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Abstract—We consider the transmission of a memoryless Gaus-
sian source over a power-constrained Rayleigh fading channel
with additive white Gaussian noise. We propose the use of low-
delay joint source-channel mappings and consider optimizing
the non-parametric mappings through an iterative process. A
design algorithm for joint source-channel mapping is proposed
and numerically evaluated for 2:1, 3:1, and 4:1 bandwidth
reductions. Parametric mappings are also studied. We assume
three cases of fading knowledge; in the case of presence of channel
state information at both encoder and decoder, optimal power
allocation is solved for the parametric mappings in terms of
fading gains and average power constraint. It is shown that the
proposed non-parametric and parametric mappings, which have
a non-linear structure, achieve a graceful and robust performance
and considerably surmount the saturation effect of linear systems.

I. INTRODUCTION

The traditional approach for analog source transmission
is to use separate source and channel coders. This separa-
tion is optimal given unlimited delay and complexity in the
coders [1]. In practice, joint source-channel coding (JSCC) can
lead to a better performance when delay and complexity are
constrained. It is well known that for the case of Gaussian
source over a Gaussian channel with matched bandwidth,
uncoded, or linear, transmission is optimal [2]. However, when
there is a bandwidth mismatch between source and channel
and in the presence of fading [3], this result does not hold
anymore. A common approach for JSCC design is to jointly
optimize the components of a tandem system with respect to
the channel and source characteristics. Another approach based
on nonlinear analog mapping is treated in [4]–[7].

With the increasing popularity of wireless sensor networks
(WSNs), reliable transmission with delay and complexity
constraints is more relevant than ever. A sensor node, often
conceived as having limited lifetime and processing power,
communicates its sensed field information to a fusion center
over a noisy wireless channel. To meet these challenges, in this
paper, we investigate using a low delay and low complexity
lossy source-channel mappings in WSNs.

We study the reliable transmission under bandwidth re-
duction of a memoryless Gaussian source over memoryless
Rayleigh fading channels subject to low-delay/complexity
constraints. More specifically, our scheme is based on joint
optimization of the encoder and the decoder under an aver-
age power constraint. A 2:1 parametric mapping using the
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Archimedes’ spiral was recently considered in [8] for fading
channel. In this work, we use non-parametric and parametric
mappings under different bandwidth reduction ratios. The
case of bandwidth reduction/expansion over additive white
Gaussian noise (AWGN) channels was studied in [9]–[11].
In [9], [10], the approach used is based on mapping the output
of a vector quantizer to a specific point in a channel signal
set. A direct source-channel mapping approach, however, was
considered in [11]. Source-channel mappings for the relay and
the MAC channels were studied in [12], [13]. Our system, that
uses a nonlinear direct source-channel mappings over fading
channel, is shown to overcome the performance saturation
which is unavoidable when using linear systems and achieves
a graceful performance. The rest of the paper is organized

Fig. 1. System structure for 2:1 bandwidth reduction over fading channel
with AWGN. CSI is only available at the decoder side, while the encoder
knows only the distribution of the fading.

as follows. Section II presents the problem formulation. Sec-
tion III describes the theoretical Shannon limit and the linear
system over fading channels. In Section IV, we consider non-
parametric mappings for which we derive necessary conditions
for optimality and present the iterative design algorithm along
with the implementation aspects. Section V presents para-
metric mappings over fading channels for different reduction
ratios. Simulation results are included in Section VI. Finally,
conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

We consider the transmission of a Gaussian source X =
(X1, ..., XM ) ∈ RM over a memoryless fading channel with
AWGN. Fig. 1 shows the system structure for M = 2 where
the channel state information (CSI) is available at the decoder
only (DCSI), and the transmitter is assumed to know the fading
distribution. We also consider two other cases: 1) when CSI
is available at both the encoder and the decoder (full CSI
or FCSI); 2) when CSI is not available at the transmitter
and the receiver. The source vector X, which is composed
of independent and identically distributed (i.i.d.) samples, is
transformed into a one-dimensional channel input Y ∈ R



using a nonlinear mapping function α(·) (i.e., Y = α(X)).
The received symbol can be expressed as follows

Ŷ = BY +W (1)

where B is the fading gain drawn from an i.i.d. Rayleigh
distributed process, and W is the additive noise drawn from
an i.i.d. Gaussian process that is independent from both B and
X. The mapping operates under an average power constraint
Pc given by

E[α2(X)] ≤ Pc (2)

where E[(·)] denotes the expectation operator. At the receiver,
the transmitted source vector is estimated using minimum
mean square error (MMSE) decoding (assuming DCSI/FCSI)

X̂ , γ(Ŷ , B) = E[X|ŷ, b]. (3)

We aim to find the optimal source mapping α and receiver γ
that minimize the overall mean square error (MSE) distortion
E[||X− X̂||2] under the average power constraint in (2).

III. PRELIMINARIES: THEORETICAL BOUND AND LINEAR
SYSTEM

A. Theoretical Limit

Shannon’s separation theorem states that in a point-to-point
communication system, optimal performance can be achieved
by optimizing separately (in tandem) the source and the
channel coders given unlimited complexity and delay in the
coders [1]. As a result, the optimal performance theoretically
attainable (OPTA) can be derived by equating the source
rate-distortion function times the system’s rate to the channel
capacity.

For a memoryless Gaussian source X with variance σ2
X and

MSE distortion measure, the rate-distortion function is [14]

R(D) = max

{
0,

1

2
log

(
σ2
X

D

)}
(4)

where D is the distortion. The capacity of a fading channel
when considering DCSI/FSCI and with power input P can be
expressed as [15]

C(P ) = EB
[

1

2
log

(
1 +

P (b)b2

σ2
W

)]
(5)

where σ2
W is the variance of the channel noise, and P (b) = Pc

for DCSI. When CSI is available at both the encoder and
the decoder (i.e., FCSI), the transmitted power P (b) in (5)
waterfills over the fading states as follows

P (b) = max

{
0,

(
1

δ
− σ2

W

b2

)}
(6)

where δ satisfies E[P (b)] = Pc. To find OPTA we set R(D) =
rC(P ), where r is the system’s rate measured in channel uses
per source sample. Solving this will lead to OPTA

DOPTA = σ2
X exp

(
rEB

[
log

(
σ2
W

P (b)b2 + σ2
W

)])
. (7)

Note that this bound is achievable asymptotically using long
block codes.

B. Linear Transmission

In [3], it was proven that linear coding is optimal among
all single-letter codes (i.e., 1:1 matched-bandwidth systems).
For an M :1 bandwidth reduction, we use a simple coder that
removes samples to perform bandwidth reduction. In this case
the encoder α(·) is a multiplication by a constant matrix and
the transmitted symbol can be expressed as follows

Y =

√
P (b)

σ2
X

I1×MX (8)

where I1×M is a 1×M matrix with ones on the main diagonal
and zeros elsewhere, and

P (b) =

{
Pc, for DCSI

max
{

0, 1b

(
1
δ′ −

σ2
W

b

)}
, for FCSI (9)

where δ′ is calculated by solving E[P (b)] = Pc. The optimal
decoder (assuming DCSI/FCSI) γ(Ŷ , B) is given by

X̂ = E[X|ŷ, b] =
b
√
P (b)σ2

X

P (b)b2 + σ2
W

IM×1ŷ. (10)

When no CSI is available at the receiver, the MMSE decoder
can be expressed as follows

X̂ = E[X|ŷ] =

∫ ∫
xp(ŷ|α(x), b)p(b)p(x)dbdx∫ ∫
p(ŷ|α(x), b)p(b)p(x)dbdx

(11)

where p(·) and p(·|·) denote, respectively, a probability density
function (pdf) and a conditional pdf.

IV. NON-PARAMETRIC MAPPINGS

Using the Lagrange multiplier method [16], the constrained
optimization problem of minimizing the overall MSE E[||X−
X̂||2] distortion subject to (2) can be recast into an uncon-
strained problem via the Lagrange cost function

min
α,γ

J(α, γ) (12)

where the cost function J(α, γ) is given by

J(α, γ) = E[||X− X̂||2] + λE[α2(X)] (13)

and the Lagrange multiplier λ is used to control the average
power. For a given λ, if the solution of the unconstrained
problem in (12) fulfills the average power constraint in (2),
the obtained solution is also proven to solve the constrained
problem [16]. However, the unconstrained minimization in
(12) is still hard to solve due to the interdependencies between
the optimized components, and since the encoder/decoder
mappings are, in general, nonlinear functions. To overcome
these challenges, we proceed in a similar way to classical
design problems (e.g., vector quantizer design [17]) by for-
mulating the necessary conditions for optimality. This is done
by finding the optimal encoder α given the decoder γ, and
vice versa. In what follows, we assume DCSI to derive the
necessary conditions for optimality.



A. Necessary Conditions for Optimality

The problem of finding the optimal source mapping α
(assuming γ is fixed) is given by

α = arg min
α

{
E[||X− X̂||2] + λE[α2(X)]

}
. (14)

Using Bayes’ rule, the overall MSE E[||X − X̂||2] distortion
can be expressed as follows

E[||X−X̂||2] =

∫ ∫ ∫
p(x)p(b)p(ŷ|α(x), b)||x−x̂||2dxdbdŷ.

(15)
Note that this factorization follows from the fact that channel
noise, source, and fading are assumed to be independent of
each other. The mapping average power is given by

P =

∫
p(x)α2(x)dx. (16)

Since p(x) in (15)–(16) is nonnegative, the optimal source
mapping α can be optimized for each x individually according
to

α(x) = arg min
y∈R

{∫ ∫
p(b)p(ŷ|y, b)||x− x̂||2dbdŷ + λy2

}
.

(17)
Hence, (17) is a necessary condition for α to be the optimal
mapping.

On the receiver side, the optimal decoder in the MSE
sense (assuming α is fixed) is found using the conditional
expectation of the source given the received symbol and the
fading gain

X̂ , γ(Ŷ , B) = E[X|ŷ, b] =

∫
xp(ŷ|x, b)p(x)dx∫
p(ŷ|x, b)p(x)dx

. (18)

B. Design Algorithm

Based on the above necessary conditions for optimality, it is
possible to optimize the mapping at the sensor nodes and the
receiver using an iterative process. This is done by fixing one
part while optimizing the other. One common problem with
such iterative technique is that the final solution will depend
on the initialization of the algorithm and does not guarantee
convergence to the global optimum solution. To get around
these challenges, we use noisy channel relaxation [18]. This
method suggests to design the system for a noisy channel, and
uses the solution obtained as an initialization when designing
the system for a less noisy channel. For a given channel signal-
to-noise ratio (CSNR, PcE[B2]/σ2

W ), the design algorithm is
stated as follows

1) Choose some initial mapping for the encoder α.
2) Find the optimal receiver γ according to (18).
3) Set the iteration index i = 0 and the cost J (0) =∞.
4) Set i = i+ 1.
5) Find the optimal mapping α according to (17).
6) Find the optimal receiver γ according to (18).
7) Evaluate the cost function J (i). If the relative improve-

ment of J (i) compared to J (i−1) is less than some
positive threshold ε, stop iterating. Otherwise go to step
4.

In our simulations, we used ε = 10−4 and a linear mapping
for initializing the encoder α at low CSNR.

C. Implementation Aspects

For the actual implementation of (17) and (18), some
modifications are required. By the fact that it is impossible
to evaluate the formulas for all vector X in RM , we form as
in [13] a set X composed of Monte-Carlo samples drawn from
the distribution of X. In our simulations, we use 104 samples
to define X . Since the channel input and output spaces are real
valued, we discretize them using a pulse amplitude modulation
(PAM) alphabet Y

Y =

{
−dL− 1

2
,−dL− 3

2
, ..., d

L− 3

2
, d
L− 1

2

}
(19)

where d and L determine the resolution and the cardinality
of the discrete set Y , respectively. This set becomes close to
analog by taking d to be small in relation to the standard
deviation of the noise and by choosing a sufficiently large L.
In our simulations, we use an L in the range [300 600], and
set d = 12/(L− 1).

Since complexity is one of our main concerns, it is important
to note that the decoder side can be approximated with a
table-lookup, thereby avoiding having to compute a numerical
integration for each received symbol. This is done by first
discretizing the fading gain B using a discrete set B of
cardinality |B| = N (e.g., using a N−level quantizer) and
mapping the discretized receiver input Ŷ and the fading B
onto a decoded symbol X̂ = γ(ŷ, b) for (Ŷ ,B) = (ŷ, b).
Note that for a given N , one can design an optimal quantizer
for B. However, in our simulation results we used a uniform
quantizer for simplicity and set N to 256. In a similar way
to the decoder side, the encoder can be also implemented
via a table-lookup by quantizing the source input. Using this
approach, the system complexity is reduced to that of a table
lookups.

The discretized versions of (17) and (18), which are used in
the implementation of the design algorithm, are, respectively,
expressed as follows

α(x) = arg min
y∈Y

∑
b∈B

∑
ŷ∈Y

Q(b)Q(ŷ|y, b)||x− x̂||2 + λy2


(20)

and
γ(ŷ, b) =

∑
x∈X xQ(ŷ|α(x), b)∑
x∈X Q(ŷ|α(x), b)

(21)

where Q(·) and Q(·|·) denote a probability mass function
(pmf) and a conditional pmf, respectively. Note that in [11], the
necessary condition for the encoder mapping over the AWGN
channel is solved using variational calculus.

D. Non-Parametric Mapping with Full CSI

In this section, we assume that the CSI is available at both
encoder and decoder (FCSI). The main change in the necessary
conditions for optimality is in finding the optimal encoder
mapping α. The encoder mapping is now optimized for each
(x, b) according to

α(x, b) = arg min
y∈Y

∑
ŷ∈Y

Q(ŷ|y, b)||x− x̂||2 + λy2

 . (22)



Note that the optimal decoder is given by (21).

E. Non-Parametric Mapping with No CSI
In this section, we assume that the CSI is not available at

both encoder and decoder. The main change in the necessary
conditions for optimality from the one with CSI at the decoder,
is in finding the optimal decoder mapping. The decoder
averages over the fading gain and can be expressed as follows

γ(ŷ) =

∑
x∈X

∑
b∈B xQ(ŷ|α(x), b)∑

x∈X
∑
b∈BQ(ŷ|α(x), b)

. (23)

Note that the optimal encoder is given by (20).

V. PARAMETRIC MAPPINGS

A. 2:1 Spiral Mapping
1) System Structure: The Archimedes’ spiral was shown

to perform well for AWGN channels [7]. In this section, we
extend the work of [7] to optimize the spiral mapping over
fading channels. Recently, we discovered that spiral mapping
was also considered over fading channels in [8]. However, our
system differs from the one in [8] in parts by the structure,
optimization process and in applying power allocation when
we have full CSI.

Bandwidth reduction is achieved by first approximating X ∈
R2 to the closest point on the spiral mapping. We refer to
this approximation operation as q. The approximated point,
represented by its radial distance r from the origin, is then
mapped to the channel via an invertible operator `(·)

y = Kỹ = K`(r) = K

(
±0.16

(
π2

∆

)
(r2)

)
(24)

where K is a gain factor related to channel power constraint
Pc = K2E[Ỹ 2], ∆ is the radial distance between any two
neighboring spiral arms, and +, − represent positive and neg-
ative channel values, respectively. At the receiver (assuming
DCSI), we scale the received samples using an optimal scaling
factor (β = (b

√
Pcσ2

Ỹ
)/(Pcb

2+σ2
W )) instead of a suboptimal

factor (1/(Kb)) as used in [8]. The reconstructed source vector
is then estimated using maximum likelihood (ML) decoding.
This is done by mapping the scaled received sample to a point
on the spiral curve. In the simulation results, we also use the
MMSE decoder which was also considered in [8].

2) System Optimization: The radial distance ∆ is the only
parameter that needs to be optimized in order to minimize
the overall MSE distortion E[||X − X̂||2] under an average
power constraint. The source signal is affected by two type of
distortion: 1) the approximation distortion ε̄2a which is related
to the approximation operation q, and 2) the channel distortion
ε̄2ch which is due to the transmission over a noisy environment.
The approximation error ε̄2a can be approximated by the
quantization error in a scalar quantizer (i.e., ε̄2a = ∆2/12) [7],
and the distortion from channel noise ε̄2ch is well approximated
by the scaled noise variance β2σ2

W . Hence the overall MSE
distortion can be approximated as follows

MSE ≈ EB [(ε̄2a +ε̄2ch)|b] ≈ ∆2

12
+σ2

Wσ
2
Ỹ
EB
[

Pcb
2

(Pcb2 + σ2
W )2

]
.

(25)
The optimal radial distance ∆opt is found by minimizing the
MSE distortion in (25).

3) Power Allocation: In this section, we assume that the
CSI is also available at the transmitter side (i.e., FCSI). Instead
of updating the radial distance ∆ at each time index [8], we
allocate the power (along the time index) according to the CSI
knowledge in a similar approach to [3].

Assuming the channel state is b and the corresponding
power allocated is P (b), the overall MSE distortion is well
approximated in a similar way to (25). The optimal power
allocation P ∗(b) that minimizes the MSE distortion can be
found by solving the following optimization problem

min EB
[

P (b)b2

(P (b)b2 + σ2
W )2

]
s.t. EB [P (b)] = Pc, P (b) ≥ 0. (26)

As a result, for low noise level, the power allocation is well
approximated as follows

P ∗(b) =

{
1
b

(
1√
µ −

2σ2
W

b

)
, for b ≥ 2σ2

W

√
µ

0, otherwise
(27)

where µ is a threshold for all channel states and can be found
from the average power constraint Pc and the statistics of b.

B. M : 1 Parametric Mapping

In this section, we consider both 3:1 and 4:1 bandwidth
reductions. In [19], parametric mappings over AWGN channel
for these reduction ratios were presented. In what follows, we
extend these mappings to accommodate the fading channel. In
a similar way to the 2:1 spiral mapping, the 3:1 and the 4:1
bandwidth reductions are done by first approximating X to
the closest point on the mapping curve, and then performing
a one-dimensional representation using (24). At the receiver
side, we use ML or MMSE decoding for signal recovery.

The overall distortion can be approximated as follows

MSE ≈ EB [(ε̄2a + ε̄2ch)|b]

≈ βM :1∆2−θM:1 + Pcσ
2
Wσ

2
Ỹ
EB
[

b2

(Pcb2 + σ2
W )2

]
(28)

where θ3:1 = 1, β3:1 = 0.6312, θ4:1 = 1.3, and β4:1 = 1.6244
for σX = 1, are found using a nonlinear curve fitting. Note
that ∆, which has a different meaning than in the 2:1 spiral
mapping, is found by minimizing (28).

VI. NUMERICAL RESULTS

In this section, we assume a Gaussian source vector X with
i.i.d. samples with unit variance σ2

X = 1 and a Rayleigh fading
gain B with E[B2] = 1. The results are plotted as signal-
to-distortion ratio (SDR, E[||X||2]/E[||X − X̂||2]) versus
CSNR. The proposed system is compared to a linear system
and to the theoretical performance limit. Fig. 2 shows the result
for parametric spiral and non-parametric 2:1 mapping when
considering DCSI and FCSI. We can notice that for most
CSNR values, the spiral and the non-parametric mappings
outperform the linear system and give a strong performance;
there is around 2 dB gap from OPTA which is achievable
asymptotically using a highly complex long block codes. For



low to moderate CSNRs, using MMSE decoding with spiral
mapping gives a substantial gain over ML decoding. However
as the CSNR gets large, the gap between ML and MMSE
decoder diminishes. Moreover, using the optimal scaling factor
with ML decoder gives a few dBs SDR gain over the one
with suboptimal scaling at low CSNRs [8]. Fig. 2 shows that
the non-parametric mapping gives around 0.5 dB gain over
the spiral mapping with MMSE decoder. Moreover, at low
CSNRs, the non-parametric mapping does not underperform
the linear system, unlike the parametric spiral mapping.
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Fig. 2. The performance of the parametric and the non-parametric mappings
with 2:1 bandwidth reduction over fading channel with AWGN. The perfor-
mance of the linear system and the theoretical limit (OPTA) with CSI at the
decoder are also included. Note that for FSCI, the performance of the linear
system and the theoretical limit improves over the DCSI case by at most 0.2
dB in SDR.
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Fig. 3. The performance of the parametric and the non-parametric mappings
with 2:1 bandwidth reduction over fading channel with AWGN. The perfor-
mance of the linear system is also included. This figure is for no CSI at both
encoder and decoder.

Assuming FCSI, we can notice around 0.5 dB gain in SDR
over the DCSI case. This gain is numerically observed to reach
1 dB for CSNR = 40 dB.

Fig. 3 shows the performance of the spiral and the non-
parametric 2:1 mappings when no CSI is available at both

transmitter and receiver. It is clear that the non-parametric
mapping outperforms the spiral mapping and overcomes the
saturation effect which is unavoidable with the linear system.

Figs. 4 and 5 show the performance of the non-parametric
and the parametric mappings for 3:1 and 4:1 bandwidth
reduction, respectively. In these figures we consider only the
DCSI case. Similar to the 2:1 system, we can notice that
the non-parametric mappings outperform the other systems
and give a graceful performance. More precisely, the non-
parametric mappings are shown to give around 1 dB gain in
SDR over the parametric mappings. This gain is due to the
fact that the non-parametric mappings have a higher degree of
freedom in placing points in space without being restrained to
a specific structure.

Motivated by the broadcast scenario, we next optimize the
encoder for a fixed-design CSNR level and assume that the
true CSNR is know by the decoder. It is noticed that both non-
parametric and parametric mappings exhibit various degree of
robustness against mismatch in noise level; the non-parametric
mappings still outperform the parametric mappings for most
design and true CSNR levels. However, for a low design
CSNR level, we have noticed that the parametric mappings
give better performance when the true CSNR is very high. This
can be explained from the observation that the non-parametric
mappings have a different structure at low CSNR than at high
CSNR and look more like a linear mapping.
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Fig. 4. The performance of the parametric and the non-parametric map-
pings with 3:1 bandwidth reduction over fading channel with AWGN. The
performance of the theoretical limit and the linear system are also plotted.

Fig. 6 shows the optimized decoder mappings for a 2:1
bandwidth reduction ratio. We can notice that the structure
of the non-parametric mapping is similar to the Archimedes’
spiral. Moreover, the length of the mapping curves increase as
the fading gain increase (i.e., less noisy channel). This makes
the mapping better fill the power-delimited space, in order
to lower the approximation error due to projecting a higher
dimension source into a lower dimension, while not increasing
much the distortion due to channel noise. Note also that the
radial distance between the mapping arms is not uniform as
in the case when using a spiral mapping with ML decoder.
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Fig. 5. The performance of the parametric and the non-parametric map-
pings with 4:1 bandwidth reduction over fading channel with AWGN. The
performance of the theoretical limit and the linear system are also plotted.

VII. CONCLUSIONS

In this paper, we have presented a low-delay/complexity
lossy joint source-channel coding scheme for the Gaussian
source over Rayleigh fading channel with AWGN. A design
algorithm for optimizing the source-channel mapping has been
presented based on the necessary conditions for optimality.
Mappings based on parametric functions are also studied.
Simulation results for 2:1, 3:1, and 4:1 bandwidth reduc-
tions have shown that both non-parametric and parametric
mappings outperform the linear system and give graceful
performance variation with CSNR. Moreover, these nonlinear
mappings have shown to overcome the performance saturation
of linear systems and achieve a robust performance against
noise mismatch. The implementation aspects of the design
algorithm, and some non-parametric mappings have been
presented. When considering FCSI, optimal power allocation
has been analytically solved for parametric mappings in terms
of channel fading gains and average power constraint. In
general, it is possible to design mappings for other bandwidth

expansion/reduction rates using a similar approach.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 1948.

[2] M. Gastpar, B. Rimoldi, and M.Vetterli, “To code or not to code,” in
Proc. IEEE Int. Symp. on Info. Theory, Sorrento, Italy, June 2000.

[3] J.-J. Xiao, Z.-Q. Luo, and N. Jindal, “Linear joint source-channel coding
for Gaussian sources through fading channels,” in Proc. IEEE Global
Telecommunications Conference, San Francisco, CA, Dec 2006.

[4] C. E. Shannon, “Communication in the presence of noise,” in Proc. IRE,
1949, pp. 10–21.

[5] V. A. Kotel’nikov, The Theory of Optimum Noise Immunity. New York:
McGraw-Hill, 1959.

[6] T. A. Ramstad, “Shannon mappings for robust communication,” Telek-
tronikk, vol. 98, no. 1, pp. 114–128, 2002.

[7] F. Hekland, P. A. Floor, and T. A. Ramstad, “Shannon-Kotel’nikov map-
pings in joint source-channel coding,” IEEE Trans. Communications,
vol. 57, no. 1, pp. 94–105, Jan 2009.

[8] G. Brante, R. Souza, and J. Garcia-Frias, “Analog joint source-channel
coding in Rayleigh fading channels,” in Proc. IEEE Int. Conf. Acous.,
Speech and Sig. Proces. (ICASSP), Prague, Czech Republic, May 2011.

[9] A. Fuldseth and T. A. Ramstad, “Bandwidth compression for continuous
amplitude channels based on vector approximation to a constinuous
subset of the source signal space,” in Proc. IEEE Int.l Conf. Acoustics,
Speech and Signal Process. (ICASSP), Munich, Germany, Apr 1997.

[10] P. A. Floor, T. A. Ramstad, and N. Wernersson, “Power constrained
channel optimized vector quantizers used for bandwidth expansion,” in
Proc. IEEE ISWCS, Trondheim, Norway, Oct 2007.

[11] E. Akyol, K. Rose, and T. Ramstad, “Optimal mappings for joint source
channel coding,” in IEEE Inform. Theory Workshop, Cairo, Egypt, 2010.

[12] J. (Karlsson) Kron and M. Skoglund, “Optimized low-delay source-
channel-relay mappings,” IEEE Trans. Communications, vol. 58, no. 5,
pp. 1397–1404, May 2010.

[13] J. (Karlsson) Kron, Low-Delay Sensing and Transmission. Ph.D.
dissertation, Royal Institute of Technology, 2011.

[14] T. M. Cover and J. A. Thomas, Elements Information Theory. New
York: Wiley, 2006.

[15] D. N. C. Tse and P. Viswanath, Fundementals of Wireless Communica-
tions. Cambridge, U.K.: Cambridge University Press, 2005.

[16] H. Everett III, “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources,” Operations Research,
vol. 11, no. 3, pp. 399–417, 1963.

[17] Y. Linde, A.Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Comm., vol. 28, no. 1, pp. 84–95, Jan 1980.

[18] S. Gadkari and K. Rose, “Noisy channel relaxation for VQ design,”
in Proc. IEEE International Conference Acoustics, Speech and Signal
Processing (ICASSP), Atlanta, GA, May 1996.

[19] P. A. Floor, On the Theory of Shannon-Kotel’nikov Mappings in Joint
Source-Channel Coding. Ph.D. dissertation, Norwegian University of
Science and Technology, 2008.


