bi | X = 1) + p0

2N∑
i=M+1

Pr(XN = bi | X = 0)

= p1

M∑
i=1

pbi|1 + p0

2N∑
i=M+1

pbi|0.

Note that for a given M , this detection scheme could be practically implemented

under simplified detection by placing the decision boundary anywhere in the interval

(abM , abM+1
). Thus, the best high SNR error probability achievable by the simplified

detection scheme would be the solution to the following finite element minimization

problem:

lim
N0→0

Pe = min
M∈{1,...,2N}

(
p1

M∑
i=1

pbi|1 + p0

2N∑
i=M+1

pbi|0

)
. (4.12)

Since this expression depends on the order of the constellation points, the high

SNR error probability can vary based on how the algorithm converges to its optimal

value. It is conceivable that the expressions given in (4.11) and (4.12) can be equal
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for some power allocations, if the constellation points which are detected as 0’s and

1’s in the MAP detection rule can be arranged in a way that can be separated by

a single boundary. However, it is also not obvious whether there always exists a

power allocation which allows these expressions to be equal. To illustrate this, take

a two sensor example, and suppose that the sensor readings “00” and “11” are MAP

detected as a 0, and “01” and “10” are detected as 1. In this case, it is impossible

for simplified detection to yield the same as optimal MAP detection, since a00 is

always the left most constellation point, and a11 is always the right most constellation

point. Note that this illustration is only to demonstrate the types of issues that can

occur, and this exact setup could never happen with the parameter restrictions of

the problem. This example illustrates the types of issues could arise with a larger

number of sensors, but the exact specification and characterization of these situations

becomes extremely complex.

To provide a better understanding of the behaviour of these two expressions, we

compare how (4.11) and (4.12) perform as a function of the source distribution, p1.

To evaluate (4.12), we first perform the algorithmic optimization at a small noise

power (N0 = 0.01), then use the resulting optimized constellation to calculate this

expression. Although this is not guaranteed to be the best constellation to use when

evaluating (4.12), it is infeasible to try all admissible constellation patters, which

grows like 2N !. Additionally, it is practical to see how the algorithm performs when

used in a high SNR environment. Figure 4.4 shows the comparison of these two

high SNR behaviours, where the right sub-figure is merely a restriction of the left

sub-figure to less biased distribution to better display the discrepancies.

We see that for biased source distributions, these expressions become equal, while
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Figure 4.4: High SNR behaviour (N0 = 0.01) of MAP and simplified detection
schemes vs. p1 for N = 10 and ϵN = (0.1, 0.2, 0.2, 0.2, 0.25, 0.25, 0.25, 0.3, 0.3, 0.3).

as the source becomes uniform, the simplified detection performs slightly worse than

MAP detection. We note that these trends only arise at larger N values; when there

are less sensors both expressions are identical at every source distribution. As N

increases, the number of constellation points grows exponentially as 2N . When there

are more constellation points, it is less likely that they can be arranged in an ordering

for simplified detection to achieve the same error probability as MAP detection.

4.6 Numerical and Simulated Comparisons

In this section, we compare the performance of the optimization algorithm (Algo-

rithm 1) numerically to alternate signaling schemes. Additionally, since the algorithm

does not specify its starting point, we compare how the algorithm performs from dif-

ferent starting points, and make general observations about what a good starting

point should be. Finally, since we have been working under an assumption of simpli-

fying the detection rules to a single decision boundary, we compare the performance

of our algorithmic optimization to detection schemes which use the optimal MAP
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detection rule.

In the following figures, we use the following signaling/detection schemes as a

comparison to the algorithmic optimization. In the following, each sensor always uses

the optimal asymmetric constellation designs, Ci = {c0,i, c1,i} = {−βPi, αPi}, for

all i = 1, ..., N . First, we compare to using a Gaussian MAC, but each sensor using

all of its available power. We consider both the single decision boundary detection

described in this chapter, and the optimal MAP detection rule. Next, a naive pairwise

implementation of the results from Chapter 3 are used. For a single Gaussian MAC,

we look at each pair (ϵ1, ϵi), i = 2, ..., N , and assign to Sensor i the optimal power

result from Table 3.2. Finally, we compare to each sensor sending all of its power

through orthogonal Gaussian channels and using MAP detection at the fusion center.

These schemes are summarized in Table 4.1, with labels corresponding to how they

are referred to in the figures of this chapter.

Table 4.1: Signaling Scheme Specifications

Scheme Name Power Allocation, PN Other Specifications

Orthogonal Signaling (
√

Pmax
1 , ...,

√
Pmax
N ) Orthogonal Channels

MAC Full Power (
√

Pmax
1 , ...,

√
Pmax
N ) Simplified Detection

MAC Full Power MAP (
√

Pmax
1 , ...,

√
Pmax
N ) MAP Detection

Pairwise MAC (P ∗
1 , P

∗
2 (P

∗
1 ), ..., P

∗
N(P

∗
1 )) P ∗

i from Table 3.2

MAC Algorithm (P ∗
1 , ..., P

∗
N) (Alg. 1) PN

0 = (
√

Pmax
1 , 0.1, ..., 0.1)

MAC Algorithm Full Start (P ∗
1 , ..., P

∗
N) (Alg. 1) PN

0 = (
√

Pmax
1 , ...,

√
Pmax
N )

For orthogonal signaling, the detection rule is too complex to analyze numerically,

so simulations are used. For each data point, the error probability is estimated

by sending 1,000,000 source bits through simulated sensors and channels, then the

detected bit is compared to the source, and the total number of errors is counted to
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arrive at an error probability. To compare these designs, we fix the maximum powers

Pmax
1 , ..., Pmax

N , vary N0 and report the SNR as the geometric average:

SNR =

N

√∏
i=1,...,N Pmax

i

N0

. (4.13)

Note that since each sensor has its own power allocation, using the maximum for

SNR is a fair comparison, because even if a sensor does not use all of its power, it

still has the same amount available to it. Additionally, for the orthogonal channels

setup, this definition of SNR is still fair since even though there is more total noise

power across all N channels, if the system chose to use only one of the channels, it

would be exactly the same as the MAC’s that are being compared to.

4.6.1 General Trends

We use the following example to illustrate the general trends in the comparisons

between the various signaling/detection methods. Figure 4.5 compares the error

probabilities of these schemes with respect to SNR.

We notice the following trends from Figure 4.5. First at low SNR, all of the MAC

implementations perform the same, while the orthogonal channel approach performs

significantly worse. The equal performance across all MAC implementations can

be attributed to the fact that each MAC method at low SNR decides to use all

power, i.e., the limit is every method using the same constellation. The orthogonal

channels perform significantly worse at low SNR because the channels are too noisy

to take advantage of the orthogonality, so it is more advantageous for the signals to

constructively interfere with each other in the MAC channel, effectively increasing
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Figure 4.5: Error probability of different signaling schemes as a function of SNR for
N = 5 (p1 = 0.35, (ϵ1, ..., ϵ5) = (0.05, 0.1, 0.15, 0.2, 0.2), Pmax

i = 1, i = 1, ..., 5).

power. As the SNR increases, we see that the pairwise approximation becomes worse

and never recovers. This is because as SNR increases, the pairwise optimization

always decreases the power to the noisier sensor, so all that remains is Sensor 1,

which cannot perform as well as multiple sensors working together. Also, there comes

a point where the orthogonal channels approach (around 2.5 dB) becomes the best

performing solution, but not by very much. This can mainly be attributed to the fact

that the orthogonal channel approach is using MAP detection, which allows it to take

advantage of more information. Finally, at high SNR, many of the methods converge

to the same error probability. Even though the algorithm is not necessarily always

the best (only sometimes outperformed by orthogonal MAP detection), it always uses

less power than the alternatives, and significantly less bandwidth than the orthogonal
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approach.

4.6.2 Comparison of Starting Powers

In this example, we demonstrate how the performance of the optimization algorithm

changes for different initial power allocations, and give an explanation of what starting

powers are observed to give better overall performance of the converged results of the

algorithm. In Figure 4.6, the performance various designs are shown in a case where

different starting points for the algorithm give significantly different results.

Figure 4.6: Error probability of different signaling schemes as a function of SNR for
N = 8 (p1 = 0.4, ϵN = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3), Pmax = (1, 1, 5, 5, 5, 5, 5, 5)).

We see many of the same observations when comparing the different solutions as

mentioned in the previous section. The most notable observation from this figure

is that at moderate to high SNR (3 dB or greater), the algorithm when started at
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maximum starting powers converges to significantly worse performance than when

started at low initial powers. The main condition that causes this discrepancy is

when the maximum power allocations for the noisy sensors is too large. This causes

the algorithm when started too large to fall into a false minimum at very large powers,

and remain there because it is shaped like a trough. Figure 4.7 gives a 2 dimensional

interpretation of this phenomenon.

Figure 4.7: Error probability with respect to two powers.

We observe that even though there is a local minimum at small powers, at large

powers there are low troughs that the algorithm can get trapped in. Although this

does not necessarily mean that the false minimum will perform noticeably worse than

the true local minimum. However, we still note that these false minimums will be

using significantly more power than the true local minimum. This can be seen in

Figure 4.8, where we see the comparison of the amount of available power used by



4.6. NUMERICAL AND SIMULATED COMPARISONS 83

the two starting points of the algorithm, noting that in particular at high SNR, the

maximum power starting point used much more that the smaller starting point. The

power usage ratio is calculated as the total power used by the sensors divided by the

sum of the maximum power allocations:

Power Usage Ratio ≜

∑N
i=1 P

2
i∑N

i=1 P
max
i

. (4.14)

Figure 4.8: Power allocation of different starting points of the optimization al-
gorithm for N = 8 (p1 = 0.4, ϵN = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3), Pmax =
(1, 1, 5, 5, 5, 5, 5, 5)).

For these reasons, we conclude that using a small starting point is an ideal starting

point for running the algorithm, as it performs better and uses less overall power than

the alternatives. This can also be seen as artificially decreasing the maximum powers

for the purpose of the algorithm (which is always a viable thing to do) can make the
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algorithm perform better or equivalently.

4.6.3 Improvement Using MAP Detection

In this section, we show that using MAP detection instead of the simplified single

boundary detection assumed in the theoretical analysis can lead to improved perfor-

mance under some circumstances. Figure 4.9 shows the performance of the various

signaling schemes with respect to SNR.

Figure 4.9: Error probability of different signaling schemes as a function of SNR for
N = 5 (p1 = 0.35, ϵN = (0.05, 0.1, 0.15, 0.2, 0.2), Pmax = (1, 3, 3, 5, 5)).

We see that the full power MAC approach can become asymptotically equal at

high SNR to the better performing methods when using MAP detection, as opposed

to staying much above it when using the simplifies detection rule. However, we note

the complexity of MAP detection grows with the number of sensors, where in general,
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to perform better than simplified detection, MAP detection must be using at least 3,

and at most 2N − 1 decision boundaries, which can become infeasible to implement.

4.6.4 Large Number of Sensors (N = 20)

This illustration demonstrates that the general trends shown in the above examples

continue to be prevalent even as the number of sensors grows larger. We take a basic

version of the problem where N = 20, p1 = 0.5 and half the sensors with crossover

probability ϵi = 0.1 and the remaining have crossover probability ϵi = 0.2. Figure 4.10

shows the performance of the basic signaling/detection designs as SNR varies.

Figure 4.10: Error probability of different signaling schemes as a function of SNR for
N = 20 (p1 = 0.5, ϵi = 0.1, i = 1, ..., 10, ϵi = 0.2, i = 11, ..., 20, Pmax

i = 1, ∀i).

We observe all of the same trends as noted in the previous examples. Specifi-

cally, the orthogonal signaling performs worse than all MAC approaches at low SNR,
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while at high SNR, orthogonal channels and algorithmic optimization are the better

performers, while the simpler MAC schemes perform worse. We note that the per-

formance difference between MAC and orthogonal channels at low SNR is amplified

when there is a larger number of sensors. This can be explained by the low SNR

region heavily favouring the MAC approaches which can work together and over-

come the noise, whereas the orthogonal channels cannot adequately use the increased

bandwidth it has access to because the noise power is too large. Further, another

interesting feature which is amplified in this example with a large number of sensors

is that the pairwise optimization strategy becomes very well performing, essentially

identical to the algorithmic optimization at moderate SNR (around -2 dB).

4.6.5 Reducing Number of Sensors

In this section, we demonstrate how the optimization algorithm can be used to reduce

the number of sensors required to implement a system with a maximum allowable

error probability. In the following examples, we assume each sensor has the same

maximum power allocation, so the SNR does not vary when changing the number of

sensors. We then choose an example SNR and vary the number of sensors. In the

first example, we consider N identical sensors. The results for SNR values of -10, 0

and 10 dB are shown in Figure 4.11.

First, we note that in this case all MAC approaches are the same. This is because

when all sensors are identical, the optimal allocation is max power to all sensors.

Further, in accordance with the previous findings, orthogonal channels perform worse

than MAC at low SNR and slightly better at high SNR. At SNR of -10 dB, we can

see a 5 sensor gain at 0.15 error probability. At SNR 0 dB we see a two sensor gain
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(a) SNR = -10 dB. (b) SNR = 0 dB.

(c) SNR = 10 dB.

Figure 4.11: Error comparison at SNR values (p1 = 0.4, ϵi = 0.1, Pmax
i = 1 ∀i).

at 0.11 error probability.

The next case that will be considered is where one sensor is better and the rest

are worse. This case will allow the algorithmic optimization to benefit over the sub-

optimal max power MAC constellations. Figure 4.12 shows how the error probability

changes with number of sensors, if Sensor 1 has ϵ1 = 0.05 and all other sensors have

ϵi = 0.3, for i > 1

First we note that we are not showing a low SNR plot because the behaviour is

identical to the previous example, where all MAC implementations perform the same,

and consistently better than orthogonal channels. At SNR 0 dB, we remark that the
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(a) SNR = 0 dB. (b) SNR = 10 dB.

Figure 4.12: Error comparison at SNR values (p1 = 0.5, ϵ1 = 0.05 ϵi = 0.3 ∀i > 1,
Pmax
i = 1 ∀i).

algorithmic and pairwise optimization techniques perform the best, matching very

well at small numbers of sensors (≤ 6). The sensor gain can be seen as 3 at error

probability 0.08. Another interesting observation is that for the maximum power

MAC approach, addition a sensor can possibly make error performance worse, as

seen in the jump from 3 to 4 sensors at SNR 0 dB. This is because adding too much

power from a noisy sensor can reduce the effectiveness of the information sent. This

also explains the jagged appearance of the curves the max MAC approaches. Finally,

at high SNR, we see that the orthogonal channels approach can again perform better

than the algorithm, but the algorithm still outperforms the MAC full power approach.

Also, we see that the pairwise approach does not change with number of sensors,

further demonstrating the flaw in this simple approach as high SNR, as it does not

use the additional sensors at high SNR since P ∗
i = 0, for i > 1.

Finally, Figure 4.13 demonstrates a situation where the system has an array of

sensors available to use, and for each N , the system makes use of the N least noisy

sensors of this array.
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(a) SNR = 0 dB. (b) SNR = 10 dB.

Figure 4.13: Error comparison at SNR values (p1 = 0.45, ϵ1 = ϵ2 = 0.05, ϵ3 = ϵ4 =
ϵ5 = 0.1, ϵi = 0.15. i = 6, ..., 10 ϵi = 0.2, i = 11, ..., 15 ϵi = 0.3, i = 16, ..., 20,
Pmax
i = 1 ∀i).

We observe the same trends as the previous two examples in these graphs. We

observe that the sensor gain increases as the number of sensors increases, or the

desired error probability decreases.

We conclude from this section that the optimization algorithm can achieve the

same error performance as other common signaling designs while using less sensors.

We also note that in general, the algorithm is only outperformed by other methods

which are more complex, use more bandwidth, and especially use MAP detection.

4.6.6 Comparison to General Optimization Algorithms

We compare how our algorithm based on theoretical individual power optimization

performs against generalized algorithms derived from gradient descent techniques.

Specifically, we compare to a builtin MATLAB optimization function called “fmin-

unc”, with the “quasi-newton” option, which is based on the Nelder-Mead simplex

algorithm as described in [24]. An important detail is that in general, gradient descent
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type optimizations are for unconstrained problems, and do not account for boundary

conditions. To handle this, we use the generally observed result from our derived

algorithm that the first sensor always converges to using all of its power, so we fix the

gradient descent method to use all of the power allocated to Sensor 1, then perform an

unconstrained optimization on the remaining sensors, while ensuring that the uncon-

strained optimization converges within the constraints that the algorithm is bound

within. Note that this is easily achieved by increasing the limits of the algorithms

optimizations to anything larger than the converged gradient descent results. The

gradient descent method is also sensitive to initial conditions, so we use the same

values we found to work well for our algorithm, which is starting all sensors at small

power allocations. Figures 4.14 and 4.15 show the comparison of error probability and

power usage versus noise power, respectively. Note that since the gradient descent

problem is unconstrained, it does not make sense to use SNR, so instead we use the

inverse noise power: N−1
0 . The power usage ratio is calculated as defined in (4.14).

Figure 4.14: Error probability comparison to gradient descent (N = 5, p1 = 0.4
ϵN = (0.1, 0.1, 0.2, 0.2, 0.3), Pmax = (1, 4, 2, 2, 1)).
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Figure 4.15: Power usage comparison to gradient descent (N = 5, p1 = 0.4 ϵN =
(0.1, 0.1, 0.2, 0.2, 0.3), Pmax = (1, 4, 2, 2, 1)).

We observe that both methods perform very similarly in error and power alloca-

tions. This strengthens the argument that our algorithm is indeed converging to an

optimal value in the problem of MAC signaling. However, we note that the gradient

descent method has the following issues with practical implementations. First, uncon-

strained optimization may not be feasible to implement if the power constraints are

smaller than what the unconstrained optimization converges to. Furthermore, apply-

ing this unconstrained optimization required using knowledge from the algorithm to

force Sensor 1 to use all of its power, otherwise the gradient descent method will not

converge and keep increasing power usage. Finally, this optimization method is more

complex than standard gradient descent, thus it may not be feasible to implement in

a practical situation.
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Chapter 5

Conclusion

In this work, various optimization results about constellation design for distributed

detection of a binary source over a Gaussian MAC have been explored. A preliminary

investigation into the effect of inter constellation rotation in a two sensor uniform

source formulation of the problem yielded an optimized upper bound on the error

probability which suggested that viewing the problem as a power allocation problem

could give interesting and practical results. Following the lead of this result, the

optimal one dimensional constellation design for a two sensor binary network was

established. After reducing the problem to a power allocation optimization problem

(with the appropriate asymmetric constellation designs from Theorem 3.1), it was

proved that there are distinct cases that arise based on the fixed parameters of the

problem, which are p1, ϵ1 and ϵ2. In some cases (Cases I and II), the results are

intuitive and not unexpected, as the optimal power allocations are to use none or

all of the available power. However, in Case III, the most interesting and counter-

intuitive result is that the optimal power allocation can be for Sensor 2 (with less

correlation to the true data source) to use a portion, but not all of its available

power. This is a significant result since Case III is prevalent for many parameter sets
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of the problem setup. As shown in Figure 3.6, Case III becomes the dominant case

as the binary source approaches a uniform distribution.

We used the insights gained from the two sensor problem to formulate results about

distributed detection with N > 2 sensors. Under the assumption of simplifying the

detection to a single decision boundary, the optimization of a single sensor’s power

allocation when the rest are fixed was characterized. For any sensor, the same three

cases analogous to the two sensor problem formed. In the most significant case,

a non-trivial optimal power allocation was shown to exist, and although an explicit

expression cannot be given, it can be obtained by solving the equations given in (4.9).

This individual sensor optimization was developed into an iterative algorithm for the

joint optimization of all sensors. This algorithm, with appropriate starting power

allocation, was shown to perform well in comparison to other common constellation

designs, while consistently using less resources such as power and bandwidth. In

practice, applying these optimization results can improve error performance while

prolonging the battery life of a sensor network.

To expand further upon our results, the following future directions can be con-

sidered. First, if there were a sum power constraint instead of individual power

constraints (e.g.., Pmax = P1 + P2), which applies to systems where sensors are co-

located (such as connected motion sensors or powered exoskeleton suits), then we

readily obtain that the optimal constellation will be of the form given in Chapter 3,

with power allocations P1 ≤ Pmax and P2 = P ∗
2 (P1). There is no analytic solution

to this optimization, so a numerical computation can be carried to determine the

optimal values. Also, even without perfect information about the system parameters,

such as p1, ϵi, i = 1, ..., N and N0, our results can still be applied with some form of
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estimates. The error probability can have different sensitivities to the ϵ-parameters.

The robustness of our optimal signaling scheme can be analyzed when the parame-

ters have estimation errors. Sensor network clustering problems such as those found

in [25–28] could be considered. The performance of a cluster could be approximated

using the expressions derived in this paper. The balance between error probability

and energy efficiency could be investigated as a function of cluster organization.
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