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Abstract

This thesis deals with the Shannon-theoretic fundamental limits of channel coding for

single-user channels with memory and feedback and for multi-user channels with side

information. We first consider the feedback capacity of a class of symmetric channels

with memory modelled as finite-state Markov channels. The symmetry yields the

existence of a hidden Markov noise process that facilitates the channel description

as a function of input and noise, where the function satisfies a desirable invertibility

property. We show that feedback does not increase capacity for such class of finite-

state channels and that both their non-feedback and feedback capacities are achieved

by an independent and uniformly distributed input. As a result, the capacity is given

as a difference of output and noise entropy rates, where the output is also a hidden

Markov process; hence, capacity can be approximated via well known algorithms.

We then consider the memoryless state-dependent multiple-access channel (MAC)

where the encoders and the decoder are provided with various degrees of asymmet-

ric noisy channel state information (CSI). For the case where the encoders observe

causal, asymmetric noisy CSI and the decoder observes complete CSI, inner and

outer bounds to the capacity region, which are tight for the sum-rate capacity, are

provided. Next, single-letter characterizations for the channel capacity regions un-

der each of the following settings are established: (a) the CSI at the encoders are
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non-causal and asymmetric deterministic functions of the CSI at the decoder (b) the

encoders observe asymmetric noisy CSI with asymmetric delays and the decoder ob-

serves complete CSI; (c) a degraded message set scenario with asymmetric noisy CSI

at the encoders and complete and/or noisy CSI at the decoder.

Finally, we consider the above state-dependent MAC model and identify what is

required to be provided to the receiver in order to get a tight converse for the sum-rate

capacity. Inspired by the coding schemes of the lossless CEO problem as well as of a

recently proposed achievable region, we provide an inner bound which demonstrates

the rate required to transmit this information to the receiver.
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Chapter 1

Introduction

Availability of past channel outputs, called feedback, at the encoder and availability

of channel state information (CSI) in various degrees at the encoder and/or at the

decoder have several benefits in a communication system. In particular, both feedback

and state information can increase capacity, decrease the complexity of the encoder

and decoder, and reduce latency.

The current state-of-the art of feedback and side information in information theory

differs considerably in single vs. multi-user setups. As an example, there exists a

general formula for the capacity of channels with feedback [CA95], [TM09] for the

single-user case, whereas the same problem for a two-user multiple access channel

(MAC) is still open. Similarly, the characterization of the capacity with various

degrees of CSI at the transmitter (CSIT) and at the receiver (CSIR) is well understood

for single-user channels. However, for multi-user channels, availability of CSI at the

encoders and/or at the decoder reveals many difficult problems, especially if the

information available at the encoders are asymmetric.

In both feedback and side information problems, mainly due to the nature of the
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CHAPTER 1. INTRODUCTION 2

information structures available to the decision makers (encoders and decoders), tools

from stochastic and decentralized control theory have been popular in recent years.

Furthermore, as there is an increased tendency towards cooperative communications

and networked systems, it is believed that both of these fields will play an important

role to understand information theoretic questions in these areas. We herein inves-

tigate coding schemes that use stochastic and decentralized control theory to some

extent. We first present the most relevant contributions in the literature.

1.1 Literature Review

1.1.1 Feedback

When a single-user channel has no memory, i.e., the noise process corrupting the

channel input has no statistical dependence over time, it is known that feedback does

not help to increase the capacity [Sha56]. Although, in general, feedback increases

the capacity of channels when there is memory, in [Ala95], it is shown that feedback

does not increase the capacity of discrete channels with modulo additive noise where

the noise process has arbitrary memory (not necessarily stationary or ergodic). It

is also shown that for any channel with memory satisfying the symmetry conditions

defined in [AF94], feedback does not increase its capacity. Recently, it has been shown

that feedback does not increase the capacity of the compound Gilbert-Elliot channel

[SP09], which is a family of finite-state Markov (FSM) channels.

In a more recent work, it has been shown that it is possible to formulate the

computation of feedback capacity as a dynamic programming problem and therefore

it can be solved by using the value iteration algorithm under information stability
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conditions [TM09],[Tat00]. In [PWG09], finite-state channels with feedback, where

feedback is a time-invariant deterministic function of the output samples, is consid-

ered. It is shown that if the state of the channel is known both at the encoder and

the decoder then feedback does not increase capacity. In [YKT05] and [CB05], di-

rected information is used to calculate the feedback capacity of some classes of FSM

channels. In particular, the channel state is assumed in [YKT05] to be a determin-

istic function of the previous state and input; whereas in [CB05] the channel state is

assumed to be a deterministic function of the output. In addition to these results, it

has also been shown that feedback does not increase the capacity for a binary erasure

channel with Markovian state [DG06].

Although feedback does not help increase the capacity of discrete memoryless

channels (DMCs), it does increase the capacity of memoryless MACs [GW75], [CL81]

due to the user cooperation through channel outputs. However, there exists no single

letter characterization, i.e., an expression that does not depend on the block length

of the coding scheme (see also [CK81, pg.259-261] for a detailed discussion), of the

capacity region of MAC with feedback even for the simplest setup; two-user, mem-

oryless and perfect feedback. This problem has attracted much attention in recent

years and many achievability results, i.e., inner bounds to the capacity region, as well

as an interpretation of an existing inner bound from a stochastic control point of view

[AS12] have been established.

1.1.2 State Side Information

Modeling communication channels with a state process, which governs the channel

behaviour, fits well for many physical scenarios and in addition to channel output
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feedback, communication with state feedback has been widely motivated in both

single and multi-user communications. For single-user channels, the characterization

of the capacity with various degrees of channel state information at the transmitter

(CSIT) and at the receiver (CSIR) is well understood. Among them, Shannon [Sha58]

provides the capacity formula for a discrete memoryless channel with causal noiseless

CSIT, where the state process is independent and identically distributed (i.i.d.), in

terms of Shannon strategies (random functions from the state space to the channel

input space). In [GP80], Gel’fand and Pinsker consider the same problem with non-

causal side information and establish a single-letter capacity formula. In [Sal92], noisy

state observation available at both the transmitter and the receiver is considered and

the capacity under such a setting is derived. Later, in [CS99], this result is shown to

be a special case of Shannon’s model and the authors also prove that when CSIT is

a deterministic function of CSIR, optimal codes can be constructed directly on the

input alphabet. In [EZ00], the authors examine the discrete modulo-additive noise

channel with causal CSIT which governs the noise distribution, and they determine

the optimal strategies that achieve channel capacity. In [GV97], fading channels with

perfect channel state information at the transmitter are considered and it is shown

that with instantaneous and perfect CSI, the transmitter can adjust the data rates

for each channel state to maximize the average transmission rate. In [YT07], a single

letter characterization of the capacity region for single-user finite-state Markovian

channels with quantized state information available at the transmitter and full state

information at the decoder is provided.
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The literature on state dependent multiple access channels with different assump-

tions of CSIR and CSIT (such as causal vs non-causal, perfect vs imperfect) is exten-

sive and the main contributions of the current thesis have several interactions with

the available results in the literature, which we present in Section 1.2. Hence, we

believe that in order to suitably highlight the contributions of this thesis, it is worth

to discuss the relevant literature for the multi-user setting in more detail. To start,

[DN02] provides a multi-letter characterization of the capacity region of time-varying

MACs with general channel statistics (with/without memory) under a general state

process (not necessarily stationary or ergodic) and with various degrees of CSIT and

CSIR. In [DN02], it is also shown that when the channel is memoryless, if the en-

coders use only the past k asymmetric partial (but not noisy) CSI and the decoder

has complete CSI, then it is possible to simplify the multi-letter characterization to a

single letter one [DN02, Theorem 4]. In [Jaf06], a general framework for the capacity

region of MACs with causal and non-causal CSI is presented. More explicitly, an

achievable rate region is presented for the memoryless state-dependent MAC with

correlated CSI and the sum-rate capacity is established under the condition that the

state information available to each encoder are independent. In [CS05], MACs with

complete CSIR and noncausal, partial, rate limited CSITs are considered. In particu-

lar, for the degraded case, i.e., the case where the CSI available at one of the encoders

is a subset of the CSI available at the other encoder, a single letter formula for the

capacity region is provided and when the CSITs are not degraded, inner and outer

bounds are derived, see [CS05, Theorems 1, 2]. In [CY11] state-dependent MAC in

which transmitters observe asymmetric partial quantized CSI causally, and the re-

ceiver has full CSI is considered and a single letter characterization of the capacity
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region is obtained. In [LS13b], memoryless state-dependent MACs with two indepen-

dent states (see also [LS13a] for the common state), each known causally and strictly

causally to one encoder, is considered and an achievable rate region, which is shown

to contain an achievable region where each user applies Shannon strategies, is pro-

posed. In [LSY13], another achievable rate region for the same problem is proposed

and in [LS] it is shown that this region can be strictly larger than the one proposed

in [LS13b]. In [LS13b], it is also shown that strictly causal CSI does not increase the

sum-rate capacity. In [BSP12], the finite-state Markovian MAC with asymmetric de-

layed CSITs is studied and its capacity region is determined. In [SK05], the capacity

region of some multiple-user channels with causal CSI is established and inner and

outer capacity bounds are provided for the MAC. Another active research direction

on the state-dependent MAC regards the so-called cooperative state-dependent MAC

where there exists a degraded condition on the message sets. In particular, [SBSV08]

and [KL07] characterize the capacity region of the cooperative state-dependent MAC

with states non-causally and causally available at the transmitters. More recent re-

sults on the cooperative state-dependent MAC problem include [ZPS11], [ZPSS] and

[PSSB11].

1.2 Contributions and Connections with the Lit-

erature

1.2.1 Feedback

Considering the structure in typical communication channels and the results in the

literature that we presented above, it is worth to look for the most general notion of
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symmetry for channels with memory under which feedback does not increase capacity.

With this motivation, we first study the feedback capacity of a class of symmetric FSM

channels, which we call “quasi-symmetric” FSM channels, and prove that feedback

does not help increase their capacity. This result is shown by demonstrating that for

an FSM channel satisfying the symmetry conditions defined in the thesis, its feedback

capacity is achieved by an independent and uniformly distributed (i.u.d.) input which

implies that its non feedback capacity is also achieved by uniform input distribution.

The symmetry conditions for this result is then relaxed by allowing the receiver to

observe full CSI. These results are demonstrated in Chapter 3.

A by-product contribution of this result is that the channel capacity is given as

a difference of the output and noise entropy rates, where the output is driven by the

i.u.d. input and is also hidden Markovian. Thus, the capacity can be easily evaluated

using existing algorithms for the computation of entropy and information rates in

hidden Markov channels (e.g., see [ALV+06]).

1.2.2 State Side Information

The succeeding chapters, Chapters 4 and 5, focus on multi-user models with asym-

metric CSI. In particular, Chapter 4 considers several scenarios where the encoders

and the decoder observe various degrees of noisy CSI. The essential requirement we

impose is that the noisy CSI available to the decision makers is realized via the cor-

ruption of CSI by different noise processes, which gives a realistic physical structure of

the communication setup. We herein note that the asymmetric noisy CSI assumption

is acceptable as typically the feedback links are imperfect and sufficiently far from

each other so that the information carried through them is corrupted by different
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(independent) noise processes. It should also be noted that asymmetric side infor-

mation has many applications in different multi-user models. Finally, what makes

(asymmetric) noisy setups particularly interesting are the facts that

(i) No transmitter CSI contains the CSI available to the other one;

(ii) CSI available to the decoder does not contain any of the CSI available to the

two encoders.

When existing results, which provide a single letter capacity formulation, are exam-

ined, it can be observed that most of them do not satisfy (i) or (ii) or both (e.g.,

[CY11], [DN02], [Jaf06], [CS05], [BSP12]). Nonetheless, among these, [DN02] dis-

cusses the situation with noisy CSI and makes the observation that the situation

where the CSITs and CSIR are noisy versions of the state St can be accommodated

by their models. However, they also note that if the noises corrupting transmitters

and receiver CSI are different, then the encoder CSI will, in general, not be con-

tained in the decoder CSI. Hence, motivated by similar observations in the literature

(e.g., [Jaf06]), we partially treat the scenarios below and provide inner and outer

bounds, which are tight for the sum-rate capacity, for scenario (1) below and provide

a single-letter characterization for the capacity region of the latter scenarios:

(1) The state-dependent MAC in which each of the transmitters has an asymmetric

causal noisy CSI and the receiver has complete CSI (Theorems 4.2.1, 4.2.2 and

Corollary 4.2.1).

(2) The state-dependent MAC in which each of the transmitters has an asymmetric

non-causal noisy CSIT which is a deterministic function of the CSIR at the

receiver (Theorem 4.2.3).
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(3) The state-dependent MAC in which each of the transmitters has an asymmet-

rically delayed and asymmetric noisy CSI and the receiver has complete CSI

(Theorem 4.2.4).

(4) The state-dependent MAC with degraded message set where both transmitters

transmit a common message and one transmitter (informed transmitter) trans-

mits a private message. The informed transmitter has causal noisy CSI, the

other encoder has a delayed noisy CSI and the receiver has various degrees of

CSI (Theorems 4.2.5 and 4.2.6).

Let us now briefly position these contributions with respect to the available results

in the literature. The sum-rate capacity determined in (1) can be thought as an

extension of [Jaf06, Theorem 4] to the case where the encoders have correlated CSI.

The causal setup of (2) is solved in [CY11]. The solution that we provide to the

non-causal case partially solves [CS05] and extends [Jaf06, Theorem 5] to the case

where the encoders have correlated CSI. Furthermore, since the causal and non-causal

capacities are identical for scenario (2), the causal solution can be considered as an

extension of [CS99, Proposition 1] to a noisy multi-user case. Finally, (4) is an

extension of [SBSV08, Theorem 4] to a noisy setup.

As it is mentioned above, for the multi-user state-dependent channels, the capacity

region is not known in general but, what is known is that in the causal CSIT case

Shannon strategies are in general suboptimal (e.g., see [LS13a]). On the other hand,

for only few scenarios, it is known that Shannon strategies are optimal for the sum-

rate capacity. When these scenarios are examined, it can be seen that the optimality

is realized under the situations of either CSITs are independent (e.g., see [Jaf06],

[LS13b]) or whenever CSITs are correlated, full CSI is available at the receiver (e.g.,
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see Chapter 4). Hence, a natural question to ask is what is the most general condition

under which Shannon strategies are optimal in terms of sum-rate capacity. Chapter 5

explores this condition and shows that when the state processes are asymmetric,

Shannon strategies are optimal if the decoder is provided with some information

which makes the CSITs conditionally independent.

With this result at hand, the next step is to investigate what is the minimum rate

required to transmit such information to the receiver when there is no CSIR. This

chapter also characterizes the rate required to transmit this information by using the

lossless CEO approach [GP79] and by adopting the recent proof technique of [LS13b,

Theorem 1].

1.3 Organization of Thesis

We proceed by introducing a short background chapter. We discuss the feedback

capacity of a class of symmetric channels with memory in Chapter 3. Chapter 4

presents the results on the state dependent multiple access channel where the en-

coders and the decoder have several degrees of asymmetric noisy state information.

In Chapter 5 we present the loss of optimality of using memoryless strategies for the

sum-rate capacity in a state dependent multiple access channel scenario when there

is no CSI at the receiver. Chapter 6 concludes and outlines future work.



Chapter 2

Background and Fundamental

Results

This chapter contains basic material on channel coding and capacity. In Section 2.1,

we first give an overview for the notation and conventions which will be used through-

out the thesis. In Section 2.2, we introduce standard typicality definitions that will be

used in the proofs throughout the thesis and in Section 2.4, we discuss fundamental

results on channel coding under feedback and side information.

2.1 Notations and Conventions

Throughout the thesis, we will use the following notations. A random variable will

be denoted by an upper case letter X and its particular realization by a lower case

letter x. For a vector v, and a positive integer i, vi will denote the i-th entry of

v, while v[i] = (v1, · · · , vi) will denote the vector of the first i entries and v[i,j] =

(vi, · · · , vj), i ≤ j will denote the vector of entries between i, j of v. For a finite

11
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set A and n ∈ N the n-fold Cartesian product A’s will be denoted by An and

P(A) will denote the simplex of probability distributions over A. For a positive

integer n, we shall denote by A(n) :=
⋃

0<s<nAs the set of A-strings of length smaller

than n. Probability distributions are denoted by P (·) and subscripted by the name

of the random variables and conditioning, e.g., PU,T |V,S(u, t|v, s) is the conditional

probability of (U = u, T = t) given (V = v, S = s). For any set A, Ac will denote

its complement and its size will be denoted by |A|. We denote the indicator function

of an event E by 1{E}. The probability of some events, say Pr(E), taken under the

distribution PX[n]
(·) on X n shall be interpreted as Pr(E) =

∑
x[n]∈Xn PX[n]

(x[n])1{E}.

All sets considered hereafter are finite.

2.2 Relevant Definitions

In a broad sense, a communication system consists of three parts: The source(s),

the destination(s) and the channel(s) which consist of noisy (in general) transmission

mediums to transfer the signal from the source(s) to the destination(s) and char-

acterised by the triplet (X , pC(y|x),Y) where X and Y are the input and output

alphabets, respectively. The goal is to reconstruct the source(s) at some or all desti-

nation(s) with arbitrary low error probability. Let us make these notions precise in

a single source, single destination and single channel scenario. Let M be the source

which is uniformly distributed in the finite set M.

Definition 2.2.1. An (n, 2nR) code with blocklength n and rate pair R for a channel,

(X , pC(y|x),Y), consists of

(1) A sequence of mappings for the encoder
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φt :M→ X , t = 1, 2, ..., n;

2) An associated decoding function

ψ : Yn →M.

The system’s probability of error, P
(n)
e , is given by

P (n)
e =

1

2nR

2nR∑
m=1

Pr
(
ψ(Y[n]) 6= m|M = m

)
.

A rate R is achievable if for any ε > 0, there exists, for all n sufficiently large an

(n, 2nR) code such that 1
n

log |M| ≥ R > 0 and at the same time P
(n)
e ≤ ε. The

capacity, C, is defined to be the supremum of all achievable rates (for extending

this definition to more than one sources and destinations see, for example, Defini-

tion 4.2.1).

For discrete memoryless channels (DMCs), Shannon’s noisy channel coding theo-

rem [Sha48] shows that

C = max
PX(·)

I(X;Y ) (2.1)

where I(X;Y ) is the mutual information between the random variables X ∈ X and

Y ∈ Y where the distribution of the random variable Y , PY (·), is induced by PX(·)

and pC(y|x).

It should be observed that this characterization is complete in the sense that it

shows that for R < maxPX(·) I(X;Y ), there exists a code achieving an arbitrarily low

error probability for sufficiently large n and for R > maxPX(·) I(X;Y ) there does not

exist a code satisfying 1
n

log |M| ≥ R > 0 and at the same time P
(n)
e ≤ ε for n→∞

and ε→ 0.

One of the standard tools in obtaining inner bounds, i.e., a set of achievable rates,
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is to look at the behaviour of the sequences generated under some distribution in

the large blocklength regime and to classify these sequences under this behaviour.

Particular sets of interest in this domain are referred to as”typical sets”. Let us recall

two notions of typical sets.

Definition 2.2.2. [CT06, Section 15.2] Let k ≥ 1 be finite and (X1, · · · , Xk) denote a

collection of random variables with some fixed joint distribution PX1,··· ,Xk(x1, · · · , xk).

Let U denote an ordered subset of {X1, · · · , Xk} with respect to the indices. Consider

n independent copies of U and denote these by U. Thus, Pr(U = u) =
∏n

i=1 P (Ui =

ui), u ∈ Un. As an example, if U = (Xj, X l) then

Pr(U = u) = Pr(Xj
[n], X

l
[n] = xj[n], x

l
[n])

=
n∏
i=1

PXj
i ,X

l
i
(xji , x

l
i).

Then, the set An
ε of ε-typical n-sequences {(x1

[n], · · · , xk[n])} with respect to the distri-

bution PX1,··· ,Xk(x1, · · · , xk) is defined by

An
ε

(
X1, · · · , Xk

)
:= An

ε

=

{
(x1

[n], · · · , xk[n]) ∈ X n
1 × · · · X n

k :

| − 1

n
log (PU(u))−H(U)| < ε,∀U ⊆ {X1, · · · , Xk}

}
where H(·) denotes the entropy.

To give an example for this definition, let An
ε (U) denotes the restriction of An

ε to

the coordinates of U and when U = (X1, X2), we have

An
ε (X1, X2) =

{
(x1

[n], x
2
[n]) : | − 1

n
logPX1

[n]
,X2

[n]
(x1

[n], x
2
[n])−H(X1, X2)| < ε,

| − 1

n
logPX1

[n]
(x1

[n])−H(X1)| < ε, | − 1

n
logPX2

[n]
(x2

[n])−H(X2)| < ε

}
.

Definition 2.2.2 can be further weakened and replaced with a classification according
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to the empirical behaviour of the sequences.

Definition 2.2.3. [CK81] Let N(a|k[n]) denote the number of occurrences of the letter

a in the vector k[n]. Then, for a given PK defined over K, the δ-typical set is defined

as

T δK :=
{
k[n] ∈ Kn : | n−1N(a|k[n])− PK(a) | ≤ δ, ∀a ∈ K,

N(a|k[n]) = 0, if PK(a) = 0
}
.

Similarly, for a given joint distribution PK,L, the conditional δ-typical set is

T δK|L :=
{
k[n] ∈ Kn : | n−1N(a, b|k[n], l[n])− n−1N(b|l[n])PK|L(a|b) | ≤ δ,

∀(a, b) ∈ K × L, N(a, b|k[n], l[n]) = 0, if PK|L(a|b) = 0
}
.

We have the following lemma.

Lemma 2.2.1. [CK81, Lemma 2.10] If l[n] ∈ T δL and k[n] ∈ T δ
′

K|L then (l[n], k[n]) ∈

T δ+δ′K,L and consequently k[n] ∈ T δ
′′

K where δ
′′

:= (δ + δ′)|L|.

Both of the typical sets, i.e., Definition 2.2.2 and Definition 2.2.3, will be used in

the thesis and following [CK81], δ in the Definition 2.2.3 will depend on n such that

δn → 0,
√
nδn →∞, and n→∞. (2.2)

Furthermore, the following convention will be used throughout the thesis.

Delta-Convention [CK81, Convention 2.11]: To every set X and respectively

ordered pair of sets (X ,Y), there is a given sequence {δn}∞n=1 satisfying (2.2). Typical

sequences are understood with these δn’s. The sequences {δn} are considered as fixed

and dependence on them will be omitted. Accordingly, the δ will be omitted from

the notation. In the situations where typical sequences should generate typical ones,

we assume that the corresponding δn’s are chosen according to Lemma 2.2.1.
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When a rate pair, (Ra, Rb), is shown to be achievable under typicality decoding,

one needs to investigate the behaviour of the probability of the error events of the

encoding and decoding processes under the joint typicality coding and decoding. A

considerably rich set of results is available in the literature and for the purpose of this

thesis, we only present the most relevant ones.

2.3 Two Typicality Lemmas

Arguably, one of the main intuitions under the joint typicality results can be summa-

rized by the fact that when the rate of codebook construction satisfy some criterion,

the asymptotic behaviour of the sequences, which are independently and identically

distributed generated, are identical. The following result has such an interpretation.

Lemma 2.3.1. Covering Lemma, [EGK11, Lemma 3.3] Let (U,X, X̂) distributed

according to PU,X,X̂(u, x, x̂) and δ < δ̃. Let (U[n], X[n]), distributed according to

PU[n],X[n]
(u[n], x[n]), be a pair of arbitrarily distributed random variables such that

Pr
(
(U[n], X[n]) ∈ T δU,X

)
→ 1 as n → ∞ and let X̂[n](m), m ∈ A, |A| ≥ 2nR, be

random sequences conditionally independent of each other and of X[n] given U[n], each

distributed according to
∏n

i=1 PX̂i|Ui(x̂i|ui). Then, there exists η(δ̃)→ 0 as δ̃ → 0 such

that

Pr
(

(U[n], X[n], X̂[n](m)) /∈ T δ̃
U,X,X̂

, ∀m ∈ A
)
→ 0

as n→ 0, if R > I(X; X̂|U) + η(δ̃).

This lemma shows that if we consider the random sequences X̂[n](m), m ∈ A,

|A| ≥ 2nR, as the reproduction of the source sequences X[n] and if R > I(X; X̂|U)

then there is at least one reproduction sequence which is jointly typical with the source
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sequence. The proof follows from the properties of joint typical sets; see [EGK11],

which we omit.

One can alternatively characterize the probability of the event that independent

(or conditionally independent) sequences being jointly typical. By using the proper-

ties of mutual information and joint entropy, the following result can be obtained.

Lemma 2.3.2. [Gas04, Lemma 8] If (X̃[n], Ỹ[n], Z̃[n]) ∼ PX[n]
(x[n])PY[n](y[n])PZ[n]

(z[n]),

i.e., they have the same marginals as PX[n],Y[n],Z[n]
(x[n], y[n], z[n]) but they are indepen-

dent, then

Pr
((
X̃[n], Ỹ[n], Z̃[n]

)
∈ An

ε

)
≤ 2−n[I(Z,X;Y )+I(Z,Y ;X)−I(X;Y |Z)−δ]

for some δ → 0 as ε→ 0 and n→∞.

It is worth to present a short proof of the above lemma, which can be shown, for

example, following similar steps as in [CT06, Theorem 15.2.3], for a better interpre-

tation of the result. Note that

Pr
((
X̃[n], Ỹ[n], Z̃[n]

)
∈ Anε

)
=

∑
(x[n],y[n],z[n])∈Anε

PX[n]
(x[n])PY[n](y[n])PZ[n]

(z[n])

(i)

≤ 2n(H(X,Y,Z)+ε)2−n(H(X)−ε)2−n(H(Y )−ε)2−n(H(Z)−ε)

= 2−n(H(X)+H(Y )+H(Z)−H(X,Y,Z)−4ε)

where (i) follows from [CT06, Theorem 15.2.1]. The proof is complete by observing

that the exponent in the last step can be written as the exponent in the lemma.

The above two lemmas will be invoked in Chapter 5.

While the above typicality definition and related lemmas are required for the

achievability proof, the following theorem, which relates the error probability to the

entropy, is used in the converse proofs, i.e., the proofs that show one cannot do better,
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of many coding theorems as well as in the results of this thesis.

Theorem 2.3.1 (Fano’s Inequlaity). [EGK11, Section 2.1] Let (X, Y ) be distributed

according to PX,Y (x, y) and Pe := Pr(X 6= Y ). Then

H(X|Y ) ≤ H(Pe) + Pe log |X | ≤ 1 + Pe log |X |.

2.4 Channel Coding Results

2.4.1 Channel Coding with Feedback

The extension of the Definition 2.2.1 to the other scenarios is done by letting the

decision makers, i.e., the encoder(s) and the decoder(s), use the information provided

to them to generate their output. In this manner, feedback information theory con-

siders the situation that the encoder(s) are provided with past channel outputs. Since

the encoder can learn and estimate the channel by observing the channel outputs, it

is expected that feedback may increase capacity. However, Shannon [Sha56] showed

that for DMCs, the feedback and non-feedback capacities are identical and hence,

feedback does not increase the capacity. This result can be shown as follows. Con-

sider a DMC defined by (X , pC(y|x),Y) and let CFB denote its feedback capacity.

The feedback capacity is defined to be the supremum of all achievable rates under the

feedback coding policy; Xi = ψi
(
W,Y[i−1]

)
where {ψi : {1, 2, ..., 2nR}×Y i−1 → X}ni=1

are the encoding functions, W is the message (governed by a uniform distribution),

Y[i−1] are the past channel outputs and Xi is the channel input at time i. It is obvious

that CFB ≥ C. On the other hand, from Fano’s inequality and following the standard

steps of the converse to the channel coding theorem, we have for any achievable R

nR = H(W ) = H(W |Y[n]) + I(W ;Y[n]) ≤ 1 + Pe
(n)nR + I(W ;Y[n]).
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Observe now that

I(W ;Y[n]) =
n∑
i=1

H(Yi|Y[i−1])−H(Yi|Y[i−1],W )

(i)
=

n∑
i=1

H(Yi|Y[i−1])−H(Yi|Y[i−1],W,Xi)

(ii)
=

n∑
i=1

H(Yi|Y[i−1])−H(Yi|Xi)

(iii)

≤
n∑
i=1

H(Yi)−H(Yi|Xi)

(iv)

≤ nC

where (i) is due to Xi = ψi
(
W,Y[i−1]

)
, (ii) is due to channel being memoryless, (iii)

is due to the fact that conditioning does not increase the entropy and (iv) follows

from (2.1). Hence, nR ≤ 1 + Pe
(n)nR + nC and dividing both sides by n and taking

the n → ∞ yields R ≤ C and CFB = C. Note that the critical step in the above

derivation is that the term Y[i−1] could be ignored without loss of optimality. When

the channel has memory, this action can not be performed. For a derivation of a

converse for channels with memory see Chapter 3.

Notice that the situation for the memoryless multi-user channels with output

feedback is completely different. Feedback can increase the capacity in the multi-user

scenarios; e.g., see [GW75] and [CL81]. This is because in the multi-user setup the

encoders can cooperate via the channel output feedback to remove the uncertainty

of the decoder about the messages. Although this cooperation based coding schemes

yields nice inner bounds, for many of the multi-user channels with feedback, complete

characterizations for the capacity regions are not available.

In some situations, such as the case where the feedback channel is restrictive,

the decoder might wish actively to send his local information on the channel to the
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encoder who may not have access to the same information. These types of problems

have been widely studied and in the next section we provide a brief discussion for a

set of these results.

2.4.2 Channel Coding with Side Information

Consider a channel whose conditional output probability distribution is controlled

by a process, called state. These type of channels can help model many problems,

depending on some assumptions regarding the channel state and on the availability

and quality (complete or partial) of the side information (CSI) at the transmitter

(CSIT) and/or the receiver (CSIR) [KSM07]. From the transmitter’s perspective,

a fundamental difference appears if the side information is available in a causal or

non-causal manner. In the causal case, at each time instant, the encoder can only

use the past and the current CSI (which can be complete or partial), whereas in

the non-causal case, the transmitter knows in advance the realization of the entire

state sequence from the beginning to the end of the block. The causal model is first

introduced by Shannon [Sha58] and he derived an expression for the capacity. We

now discuss this result in more detail. We consider the channel depicted in Figure

2.1. The channel input, output and state process belong to the finite sets, X ,Y and

S, respectively. The setup considered in [Sha58] assumes the state is memoryless,

independent of W and hence, we have

PY[n]|X[n],S[n]
(y[n]|x[n], s[n]) =

n∏
t=1

PYt|Xt,St(yt|xt, st) (2.3)

PS[n]
(s[n]) =

n∏
t=1

PSt(st). (2.4)
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- - -

6

-
φt(W,S[t])
Encoder Channel

PY |X,S(Yt|Xt, St) ψ(Y[n])
Decoder ŴXtW Yt

S[t]

Figure 2.1: Single-user channel with causal side information

For this communication a code is defined similar to the Definition 2.2.1 except the

encoding function is changed to

φt :W ×St → X , t = 1, 2, ...n.

The capacity of this channel is given by

C = max
PT (·)

I(T ;Y ) (2.5)

where the random variable T ∈ T represents a random mapping from the channel

state process to the channel input process and T denotes the set of all possible

mappings; |T | = |X ||S|, PT (·) is a distribution on T and the joint distribution of

(Y, S,X, T ) satisfies

PY,S,X,T (y, s, x, t) = PY |X,S(y|t(s), s)1{x=t(s)}PS(s)PT (t). (2.6)

Once we have the capacity result for an ordinary DMC, this result follows from the

following observation. Note that Xt = Tt(St) and assuming that T is independent of

S, we have

PY[n]|T[n](y[n]|t[n]) =
∑
s[n]

PY[n]|S[n],T[n](y[n]|s[n], t[n])PS[n]
(s[n])



CHAPTER 2. BACKGROUND 22

=
∑
s[n]

n∏
t=1

PYt|Y[t−1],S[n],T[n](yt|y[t−1], s[n], t[n])PSt(st)

=
∑
s[n]

n∏
t=1

PYt|St,Xt(yt|st, tt(st))PSt(s[t]) (2.7)

=
n∏
t=1

PYt|Tt(yt|tt). (2.8)

Therefore, we can define an equivalent (memoryless) channel between T ∈ T and Y ∈

Y and described explicitly by PYt|Tt(yt|tt) =
∑

st∈S PYt|St,Xt(yt|st, tt(st))PSt(s[t]). In

order to complete the proof, which follows from (2.1), we need to identify the random

variable T . This follows from the fact that since for all t ≥ 1, Xt = φt
(
W, S[t]

)
=

φt
(
W, S[t−1], St

)
, we can define Tt ∈ T satisfying (2.6) by putting, for every s ∈ S,

Tt(s) := φt
(
W, S[t−1], s

)
. (2.9)

Based on this, the above result demonstrates that the capacity of this channel is

equal to the capacity of an ordinary DMC, with the same output alphabet but with

an extended input alphabet. A particular realization of T , say t : S → X , is termed

as Shannon strategy.

In [Sal92], Shannon’s result is extended to the case where the transmitter and

the receiver has access to noisy causal CSI and the capacity is derived. However,

as shown in [CS99], one can define an equivalent channel that is governed by the

process available at the transmitter, and therefore, the result in [Sal92] can be shown

to reduce to the Shannon’s result. More explicitly, assuming that (2.3) and (2.4) still

hold, Xt = φt

(
W, Ŝ[t]

)
, Ŵ = ψ

(
Y[n], Š[n]

)
, i.e, the receiver has also access to the

noisy CSI, and

PŜ[n],Š[n],S[n]
(ŝ[n], š[n], s[n]) =

n∏
i=1

PŜt,Št,St(ŝt, št, st), (2.10)
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where Ŝt ∈ Ŝ, Št ∈ Š. In [Sal92] the capacity for this setup is shown to be

C = max
PT̂ (·)

I(T ;Y |Š) (2.11)

where T̂ ∈ T̂ , |T̂ | = |X ||Ŝ|, represents a random mapping between Ŝ and X , and the

joint distribution of (Y, S, Ŝ, Š, X, T ) satisfies

PY,S,Ŝ,Š,X,T (y, s, ŝ, š, x, t) = PY |X,S(y|x, s)1{x=t(ŝ)}PS,Ŝ,Š(s, ŝ, š)PT (t). (2.12)

In order to demonstrate that the above setup is no more general than Shannon’s

setup in which perfect CSI is available at the transmitter, define Y̌ := (Y, Š) as the

modified output and consider the following channel conditional distribution

PY,Š|Ŝ,X(y, š|ŝ, x) =
∑
s∈S

PY,Š|Ŝ,X,S(y, š|ŝ, x, s)PS|Ŝ,X(s|ŝ, x)

=
∑
s∈S

PY |X,S(y|x, s)PS,Š|Ŝ(s, š|ŝ). (2.13)

Observing that I(T ; Š) = 0, it is now clear to see that the channel described by (2.13)

is the same type as that is studied by Shannon [Sha58].

In addition to assuming that the transmitter has causal side information, there

might be some scenarios where the transmitter has non-causal side information. This

problem is first motivated by the modelling of defective cells, where the positions of

the defective cells are considered to be the CSI, in computer memory [KT74] and

later the capacity for this model is determined in [GP80].

For the problem definition, we keep the setup of causal CSI, (2.3) and (2.4) also

hold, but now we have Xt = φt
(
W,S[n]

)
. Then, the capacity for this channel is given

by

C = max
PU,X|S

[I(U ;Y )− I(U ;S)] (2.14)
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where U is an auxiliary random variable with cardinality U ≤ |X ||S|+1 and the joint

distribution of (Y, U, S,X) satisfies the Markov condition U → (X,S)→ Y . We now

briefly describe the achievability and the converse proof of this result.

The novel approach in the converse of (2.14) is to introduce an auxiliary random

variable. More explicitly, from Fano’s inequality and following standard steps one

can obtain R ≤ 1
n

∑n
i=1 I(W;Yi|Y[i−1]) + εn where εn → 0 as n→ 0. Then

n∑
i=1

I(W;Yi|Y[i−1]) ≤
n∑
i=1

I(W, Y[i−1];Yi)

=
n∑
i=1

[
I(W, Y[i−1], S[i+1,n];Yi)− I(S[i+1,n], Yi|W, Y[i−1])

]
=

n∑
i=1

[
I(W, Y[i−1], S[i+1,n];Yi)− I(Si;Y[i−1]|W, S[i+1,n])

]
=

n∑
i=1

[
I(W, Y[i−1], S[i+1,n];Yi)− I(Si;Y[i−1],W, S[i+1,n])

]
where the third step follows from the Csiszár sum identity [EGK11] and the last step

is valid since Si is independent of (W, S[i+1,n]). Now, let Ui := (W, S[i+1,n]) and hence,

R ≤ 1

n

n∑
i=1

[I(Ui;Yi)− I(Ui;Si)] + εn (2.15)

where as desired Ui → (Xi, Si)→ Yi ∀i = 1, · · · , n. This implies

R ≤ max
PU,X|S

[I(U ;Y )− I(U ;S)] + εn. (2.16)

The proof is completed by invoking the support lemma [CK81] to make the cardinality

of U finite.

For the achievability of (2.14), the idea of random binning is used. This scheme

was applied to many problems in information theory and the main motivation of

the binning idea is to distribute a set of codewords into subsets (called bins) and

these bins themselves are also randomly constructed according to a specified rate
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which are indexed by a different message. To make this argument more precise, let

us show that a rate Rnc ≤ maxPU,X|S [I(U ;Y ) − I(U ;S)] is achievable via random

binning for the above problem. We first construct the codewords; for each message

w ∈ {1, · · · , 2nRnc}, generate 2nRb independent and identically distributed codewords

u[n] according to PU(u). These codewords form the bins. Index these codewords by

{u[n][w, 1], · · · , u[n][w, 2
nRb ]}. These codewords are distributed to the encoder and

the decoder. Given the state sequence s[n], in order to send the message w, the

encoder looks for a codeword in bin w that is jointly typical with s[n], say u[n][w, l].

In the case when there is no codeword that is jointly typical, the encoder declares

an error. In the case there are more than one codewords, the encoder picks the

codeword with the smallest bin index. The encoder then generates the channel input

according to the xt = φt(ui[w, l], si), i = 1, · · · , n. The decoding is done by joint

typical decoding. In particular, after observing y[n], the decoder looks for the pair

of indices (ŵ, l̂) such that u[n][ŵ, l̂] is jointly typical with y[n]. If there are more

than one pair (ŵ, l̂) or there are no indices that are jointly typical then the decoder

declares an error. Observe now that there are two error events; the encoder and

the decoder error event: By the covering lemma, Lemma 2.3.1, the encoder’s error

event goes to zero if Rb > I(U ;S) and by the joint typicality lemmas the error event

at the decoder goes to zero if Rnc + Rb < I(U ;Y ). These two together imply that

Rnc ≤ maxPU,X|S [I(U ;Y )− I(U ;S)] is achievable.

Finally, it is worth to comment on the extension of the results for the single-user

channels that we presented above to the case of multi-user channels. Foremost, in

multi-user channels, the associated problems are mostly open. However, it is known

that the optimal structures of the solutions, such as Shannon strategis, do not hold
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in general when there are more than one user. Secondly, depending on the relation

between the CSI at the encoders as well as at the CSI at decoder, there might be

an initiative for the encoders to cooperate and hence increase the rates. Chapters 4

and 5 of the thesis discuss such scenarios and results in more detail.



Chapter 3

Single User Channels with

Feedback

In this chapter, we discuss feedback capacity of a class of finite-state Markov (FSM)

channels [Gal68] which encompass symmetry in their channel transition matrices.

Along this way, we first define symmetry for channels with memory, referred to as

quasi-symmetric FSM channels, and then show the existence of a hidden Markov

noise process, due to the symmetry characteristics of the channel, which is condi-

tionally independent of the input given the sate. As a result, the FSM channel can

be succinctly described as a function of input and noise, where the function is an

invertible map between the noise and output alphabets for a fixed input. With this

fact, the feedback capacity problem reduces to the maximization of entropy of the

output process. In the second step, we show that this entropy is maximized by a

uniform input distribution. It should be noted that for quasi-symmetric FSM chan-

nels, uniform inputs do not necessarily yield uniform outputs; this is a key symmetry

property used in previous works for showing that feedback does not increase capacity

27
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for symmetric channels with memory (e.g., [Ala95],[AF94]). Throughout this chapter,

we will represent a finite-state Markov source by a pair [S, P ], where S is the state

set and P is the state transition probability matrix. We will also be assuming that

the Markov processes in the paper are stationary, aperiodic and irreducible (hence

ergodic).

3.1 Feedback Capacity of Symmetric FSM Chan-

nels

When the communication channel is modeled via a state process, such as FSM chan-

nels, it might be assumed that some degree of CSI is available at the encoder and/or

decoder. In the rest of this section, it is assumed that CSI is not available at the

encoder and decoder. We treat the scenario where CSI is fully known at the decoder

in the next secrtion.

3.1.1 Quasi-Symmetric FSM Channel

A finite-state Markov (FSM) channel is defined by a pentad [X ,Y ,S, PS, C], where

X is the input alphabet, Y is the output alphabet, and the Markov process {Sn}∞n=1,

Sn ∈ S is represented by the pair [S, PS] where S is the state set and PS is the

state transition probability matrix. We assume that the sets X , Y and S are all

finite. The set C is a collection of transition probability distributions, pC(y|x, s), on

Y for each x ∈ X , s ∈ S. We consider the problem of communicating message

W ∈ {1, 2, · · · , 2nR} over the FSM channel (without or with the use of feedback)
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via a code of rate R and blocklength n,1 where W is uniformly distributed over

{1, 2, · · · , 2nR} and independent of S[n]. We assume that the FSM channel satisfies

the following properties under both the absence and presence of feedback:

(I) Markov Property: For any integer i ≥ 1.

PSi|S[i−1],Y[i−1],X[i−1],W (si|s[i−1], y[i−1], x[i−1], w) = PSi|Si−1
(si|si−1). (3.1)

(II) For any integer i ≥ 1,

PYi|,Si,Xi,S[i−1],X[i−1],Y[i−1],W (yi|si, xi, s[i−1], x[i−1], y[i−1], w) = pC(yi|si, xi) (3.2)

where pC(.|., .) is defined by C. When the channel is without feedback, we also assume

that the FSM channel satisfies:

(II.b) For any integer i ≥ 1,

PY[i−1]|X[i],S[i]
(y[i−1]|x[i], s[i]) = PY[i−1]|X[i−1],S[i−1]

(y[i−1]|x[i−1], s[i−1]). (3.3)

Note that due to Properties II and II.b, PY[n]|X[n],S[n]
(y[n]|x[n], s[n]) =

∏n
i=1 pC(yi|si, xi)

when the channel is without feedback. Furthermore, the non-feedback codewords X[n]

at the channel input are only a function of W (which is independent of S[n]); hence,

in the non-feedback scenario, the channel input {Xi} is also independent of S[n].

We are interested in a subclass of FSM channels where the channel transition

matrices, Qs 4=[pC(y|s, x)]xy, s ∈ S, carry some notion of symmetry which is similar

to the symmetry defined for DMCs as in the following.

Definition 3.1.1. A DMC with input alphabet X , output alphabet Y and channel

transition matrix Q = [pC(y|x)]xy is symmetric if the rows of Q are permutations of

each other and the columns are permutations of each other [CT06].

1Both feedback and non-feedback codes of rate R and blocklength n, which yield up to 2nR

codewords X[n] ∈ Xn for transmission over the channel, are explicitly defined in Section 3.1.2 in
terms of a pair of encoding and decoding functions.
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Definition 3.1.2. A DMC with input alphabet X , output alphabet Y and channel

transition matrix Q = [pC(y|x)]xy is weakly-symmetric if the rows of Q are permu-

tations of each other and all the column sums
∑

x pC(y|x) are identically equal to a

constant [CT06].

Definition 3.1.3. A DMC with input alphabet X , output alphabet Y and channel

transition matrix Q = [pC(y|x)]xy is quasi-symmetric if Q can be partitioned along

its columns into weakly-symmetric sub-arrays, Q̃1, Q̃2, . . . , Q̃m, with each Q̃i having

size |X | × |Yi|, where Y1 ∪ · · · ∪ Ym = Y and Yi ∩ Yj = ∅, ∀i 6= j [Ala99]. A

weakly-symmetric sub-array is a matrix whose rows are permutations of each other

and whose column sums are all identically equal to a constant.

Note that for a quasi-symmetric DMC, the rows of its entire transition matrix,

Q, are also permutations of each other. It is also worth pointing out that the

above quasi-symmetry2 notion for DMCs encompasses Gallager’s symmetry defini-

tion [Gal68, p.94]. A simple example of a quasi-symmetric DMC can be given by the

following (stochastic, i.e., with row sums equal to 1) transition matrix, Q, for which

a1 + a2 = 2a3 and a4 + a5 = 2a6, and it can be partitioned along its columns into two

weakly-symmetric sub-arrays

Q =



a1 a2 a3 a4 a5 a6

a3 a2 a1 a6 a5 a4

a2 a1 a3 a5 a4 a6

a3 a1 a2 a6 a4 a5


, Q̃1 =



a1 a2 a3

a3 a2 a1

a2 a1 a3

a3 a1 a2


, and Q̃2 =



a4 a5 a6

a6 a5 a4

a5 a4 a6

a6 a4 a5


.

2The capacity of a quasi-symmetric DMC is achieved by a uniform input distribution and it can

be expressed via a simple closed-form formula [Ala99]: C =
∑m
i=1 αiCi where αi

4
=
∑
y∈Yi

P (y|x) =

sum of any row in Q̃i, i = 1, · · · ,m, and Ci = log2 |Yi| − H
(

any row in the matrix 1
αi
Q̃i

)
, i =

1, · · · ,m.
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We can now define similar notions of symmetry for FSM channels.

Definition 3.1.4. (e.g., [Rez06, GV96]) An FSM channel is symmetric if for each

state s ∈ S, the rows of Qs are permutations of each other such that the row permu-

tation pattern is identical for all states, and similarly, if for each s ∈ S the columns

of Qs are permutations of each other with an identical column permutation pattern

across all states.

By considering the identical permutation pattern across the states, the above

definition can be extended to the other types of symmetries as follows.

Definition 3.1.5. An FSM channel is weakly-symmetric if for each state s ∈ S, Qs

is weakly-symmetric and the row permutation pattern is identical for all states.

Definition 3.1.6. An FSM channel is quasi-symmetric if for each state s ∈ S, Qs

is quasi-symmetric and the row permutation pattern is identical for all states.

To illustrate these definitions, let us consider the following conditional probability

matrices of a two-state quasi-symmetric FSM channel with X = {1, 2, 3, 4}, Y =

{1, 2, 3, 4, 5, 6} and S = {1, 2}:

Q1 =



a1 a2 a3 a4 a5 a6

a3 a2 a1 a6 a5 a4

a2 a1 a3 a5 a4 a6

a3 a1 a2 a6 a4 a5


, Q2 =



a′1 a′2 a′3 a′4 a′5 a′6

a′3 a′2 a′1 a′6 a′5 a′4

a′2 a′1 a′3 a′5 a′4 a′6

a′3 a′1 a′2 a′6 a′4 a′5


, (3.4)

where Q1 and Q2 are stochastic matrices. As it can be seen, Q1 and Q2 have the

same row permutation pattern and are both quasi-symmetric.

It directly follows by definition that symmetric and weakly symmetric FSM chan-

nels are special cases of quasi-symmetric FSM channels. Therefore, we focus on

quasi-symmetric FSM channels for the sake of generality.
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Let us define Z (which will serve as a noise alphabet) such that |Y| = |Z|. Then

for each state s, since the rows of Qs are permutations of each other, we can find

functions fs(.) : Z → [0, 1] and Φs(., .) : X × Y → Z that are onto given x (i.e., for

each x ∈ X , Φs(x, .) : Y → Z is onto), such that

fs(Φs(x, y)) = pC(y|x, s). (3.5)

Note that since each function Φs(x, .) : Y → Z is onto given x and since |Y| = |Z|,

then it is also one-to-one given x; i.e., Φs(x, y) = Φs(x, y
′) ⇒ y = y′. Thus Φs(x, .) :

Y → Z is invertible for each x ∈ X .

For the sake of completeness, we herein provide an explicit construction for the

functions fs(.) and Φs(., .). The construction is basically as follows: for each (x, y)

pair having identical channel conditional probability pC(y|x, s) under state s, Φs(x, y)

returns the same value z with fs(z) set to equal pC(y|x, s). More explicitly, let

X = {x(1), x(2), · · · , x(k)}, Y = {y(1), y(2), · · · , y(|Y|)}, Z = {z(1), z(2), · · · , z(|Y|)}, I =

{1, 2, · · · , k} and J = {1, 2, · · · , |Y|}. For s ∈ S, let qsi,j
4
=pC(y(j)|x(i), s), i ∈ I and

j ∈ J , be the entries of Qs. Since Qs is quasi-symmetric, then for each i = 1, 2, · · · , k,

there exists a permutation πsi : J → J on the column indices of the entries of the

ith row of Qs such that the first row of Qs is a permutation of every other row.

The row permutations are as follows. The first permutation π1 is set as the identity

function: πs1(j) = j for all j ∈ J . The remaining permutations for i = 2, · · · , k, are

given by πsi (1) = k where k is the smallest integer in J for which qs1,k = qsi,1, and

for j = 2, · · · , |Y|, πsi (j) = k′ where k′ is the smallest available (not yet assigned for

values 1, 2, . . . , j − 1) integer in J for which qs1,k′ = qsi,j. This assignment rule is valid

whether or not the rows of Qs contain identical entries. Specifically, if the ith row of

Qs (i ≥ 2) has d identical entries qsi,j1 = qsi,j2 = · · · = qsi,jd with j1 < j2 < · · · < jd
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in J , then (by the channel’s row symmetry) there exist integers l1 < l2 < · · · < ld

in J with qsi,j1 = qsi,j2 = · · · = qsi,jd = qs1,l1 = qs1,l2 = · · · = qs1,ld . In this case we set:

πsi (jt) = lt for t = 1, 2, . . . , d, and πsi (j) = k̃ where k̃ is the unique integer in J for

which qs
1,k̃

= qsi,j for j ∈ J \ {j1, j2, · · · , jd}. Then, fs(.) and Φs(., .) are given as

follows: Φs(x(i), y(j)) = z(πsi (j)) and fs(z(j)) = qs1,j, i ∈ I, j ∈ J .

Lemma 3.1.1. The function Φs(., .), as defined above together with fs(.) to satisfy

(3.5), is invariant with s.3

Proof. It directly follows from the construction that Φs(x(i), y(j)) = z(πsi (j)) = z(πs̃i (j)) =

Φs̃(x(i), y(j)), ∀s, s̃ ∈ S and ∀x(i) ∈ X , y(j) ∈ Y since by Definition 3.1.6, πsi (j) is

identical for all states.

Therefore, for a quasi-symmetric FSM channel, there exists a function Φ(., .) : X×

Y → Z that is invertible given x (i.e., for each x ∈ X , Φ(x, .) : Y → Z is invertible)

such that the random variable Z = Φ(X, Y ) has the conditional distribution

PZ|X,S(z|x, s) =
PZ,X,S(z, x, s)

PX,S(x, s)
=
PY,Z,X,S(y, z, x, s)

PX,S(x, s)

=
PZ|X,Y,S(z|x, y, s)pC(y|x, s)PX,S(x, s)

PX,S(x, s)
(a)
= pC(y|x, s) = fs(z). (3.6)

where y = ν(x, z) and ν(., .) : X×Z → Y is the inverse of Φ in the sense that ν(x, ·) =

Φ(x, ·)−1 for each x ∈ X , and (a) is due to the fact that PZ|X,Y,S(z|x, y, s) = 1. This

important observation first given in [Rez06], reduces the set of conditional probability

distributions which identifies the quasi-symmetric FSM channel to an |S|×|Z| matrix

3In the rest of thesis we use Φ(·, ·) instead of Φs(·, ·).
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T defined by

T [s, z] = fs(z). (3.7)

Therefore, for quasi-symmetric FSM channels, we have that for any n,

PZn|Xn,Sn(zn|xn, sn) = PZn|Sn(zn|sn) = T [sn, zn] . (3.8)

To make this statement explicit, let us consider the FSM channel given in (3.4). For

this channel, we can derive the functions z = Φ(x, y) and fs(z), as explicitly shown

above; for e.g., we have Φ(1, 1) = Φ(2, 3) = Φ(3, 2) = Φ(4, 2) = 1 and f1(1) = a1 and

f2(1) = a′1. Therefore, the channel conditional probabilities for each state can now

be defined by Φ and the matrix T , where

T =

 a1 a2 a3 a4 a5 a6

a′1 a′2 a′3 a′4 a′5 a′6

 .
Hence, the fundamental property for quasi-symmetric FSM channels is the exis-

tence of a noise process {Zn} given by Zn = Φ(Xn, Yn) such that Zn is independent

of Xn given Sn. The class of FSM channels having this property, when there is no

feedback, are termed variable noise channels [GV96].

The features that we have developed so far are valid for any quasi-symmetric FSM

channel. However, while discussing the feedback capacity of these channels we assume

that the channels also satisfy the following assumption.

Assumption 3.1.1. We assume that for a fixed y ∈ Y, the column sum
∑

x fs(Φ(x, y))

is invariant with s ∈ S:∑
x

fs(Φ(x, y)) =
∑
x

fs′(Φ(x, y)) ∀s, s′ ∈ S, (3.9)

where fs(Φ(x, y)) = pC(y|x, s).
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In other words, the assumption requires that for each output value y, the |S|

column sums corresponding to output y in the channel transition matrices are all

identical; i.e.,∑
x∈X

pC(y|x, s1) =
∑
x∈X

pC(y|x, s2) = · · · =
∑
x∈X

pC(y|x, s|S|), ∀y ∈ Y .

However, for a fixed s ∈ S,
∑

x pC(y|x, s) is not necessarily invariant with y ∈ Y , and

as such, a uniform input does not yield a uniform output in general. This requirement

will be needed in our dynamic programming approach which we use to determine the

optimal feedback control action (as will be seen in the next section).4

3.1.2 Feedback Capacity of Quasi-Symmetric FSM Channels

In this section, we will show that feedback does not increase the capacity of quasi-

symmetric FSM channels defined in the previous section. By feedback, we mean that

there exists a channel from the receiver to the transmitter which is noiseless and

delayless. Thus at any given time, all previously received outputs are unambiguously

known by the transmitter and can be used for encoding the message into the next

code symbol.

A feedback code with blocklength n and rate R consists of a sequence of mappings

ψi : {1, 2, ..., 2nR} × Y i−1 → X

for i = 1, 2, ...n and an associated decoding function

Υ : Yn → {1, 2, ..., 2nR}.

Thus, when the transmitter wants to send message W ∈ W = {1, 2, ..., 2nR},

where W is uniformly distributed over W and is independent of S[n], it sends the

4Note for our main results to hold, we require the FSM channel as defined via properties (I)
and (II) to be quasi-symmetric, in addition to satisfying Assumption 3.1.1.
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codeword X[n], where X1 = ψ1(W ) and Xi = ψi(W,Y[i−1]), for i = 2, · · · , n. In

the case when there is no feedback, the codeword X[n], where X1 = ψ1(W ) and

Xi = ψi(W ), for i = 2, · · · , n is transmitted; and thus a non-feedback code is a

special case of a feedback code. For a received Y[n] at the channel output, the receiver

uses the decoding function to estimate the transmitted message as Ŵ = Υ(Y[n]). A

decoding error is made when Ŵ 6= W . The probability of error is given by

P (n)
e =

1

2nR

2nR∑
k=1

P
{

Υ(Y[n]) 6= W |W = k
}
.

It should also be observed that when communicating with feedback, Property

(3.1.1.b) does not hold, since Xi is a function of Y[i−1] (in addition to W ); also X[n]

and S[n] are no longer independent as Xi causally depends on Z[i−1] and hence S[i−1],

for i = 1, 2, · · · , n.

The capacity with feedback, CFB, is the supremum of all admissible rates; i.e.,

rates for which there exists sequences of feedback codes with asymptotically vanishing

probability of error. The (classical) non-feedback capacity, CNFB, is defined similarly

(by replacing feedback codes with non-feedback codes). Since a non-feedback code is

a special case of a feedback code, we always have CFB ≥ CNFB.

The main result of this section is as follows.

Theorem 3.1.1. For a quasi-symmetric FSM channel [X ,Y ,S, PS, Z, T,Φ] satisfying

Assumption 3.1.1, its feedback capacity is given by

CFB = H(Ỹ )−H(Z)

where H(Ỹ ) is the entropy rate of the output process {Ỹi} driven by an i.u.d. input and

H(Z) is the entropy rate of the channel’s noise (hidden Markovian) process {Zi}∞i=1.

We devote the remainder of the section to prove this theorem and deduce that
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feedback does not help increasing the capacity of quasi-symmetric FSM channels

satisfying Assumption 3.1.1.

From Fano’s inequality, we have

H(W |Yn) ≤ hb(Pe
(n)) + Pe

(n) log2(2nR − 1) ≤ 1 + Pe
(n)nR

where the first inequality holds since hb(P
(n)
e ) ≤ 1, where hb(·) is the binary entropy

function. Since W is uniformly distributed,

nR = H(W ) = H(W |Y[n]) + I(W ;Y[n]) ≤ 1 + Pe
(n)nR + I(W ;Y[n])

where R is any admissible rate. Dividing both sides by n and taking the lim inf yields

CFB ≤ lim inf
n→∞

sup
{ψi}ni=1

1

n
I(W ;Y[n]). (3.10)

For every coding policy with feedback {ψi, 1 ≤ i ≤ n}, there are induced maps

{ηi, 1 ≤ i ≤ n} such that

ηi : X i−1 × Y i−1 → P(X ), (3.11)

with

ηi(x[i−1], y[i−1]) =
(
βi(x(1)), βi(x(2)), · · · , βi(x(k))

)
(3.12)

and

βi(x(j)) =
∑
w∈W

PW |X[i−1],Y[i−1]
(w|x[i−1], y[i−1])1{x(j)=ψi(w,y[i−1])} (3.13)

for j = 1, 2, · · · , k, where X = {x(1), x(2), · · · , x(k)} with k = |X |, 1{·} denotes the

indicator function and P(X ) denotes the space of probability distributions on X .

Every ηi can also be identified by the collection of control actions at time i:

Di
4
= {PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1]) : x[i−1] ∈ X i−1, y[i−1] ∈ Y i−1}. (3.14)
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In view of this discussion, following [TM09], we have

lim inf
n→∞

sup
{ψi}ni=1

1

n
I(W ;Y[n])

= lim inf
n→∞

sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi|Y[i−1])−H(Yi|W,Y[i−1])

]
= lim inf

n→∞
sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi|Y[i−1])−H(Yi|W,Y[i−1], X[i])

]
= lim inf

n→∞
sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi|Y[i−1])−H(Yi|Y[i−1], X[i])

]
(3.15)

≤ lim inf
n→∞

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Y[i−1])−H(Yi|Y[i−1], X[i])

]
(3.16)

where (3.15) is shown below and (3.16) holds since for every collection of feedback

encoding functions, {ψi}ni=1, there exists a collection of control actions {Di}ni=1 which

is demonstrated in (3.11)-(3.14). Note that the right-hand side of (3.16) is the directed

information whose supremum has been shown to be the feedback capacity under

information stability conditions [TM09].

Proof of Equation (3.15). We need to show that

PYi|W,X[i],Y[i−1]
(yi|w, x[i], y[i−1]) = PYi|X[i],Y[i−1]

(yi|x[i], y[i−1]), for i = 1, 2, · · · , n.

Note that

PYi|W,X[i],Y[i−1]
(yi|w, x[i], y[i−1])

(a)
=

∑
si

pC(yi|xi, si)
PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1])PSi,W,X[i−1],Y[i−1]
(si, w, x[i−1], y[i−1])

PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])PW,X[i−1],Y[i−1]

(w, x[i−1], y[i−1])

=
∑
si

pC(yi|xi, si)PSi|W,X[i−1],Y[i−1]
(si|w, x[i−1], y[i−1])

(b)
=

∑
si

pC(yi|xi, si)PSi|X[i−1],Y[i−1]
(si|x[i−1], y[i−1])

= PYi|X[i],Y[i−1]
(yi|x[i], y[i−1])
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where (a) follows from Property (II), and (b) is valid since

PSi|W,X[i−1],Y[i−1]
(si|w, x[i−1], y[i−1])

(i)
=

∑
si−1

PSi|Si−1
(si|si−1)PSi−1|W,X[i−1],Y[i−1]

(si−1|w, x[i−1], y[i−1])

(ii)
=

∑
si−1

PSi|Si−1
(si|si−1)PSi−1|X[i−1],Y[i−1]

(si−1|x[i−1], y[i−1])

= PSi|X[i−1],Y[i−1]
(si|x[i−1], y[i−1])

where (i) is due to (I) and (ii) can be shown recursively as follows:

PS|W,X,Y (s1|w, x1, y1) =
PS,W,X,Y (s1, w, x1, y1)∑
s1
PS,W,X,Y (s1, w, x1, y1)

=
PY |X,S(y1|x1, s1)PX,S,W (x1, s1, w)∑
s1
PY |X,S(y1|x1, s1)PX,S,W (x1, s1, w)

(iii)
=

PY |X,S(y1|x1, s1)PS(s1)PX,W (x1, w)∑
s1
PY |X,S(y1|x1, s1)PS(s1)PX,W (x1, w)

=
PY |X,S(y1|x1, s1)PS|X(s1|x1)∑
s1
PY |X,S(y1|x1, s1)PS|X(s1|x1)

= PS|X,Y (s1|x1, y1) (3.17)

where (iii) is valid since s1 is independent of w and x1 (as x1 is only a function of

w). Similarly,

PS[2]|W,X[2],Y[2](s2|w, x[2], y[2])

=
PS[2],W,X[2],Y[2](s2, w, x[2], y[2])∑
s2
PS[2],W,X[2],Y[2](s2, w, x[2], y[2])

=
PY |X,S(y2|x2, s2)PX[2],Y1,S2,W (x[2], y1, s2, w)∑
s2
PY |X,S(y2|x2, s2)PX[2],Y1,S2,W (x[2], y1, s2, w)

(iv)
=

PY |X,S(y2|x2, s2)PX2|X1,Y1,W (x2|x1, y1, w)PS2,X1,Y1,W (s2, x1, y1, w)∑
s2
PY |X,S(y2|x2, s2)PX2|X1,Y1,W (x2|x1, y1, w)PS2,X1,Y1,W (s2, x1, y1, w)

=
PY |X,S(y2|x2, s2)PS2|X1,Y1,W (s2|x1, y1, w)PX,Y,W (x1, y1, w)∑
s2
PY |X,S(y2|x2, s2)PS2|X1,Y1,W (s2|x1, y1, w)PX,Y,W (x1, y1, w)

(v)
=

PY |X,S(y2|x2, s2)
∑

s1
PS2|S1(s2|s1)PS1|X1,Y1(s1|x1, y1)∑

s2
PY |X,S(y2|x2, s2)

∑
s1
PS2|S1(s2|s1)PS1|X1,Y1(s1|x1, y1)
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= PS2|X[2],Y[2](s2|x[2], y[2])

where (iv) is valid since x2 is a function of x1, y1 and w and (v) is due to (3.17). Using

these steps recursively for i = 1, 2, · · · , n yields (ii) and completes the proof.

Now, let us consider the following equation

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Y[i−1])−H(Yi|Y[i−1], X[i])

]
. (3.18)

In the following, we first show that H(Yi|Y[i−1], X[i]) = H(Zi|Z[i−1]) and next we

show that
∑n

i=1H(Yi|Y[i−1]) is maximized when
{
PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1])
}n
i=1

is

uniformly distributed.

Lemma 3.1.2. The quasi-symmetric FSM channel satisfies

H(Yi|Y[i−1], X[i]) = H(Zi|Z[i−1]), ∀i = 1, · · · , n.

Proof. Observe first that

PYi|X[i],Y[i−1]
(yi|x[i], y[i−1])

(i)
= PZi|X[i],Y[i−1]

(zi|x[i], y[i−1])

(ii)
= PZi|X[i],Y[i−1],Z[i−1]

(zi|x[i], y[i−1], z[i−1])

(iii)
= PZi|X[i],Z[i−1]

(zi|x[i], z[i−1])

where (i) and (ii) is valid since z[i] = Φ
(
x[i], y[i]

)
and (iii) is valid since yi = ν(xi, zi)

where ν(x, ·) = Φ−1(x, ·). We next show that Zi → Z[i−1] → X[i] form a Markov

chain. Note that

PZi|X[i],Z[i−1]
(zi|x[i], z[i−1])

=
PZi,X[i],Z[i−1]

(zi, x[i], z[i−1])

PX[i],Z[i−1]
(x[i], z[i−1])

(iv)
=

PXi|X[i−1],Z[i−1]
(xi|x[i−1], z[i−1])PX[i−1],Zi,Z[i−1]

(x[i−1], zi, z[i−1])

PXi|X[i−1],Z[i−1]
(xi|x[i−1], z[i−1])PX[i−1],Z[i−1]

(x[i−1], z[i−1])

= PZi|X[i−1],Z[i−1]
(zi|x[i−1], z[i−1])
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where (iv) is valid since the feedback input depends (causally) only on
(
x[i−1], y[i−1]

)
,

or equivalently on
(
x[i−1], z[i−1]

)
. Similarly, we get

PZi|X[i−1],Z[i−1]
(zi|x[i−1], z[i−1])

=
PXi−1|X[i−2],Z[i−2]

(xi−1|x[i−2], z[i−2])PX[i−2],Zi,Z[i−1]
(x[i−2], zi, z[i−1])

PXi−1|X[i−2],Z[i−2]
(xi−1|x[i−2], z[i−2])PX[i−2],Z[i−1]

(x[i−2], z[i−1])

= PZi|X[i−2],Z[i−1]
(zi|x[i−2], z[i−1]).

Using these steps recursively, we get

PZi|X[i−2],Z[i−1]
(zi|x[i−2], z[i−1])

=
PZi,X[i−2],Z[i−1]

(zi, x[i−2], z[i−1])

PX[i−2],Z[i−1]
(x[i−2], z[i−1])

(v)
=

PXi−2|X[i−3],Z[i−3]
(xi−2|x[i−3], z[i−3])PZi,X[i−3],Z[i−i](zi, x[i−3], z[i−1])

PXi−2|X[i−3],Z[i−3]
(xi−2|x[i−3], z[i−3])PX[i−3],Z[i−i](x[i−3], z[i−1])

...

(vi)
=

PX2|X1,Z1(x2|x1, z1)PZi,X1,Z[i−1]
(zi, x1, z[i−1])

PX2|X1,Z1(x2|x1, z1)PX1,Z[i−1]
(x1, z[i−1])

(vii)
=

PX(x1)PZ[i]
(zi, z[i−1])

P (x1)PZ[i−1]
(z[i−1])

= PZi|Z[i−1]
(zi|z[i−1])

where (v), (vi) and (vii) are valid due to the same reasoning above.

We next show that all of the terms H(Yi|Y[i−1]) in (3.18) are maximized by uniform

feedback control actions. We solve this problem using dynamic programming [Ber01].

The optimization problem can be written as:

max
{D1,··· ,Dn}

{H(Yn|Y[n−1]) +H(Yn−1|Y[n−2]) + · · ·+H(Y1)}. (3.19)

Let

Vi

(
PY[i−1]

(y[i−1]),D1, · · · ,Di−1

)
= max

Di

[
H(Yi|Y[i−1]) + Vi+1

(
PY[i](y[i]),D1, · · · ,Di

) ]
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where Vn+1

(
PY[n](y[n]),D1, · · · ,Dn

)
= 0 and the Vi

(
PY[i−1]

(y[i−1]),D1, · · · ,Di−1

)
terms

are explicitly given for i = 1, · · · , n as follows:

Vn

(
PY[n−1]

(y[n−1]),D1, · · · ,Dn−1

)
= max
Dn

H(Yn|Y[n−1])

Vn−1

(
PY[n−2]

(y[n−2]),D1, · · · ,Dn−2

)
= max
Dn−1

{
H(Yn−1|Y[n−2]) + max

Dn

{
H(Yn|Y[n−1])

}}
Vn−2

(
PY[n−3]

(y[n−3]),D1, · · · ,Dn−3

)
= max
Dn−2

{
H(Yn−2|Y[n−3]) + max

Dn−1

{
H(Yn−1|Y[n−2])

+ max
Dn

{
H(Yn|Y[n−1])

}}}
...

V1 = max
D1

{
H(Y1) + · · ·+ max

Dn−1

{
H(Yn−1|Y[n−2])

+ max
Dn

{
H(Yn|Y[n−1])

}
· · ·
}}

.

(3.20)

Here, Vi+1

(
PY[i](y[i]),D1, · · · ,Di

)
denotes the reward-to-go at time i, which is the

future reward generated by the control action at time i.

Thus (3.19) is given by V1 in (3.20), which indicates that the optimization problem

is nested and dynamic. It is nested since the actions and the action outcomes, that

are the realizations of the channel inputs and outputs, are available in future time

stages. It is dynamic, since the control actions applied at time k affect the future

reward value realizations at time stages i > k. Thus an optimal selection of the

actions, should maximize both the current reward H(Yi|Y[i−1]) and the reward-to-go

Vi+1

(
PY[i](y[i]),D1, · · · ,Di

)
(see (3.20)).

Therefore, the optimization problem turns out to be finding the best induced

policies {ηi, 1 ≤ i ≤ n}; that is the best collection of functions used to generate the

set of control actions {Di, 1 ≤ i ≤ n} which achieve V1. We next show that the
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optimal set of control actions achieving V1 is composed of uniform input distributions

for i = 1, · · · , n. Toward this goal, we find a condition such that the control actions

taken at times (i− 1), · · · , 1 do not affect the reward value attained at time i, when

the control action at time i is uniform. Specifically, we find that a sufficient condition

to manage this problem is requiring
∑

x fs(Φ(x, y)) to be invariant with s ∈ S, i.e.,

Assumption 3.1.1 . This will be explicitly shown in Lemma 3.1.4. We first have the

following.

Lemma 3.1.3. For the quasi-symmetric FSM channel, each conditional output en-

tropy H(Yi|Y[i−1]), i = 1, · · · , n in (3.18), given the past sets of control actions

D1,D2, · · · ,Di−1, is maximized by uniform feedback control actions:

D?i
4
= argmax

Di
H(Yi|Y[i−1])

=

{
PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1]) =
1

|X |
, ∀(x[i−1], y[i−1]) ∈ X i−1 × Y i−1

}
for all xi ∈ X and for all i = 1, · · · , n.

Proof. Note first that

H(Yi|Y[i−1]) =
∑
y[i−1]

PY[i−1]
(y[i−1])H(Yi|Y[i−1] = y[i−1]) (3.21)

where

H(Yi|Y[i−1] = y[i−1]) = −
∑
yi

PYi|Y[i−1]
(yi|y[i−1]) logPYi|Y[i−1]

(yi|y[i−1]). (3.22)

To show that H(Yi|Y[i−1]) in (3.21) is maximized by a uniform input distribution, it is

enough to show that such a uniform distribution maximizes each of the H(Yi|Y[i−1] =

y[i−1]) terms. We now expand PYi|Y[i−1]
(yi|y[i−1]) as follows

PYi|Y[i−1]
(yi|y[i−1])
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=
∑
xi

∑
x[i−1]

∑
si

∑
s[i−1]

PYi,X[i],S[i]|Y[i−1]
(yi, xi, x[i−1], si, s[i−1]|y[i−1])

=
∑

xi,x[i−1]

∑
si,s[i−1]

PYi|X[i],S[i],Y[i−1]
(yi|xi, x[i−1], si, s[i−1], y[i−1])

PX[i],S[i]|Y[i−1]
(xi, x[i−1], si, s[i−1]|y[i−1])

(i)
=

∑
xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PX[i],S[i]|Y[i−1]
(xi, x[i−1], si, s[i−1]|y[i−1])

=
∑

xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PX[i],S[i−1]|Y[i−1]
(xi, x[i−1], s[i−1]|y[i−1])

PSi|X[i],S[i−1],Y[i−1]
(si|xi, x[i−1], s[i−1], y[i−1])

(ii)
=

∑
xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PX[i−1],S[i−1]|Y[i−1]
(x[i−1], s[i−1]|y[i−1])PSi|S[i−1]

(si|s[i−1])

PXi|X[i−1],S[i−1],Y[i−1]
(xi|x[i−1], s[i−1], y[i−1])

(iii)
=

∑
xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])PSi|S[i−1]

(si|s[i−1])

PX[i−1],S[i−1]|Y[i−1]
(x[i−1], s[i−1]|y[i−1]) (3.23)

where (i) follows by (3.2), (ii) is valid due to the Property (I) and finally (iii) is due

to the fact that the feedback input depends only on (x[i−1], y[i−1]).

The key observation in equation (3.23) is the existence of an equivalent chan-

nel. More specifically,
∑

si
pC(yi|xi, si)PSi|S[i−1]

(si|s[i−1]) represents a quasi-symmetric

channel transition matrix such that its entries are determined by the entries of the

channel transition matrices of each state and the transition distribution of state prob-

abilities. To continue, by (3.5),

PYi|Y[i−1]
(yi|y[i−1]) =

∑
xi,x[i−1]

∑
si,s[i−1]

fsi(Φ(xi, yi))PSi|S[i−1]
(si|s[i−1])

PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])PX[i−1],S[i−1]|Y[i−1]

(x[i−1], s[i−1]|y[i−1]).

By definition of quasi-symmetry, there exists m weakly symmetric sub-arrays in the

channel transition matrix at each state si. Among these sub-arrays, let us pick Q̃si
j of
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size |X | × |Yj|. (We assume that the partition of Y is identical across all states.) Let

yjt , for t = 1, . . . , |Yj|, denote the output values in sub-array j. Therefore, we obtain

PYi|Y[i−1]
(yjt |y[i−1]) =

∑
xi,x[i−1],si,s[i−1]

fsi(Φ(xi, yjt))PSi|S[i−1]
(si|s[i−1])

PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])PX[i−1],S[i−1]|Y[i−1]

(x[i−1], s[i−1]|y[i−1]). (3.24)

For X = {x(1), · · · , x(k)}, k = |X |, let κ(i − 1) = PSi|S[i−1]
(si|s[i−1]), χ(i − 1) =

PX[i−1],S[i−1]|Y[i−1]
(x[i−1], s[i−1]|y[i−1]) and PXi|X[i−1],Y[i−1]

(x(l)|x[i−1], y[i−1]) = ϕi(x(l)) for

l = 1, . . . , k. Then, for t = 1, . . . , |Yj|, we can write

PYi|Y[i−1]
(yj1|y[i−1]) =

∑
x[i−1],s[i−1]

χ(i− 1)
∑
si

κ(i− 1)
(
ϕi(x(1))fsi(Φ(x(1), yj1))+

· · ·+ ϕi(x(k))fsi(Φ(x(k), yj1))
)
,

PYi|Y[i−1]
(yj2|y[i−1]) =

∑
s[i−1],x[i−1]

χ(i− 1)
∑
si

κ(i− 1)
(
ϕi(x(1))fsi(Φ(x(1), yj2))+

· · ·+ ϕi(x(k))fsi(Φ(x(k), yj2))
)
,

PYi|Y[i−1]
(yj|Yj | |y[i−1]) =

∑
s[i−1],x[i−1]

χ(i− 1)
∑
si

κ(i− 1)
{
ϕi(x(1))fsi(Φ(x(1), yj|Yj |))+

· · ·+ ϕi(x(k))fsi(Φ(x(k), yj|Yj |))
}
.

It should be noted that, each fsi(Φ(x(l), yjt)) above corresponds to an entry in the

channel transition matrix Q̃si at state si. Note also that the rows of the sub-array Q̃si
j

are permutations of each other. In other words, each fsi(Φ(x(l), yjt)) value appears

exactly k times (once in each row) in the sub-array Qsi
j . Thus, the feedback control

action ϕi(x(l)) is multiplied by a different fsi(Φ(x(l), yjt)) value for each t = 1, . . . , |Yj|

in the PYi|Y[i−1]
(yjt|y[i−1]) given above. Hence,

∑|Yj |
t=1 PYi|Y[i−1]

(yjt|y[i−1]) is equal to

|Yj |∑
t=1

PYi|Y[i−1]
(yjt |y[i−1])
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=
∑

s[i−1],x[i−1]

χ(i− 1)
∑
si

κ(i− 1)
k∑
l=1

ϕi(x(l))

|Yj |∑
t=1

fsi(Φ(x(l), yjt))

=
∑

s[i−1],x[i−1]

χ(i− 1)
∑
si

κ(i− 1)
k∑
l=1

ϕi(x(l))

|Yj |∑
t=1

pc(yjt|x(l), si) (3.25)

=
∑

s[i−1],x[i−1]

χ(i− 1)
∑
si

κ(i− 1)

|Yj |∑
t=1

pc(yjt |x(l), si) (3.26)

where (3.25) is due to (3.5) and (3.26) is valid since Q̃si
j is weakly symmetric and

as such
∑|Yj |

t=1 pc(yjt |x(l), si) is identical for each x(l), and noting that
∑k

l=1 ϕi(x(l)) =

1 verifies (3.26). The critical observation is that the value attained by (3.26) is

independent of the feedback control actions. Similarly, for all the other m − 1 sub-

arrays, their conditional output sums will be independent of the feedback control

actions. Let us denote these sums by Ω1, . . . ,Ωm. More specifically for sub-array j,

let Ωj =
∑|Yj |

t=1 PYi|Y[i−1]
(yit |y[i−1]). Then the maximization of (3.22) now becomes,

argmax
Ωj,t

−
m∑
j=1

|Yj |∑
t=1

Ωj,t log Ωj,t (3.27)

where
∑m

j=1

∑|Yj |
t=1 Ωj,t = 1 and Ωj,t = PYi|Y[i−1]

(yjt|y[i−1]), t = 1, . . . , |Yj|, j = 1, . . . ,m.

For each sub-array j, we need to find the Ωj,t values that maximize
∑|Yj |

t=1 Ωj,t log Ωj,t.

By the log-sum inequality, we have that

−
|Yj |∑
t=1

Ωj,t log Ωj,t ≤ −
|Yj |∑
t=1

Ωj,t log

∑|Yj |
t=1 Ωj,t

|Yj|
(3.28)

with equality if and only if

Ωj,t = Ωs,w ∀s, w ∈ {1, . . . , |Yj|}. (3.29)

In other words, for the sub-array j, the conditional entropy is maximized if and only

if the conditional output probabilities in this sub-array are identical. Since this fact is

valid for the other sub-arrays, to maximize the conditional entropy we need to (3.29)
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to be valid for all sub-arrays.

At this point, we have shown that the conditional output entropy is maximized if

the conditional output probabilities are identical for each sub-array. In order to com-

plete this step, we have to show that this is achieved by uniform input distributions.

Now, let us consider two conditional output probabilities, PYi|Y[i−1]
(yjs|y[i−1]) and

PYi|Y[i−1]
(yjt|y[i−1]), in sub-array j. Then PYi|Y[i−1]

(yjs|y[i−1]) = PYi|Y[i−1]
(yjt |y[i−1]) im-

plies that

k∑
l=1

ϕi(x(l))fsi(Φ(x(l), yjs)) =
k∑
l=1

ϕi(x(l))fsi(Φ(x(l), yjt)). (3.30)

However, for a fixed output
∑k

l=1 fsi(Φ(x(l), yjs)) is equal to the sum of the col-

umn corresponding to output yjs (similarly for yjt) and since sub-array j is weakly

symmetric, the column sums are identical. Therefore, (3.30) can be achieved if

ϕi(x(l)) = ϕi(x(m)) = 1
k
∀ l,m = 1, . . . , k, by which we get PYi|Y[i−1]

(yjs|y[i−1]) =

PYi|Y[i−1]
(yjt |y[i−1]) = 1

|X |
∑k

l=1 fsi(Φ(x(l), yjs)). Thus for other sub-arrays since they

are also weakly-symmetric, the uniform feedback control action will also satisfy the

equivalence of conditional output probabilities.

With this lemma, we have shown that for each i, H(Yi|Y[i−1]) is maximized by

the uniform input distribution. However, this is not sufficient to conclude that the

optimal set of control actions attaining V1, i.e., the optimal set of control actions

maximizing
∑n

i=1H(Yi|Y[i−1]), consists of a sequence of uniform input distributions

for i = 1, · · · , n. This is because Lemma 3.1.3 only maximizes the current conditional

entropy via a uniform input (that is it is optimal in a myopic sense); however, it is

still possible that a non-uniform input might result in a higher value function through

the rewards-to-go. Let us now look at PYi|Y[i−1]
(yi|y[i−1]) when we apply a uniform
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distribution at time i (current time). We obtain using (3.23) that

PYi|Y[i−1]
(yi|y[i−1])

=
∑

xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])

PSi|S[i−1]
(si|s[i−1])PX[i−1],S[i−1]|Y[i−1]

(x[i−1], s[i−1]|y[i−1])

(i)
=

1

|X |
∑

xi,x[i−1]

∑
si,s[i−1]

pC(yi|xi, si)PSi|S[i−1]
(si|s[i−1])

PX[i−1],S[i−1]|Y[i−1]
(x[i−1], s[i−1]|y[i−1])

=
1

|X |
∑
xi

∑
si

∑
s[i−1]

pC(yi|xi, si)PSi|S[i−1]
(si|s[i−1])∑

x[i−1]

PX[i−1],S[i−1]|Y[i−1]
(x[i−1], s[i−1]|y[i−1])

=
1

|X |
∑
xi

∑
si

∑
s[i−1]

pC(yi|xi, si)PSi|S[i−1]
(si|s[i−1])PS[i−1]|Y[i−1]

(s[i−1]|y[i−1])

=
1

|X |
∑
xi

∑
si

pC(yi|xi, si)PSi|Y[i−1]
(si|y[i−1])

where (i) is valid since PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1]) is uniform. Note that the depen-

dency on past input control actions comes through PSi|Y[i−1]
(si|y[i−1]) which includes

transition probabilities between states, on which we have no control.

Lemma 3.1.4. Assume that the feedback control action PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1]),

at (current) time i, is uniform. Then the value of H(Yi|Y[i−1]) is independent of past

feedback control actions at times (i − 1), · · · , 1 if
∑

x fs(Φ(x, y)) is invariant with

s ∈ S (i.e., if Assumption 3.1.1 holds).

Proof. We have the following:

PYi|Y[i−1]
(yi|y[i−1]) =

1

|X |
∑
xi

∑
si

pC(yi|xi, si)PSi|Y[i−1]
(si|y[i−1])
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=
1

|X |
∑
si

PSi|Y[i−1]
(si|y[i−1])

∑
xi

pC(yi|xi, si)

=
1

|X |
∑
si

PSi|Y[i−1]
(si|y[i−1])

∑
xi

fs(Φ(xi, yi)).︸ ︷︷ ︸
Since the underbraced term is invariant with s, the proof is complete as the final sum

will be 1
|X |
∑

xi
fs(Φ(xi, yi)).

We have so far shown that H(Yi|X[i], Y[i−1]) = H(Zi|Z[i−1]) and that uniform input

distributions maximize
∑n

i=1H(Yi|Y[i−1]). With these results in hand, we have thus

shown the following upperbound for the feedback capacity

CFB ≤ lim inf
n→∞

1

n
[H(Ỹ[n])−H(Z[n])] (3.31)

where H(Ỹ[n]) is the output entropy when the input is uniform.

Let us now define a Hidden Markov Process (HMP) [EM02] which we will use

while discussing the ergodicity of the noise and output processes. An HMP is de-

noted by a quadruple [S, P,Z, T ] in which [S, P ] is a Markov process and T is the

observation matrix defined by (3.7). The non-Markov process {Zi}∞i=1 with alphabet

Z is called HMP and it is the noisy version of the state process observed through a

DMC determined by T .

Lemma 3.1.5. For the quasi-symmetric FSM channel with feedback, the noise process

is an HMP with parameters [S, P,Z, T ].

Proof. To show this result, it suffices to show that PZi|Si,Z[i−1]
(zi|si, z[i−1]) = PZ|S(zi|si).

Since {Si}∞i=1 is Markovian, it directly implies that PSi|Si−1,Z[i−1]
(si|si−1, z[i−1]) =

PSi|Si−1
(si|si−1). Note that

PZi|Si,Z[i−1]
(zi|si, z[i−1])
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=
∑
x[i−1]

∑
{(xi,yi):zi=Φ(xi,yi)}

PYi,X[i]|Si,Z[i−1]
(yi, xi, x[i−1]|si, z[i−1])

(i)
=

∑
{(xi,yi):zi=Φ(xi,yi)}

pC(yi|xi, si)PXi|X[i−1],Si,Z[i−1]
(xi|x[i−1], si, z[i−1])∑

x[i−1]

PX[i−1]|Si,Z[i−1]
(x[i−1]|si, z[i−1])

(ii)
=

∑
{(xi,yi):zi=Φ(xi,yi)}

fsi(Φ(xi, yi))PXi|X[i−1],Z[i−1]
(xi|x[i−1], z[i−1])∑

x[i−1]

PX[i−1]|Si,Z[i−1]
(x[i−1]|si, z[i−1])

=
∑
x[i−1]

PX[i−1]|Si,Z[i−1]
(x[i−1]|si, z[i−1])fsi(zi) ∑

{(xi,yi):zi=Φ(xi,yi)}

PXi|X[i−1],Z[i−1]
(xi|x[i−1], z[i−1])


(iii)
= fsi(zi)

(iv)
= PZ|S(zi|si) (3.32)

where (i) follows from (3.2) of Property (II) and the fact that y[i−1] = ν(x[i−1], z[i−1])

is one-to-one with z[i−1] given x[i−1], (ii) is valid by (3.5) and by the fact that feedback

input depends on (x[i−1], z[i−1]), (iii) is valid since each zi is satisfied by |X | number of

(xi, yi) pairs where each xi is different and (iv) follows from (3.5), (3.6) and (3.8).

It should also be noted that, the output process, {Ỹi}∞i=1, for an i.u.d. input {Xi}∞i=1

is also an HMP since

PYi|Si,Y[i−1]
(ỹi|si, ỹ[i−1]) =

∑
xi

PYi,Xi|Si,Y[i−1]
(ỹi, xi|si, ỹ[i−1])

(a)
=

∑
xi

pC(ỹi|xi, si)PXi|Si,Y[i−1]
(xi|si, ỹ[i−1])

(b)
=

∑
xi

pC(ỹi|xi, si)PX|S(xi|si) = PY |S(ỹi|si) (3.33)

where (a) is due to (3.2) and (b) is due to the fact that Xi is uniformly distributed.

The channel associated with the HMP is memoryless and as such it is stationary.
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Therefore, since the state process is stationary and ergodic both the output and noise

processes are stationary and ergodic; this is stated in the following lemma:

Lemma 3.1.6. For the quasi-symmetric FSM channel [X ,Y ,S, PS, Z, T,Φ], the noise

process is stationary ergodic. Also the output process is stationary ergodic under an

i.u.d. input.

We can now complete the proof of Theorem 3.1.1 and conclude that feedback

does not increase capacity for the class of quasi-symmetric FSM channels satisfying

Assumption 3.1.1.

Proof of Theorem 3.1.1: With (3.31) we already have a converse for the feedback

capacity. We need to show that this bound is achievable. We first note that by

Lemma 3.1.6 the noise and output processes are stationary which imply that

CFB ≤ lim inf
n→∞

sup{
PX|X[i−1],Y[i−1]

(xi|x[i−1],y[i−1])
}n
i=1

1

n

n∑
i=1

H(Yi|Y[i−1])−H(Yi|Y[i−1], X[i])

= lim inf
n→∞

1

n
[H(Ỹ[n])−H(Z[n])]

= lim
n→∞

1

n
[H(Ỹ[n])−H(Z[n])] = H(Ỹ )−H(Z). (3.34)

It is sufficient to show that the bound in (3.34) is achievable. We now remark that

there exists a coding policy which achieves this bound. Note that since the noise

process is stationary and ergodic, it can be shown that H(Ỹ )−H(Z) is an admissible

rate (e.g. see [TM09, Theorem 5.3] and [VH94, Theorem 2]). Thus,

CFB ≥ lim
n→∞

1

n
[H(Ỹ[n])−H(Z[n])] = H(Ỹ )−H(Z)

and this completes the proof.

Corollary 3.1.1. Feedback does not increase capacity of quasi-symmetric FSM chan-

nels satisfying Assumption 3.1.1 (i.e., for which
∑

x fs(Φ(x, y)) is invariant with
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s ∈ S).

Proof. The result follows by noting that a non-feedback code is a special case of a

feedback code and that the non-feedback capacity is also achieved by uniform input

distributions. This can be shown more explicitly as follows

CFB = lim
n→∞

1

n
H(Ỹ[n])− lim

n→∞

1

n
H(Z[n])

(i)
= lim

n→∞

1

n
H(Y[n])

∣∣∣∣
PX[n]

(x[n])=
1
|X|n

− lim
n→∞

1

n
H(Z[n])

≤ lim
n→∞

1

n
sup

PX[n]
(x[n])

I(X[n];Y[n]) = CNFB

where CNFB is the non-feedback capacity and (i) is valid since the input process is

i.u.d. Finally, since CFB ≥ CNFB, we obtain that CFB = CNFB.

3.1.3 Examples of Quasi-Symmetric FSM Channels

In this section, we present examples of quasi-symmetric FSM channels which satisfy

Assumption 3.1.1 and hence have identical feedback and non-feedback capacities.

We also provide their feedback capacity expression which, when not given in single-

letter form, can be simulated using existing algorithms (e.g., see [ALV+06]) for the

computation of entropy rates of HMPs.

A. Gilbert-Elliot Channel (e.g., [MD89]): One of the widely used FSM

channels is the Gilbert-Elliot channel denoted by [X ,Y ,S,P , C], where X = Y =

S = {0, 1}. The two states are called “bad” state and “good” state, respectively, and

the state transition matrix is given by:

P =

 1− g g

b 1− b

 ,
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where 0 < g < 1, 0 < b < 1 and in either of these two states, the channel is a binary

symmetric channel (BSC) with the following transition matrices for states s = 0 and

s = 1, respectively:

Q0 =

 1− pG pG

pG 1− pG

 , Q1 =

 1− pB pB

pB 1− pB

 .
From the above channel transition matrices, it can be observed that the Gilbert-

Elliot channel is a symmetric FSM channel by Definition 3.1.4. Then, there exists a

random variable Z = Φ(X, Y ) with alphabet Z = {0, 1} and a function fs(z) such

that, f0(0) = 1− pG and f0(1) = pG, f1(0) = 1− pB and f0(1) = pB. Therefore, one

can define the T [s, z] matrix for this channel as

T =

 1− pG pG

1− pB pB

 ,
and we obtain that Φ(X, Y ) = X ⊕ Y , where ⊕ represents modulo-2 addition, and

T [s, z] defined above. By Corollary 3.1.1, feedback does not increase the capacity of

the Gilbert-Elliot channel and it should be noted that this result is a special case of

[Ala95] and [SP09]. Since |X | = 2, the feedback capacity of the Gilbert-Elliot channel

can be found as

CFB = CNFB = 1−H(Z),

where H(Z) is the entropy rate of the HMP {Zi}∞i=1 and can be computed as shown

in [MD89] or [ALV+06].

B. Discrete Modulo Additive Channel with Markovian Noise: Consider

the discrete channel with a common alphabet A = {0, 1, . . . , q − 1} for the input,

output and noise processes. The channel is described by the equation Yn = Xn⊕Zn,

for n = 1, 2, 3, . . . , and Yn, Xn and Zn denotes the output, input and noise processes
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respectively. The noise process, {Zn}n=∞
n=1 , is Markovian and it is independent of the

input process. It is straightforward to see that the channel transition matrix for this

channel is symmetric for each state, where the state is given by the previous noise

variable: Si = Zi−1. For simplicity, let us assume that q = 3. Then, the channel

transition matrix at state si, Q
si , will be as follows:

Qsi =


P (Zi = 0|Zi−1 = si) P (Zi = 1|Zi−1 = si) P (Zi = 2|Zi−1 = si)

P (Zi = 2|Zi−1 = si) P (Zi = 0|Zi−1 = si) P (Zi = 1|Zi−1 = si)

P (Zi = 1|Zi−1 = si) P (Zi = 2|Zi−1 = si) P (Zi = 0|Zi−1 = si)

 .
For each state, the channel transition matrix will still be symmetric with the same row

permutation order. Furthermore, it also satisfies Assumption 3.1.1 since column sums

are always one. Therefore, the discrete modulo additive channel is a symmetric FSM

channel with A = {0, 1, 2} and Φ(X, Y ) = X⊕Y . Hence, by Corollary 3.1.1, feedback

does not increase the capacity of the discrete modulo additive channel with Markovian

noise. Note that for this channel uniform input gives uniform output and therefore,

feedback capacity of this channel is CFB = CNFB = log 3−H(Z) = H(Z2|Z1) where

H(Z) = H(Z2|Z1) is the entropy rate of Markov noise {Zi}∞i=1. This example can be

readily extended for the case of Mth order Markovian noise; in that case the state Si is

given by Si = (Zi−1, · · · , Zi−M) and the noise entropy rate is H(Z) = H(ZM+1|ZM).

This result is a special case of [Ala95]. It has been recently extended to finite-state

multiple access channels in [PWC09].

C. A Symmetric Discrete Channel with Markovian Noise: Consider

a discrete, not necessarily additive, channel with Markovian noise [AF94]. More

precisely, consider the channel given by Yi = f(Xi, Zi) for i = 1, 2, · · · where Xi, Zi

and Yi are the input, noise and output of the channel, respectively, and f : X×Z → Y
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is a given function. Assume also that {Xi} and {Zi} are independent from each other

and the channel satisfies the following properties.5

1. |X | = |Y| = |Z| = q.

2. Given the input x, f(x, .) is one-to-one; i.e., ∀x ∈ X f(x, z) = f(x, z̄)⇒ z = z̄.

3. f−1 exists such that z = f−1(x, y) and given y, f−1(., y) is one-to-one; i.e.,

∀y ∈ Y f−1(x, y) = f−1(x̄, y)⇒ x = x̄.

We note that a channel satisfying these conditions has a symmetric channel transition

matrix for each state, where the state is given by the previous noise variable: Si =

Zi−1. Therefore, this channel is a symmetric FSM channel with the same permutation

order determined by the function f . It also satisfies Assumption 3.1.1 as the column

sums are one for each state. Therefore, by Corollary 3.1.1, feedback does not increase

the capacity of these channels. This result is first shown in [AF94], where the noise

process may be non-Markovian and non-ergodic in general. Similar to the previous

example, uniform input yields uniform output for this channel and therefore, feedback

capacity of this channel is CFB = CNFB = log q−H(Z) = log q−H(Z2|Z1). As in the

previous example, this example can be extended for the case of Mth order Markov

noise.

We next present two different channels which illustrate the result of this chapter

when the column sums for each state are different than one.

5In [AF94], it is stated that |X | = |Z| = q. However, following the proof, it can be evidently seen
that |Y| = q is also assumed.
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D. Binary Channel with Erasures, Errors and Markovian State: Con-

sider the two-state channel given by X = {0, 1}, S = {s1, s2}, where {Si} is Marko-

vian, Y = {0, E, 1} with the following channel transition matrices

Qs1 =

 1− ε− ξ ξ ε

ε ξ 1− ε− ξ

 , Qs2 =

 1− ε′ − ξ′ ξ′ ε′

ε′ ξ′ 1− ε′ − ξ′


where 0 < ε, ξ, ε′, ξ′ < 1 are fixed. We first note that this channel is a two-state

quasi-symmetric FSM channel, since we can partition Qs1 and Qs2 in two symmetric

sub-arrays given by

Q̃s1
Y1 =

 1− ε− ξ ε

ε 1− ε− ξ

 , Q̃s1
Y2 =

 ξ

ξ


and

Q̃s2
Y1 =

 1− ε′ − ξ′ ε′

ε′ 1− ε′ − ξ′

 , Q̃s2
Y2 =

 ξ′

ξ′


respectively, where Y1 = {0, 1} and Y1 = {E} with identical permutation order

between states. For this channel, if we set ξ = ξ′, then we automatically satisfy

Assumption 3.1.1 since the column sums in both Qs1 and Qs2 will be 1 − ξ, 2ξ and

1−ξ respectively. In other words, although the error probabilities are different across

the states (ε 6= ε′ in general), we still have identical column sums. Therefore, by

Corollary 3.1.1, feedback does not increase the capacity of this channel. Furthermore,

since both the output and noise process are HMPs the value of feedback capacity can

be computed using [ALV+06].

E. Non-Binary Noise Discrete Channel with Markovian Noise: We

now present a binary-input 2q-ary output communication channel with memory which
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was recently introduced in [PA09], [PAM12] (in the absence of feedback). This chan-

nel, which we refer to as the non-binary noise channel (NBNDC), is explicitly de-

scribed by the following equation

Yk = (2q − 1)Xk + (−1)XkZk (3.35)

for k = 1, 2, · · · , whereXk ∈ X = {0, 1} is the input, Yk, Zk ∈ Z = Y = {0, 1, · · · , 2q−

1} is the output and the noise processes, respectively. The noise and input processes

are independent from each other and we assume that the noise process is Markovian

(an Mth order Markov process can also be considered as examined in [PA09] for

modeling the underlying fading channel). For the sake of simplicity, we consider

the NBNDC channel with q = 2. Let Λ = [λsi,j]i=1,··· ,4;j=1,··· ,4, where λsi,j
4
=P (Zi =

j|Zi−1 = si), denotes the transition probability matrix of the noise process. Then,

with the state Si = Zi−1, the channel transition matrix at state si, Q
si , is given by

Qsi =

 λsi,0 λsi,1 λsi,2 λsi,3

λsi,3 λsi,2 λsi,1 λsi,0

 .
Note that NBNDC is a quasi-symmetric FSM channel but it does not necessar-

ily satisfy Assumption 3.1.1 . However, it can be easily shown that for any Λ

satisfying that both
∑

j=0,3 λi,j and
∑

j=1,2 λi,j do not change with different i val-

ues, Assumption 3.1.1 is satisfied; therefore, by Corollary 3.1.1, feedback does not

increase capacity of such NBNDC channels. Furthermore, the non-feedback ca-

pacity of NBNDC is given in [PA09] as CNFB = 1 + H(W ) − H(Z2|Z1), where

H(W ) is the entropy rate of the process {Wk} which is defined on the alphabet

W = {0, 1, · · · , 2q−1 − 1} with Wk = min{Zk, 2q − 1 − Zk}. Therefore, if Λ satisfies

the condition that both
∑

j=0,3 λi,j and
∑

j=1,2 λi,j do not change with different i val-

ues, we then have CFB = CNFB = 1+H(W )−H(Z2|Z1). Note that {Wk} is an HMP
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and as such H(W ) can be computed as shown in [ALV+06].

There is one more quasi-symmetric FSM channel that needs further attention.

We now investigate how its channel properties directly satisfy the condition that the

previous feedback control actions do not affect the current value of the conditional

output entropy. In other words, the example below satisfies Lemma 3.1.4 without

having the condition that the column sums are identical among different states, (i.e.,

it does not satisfy Assumption 3.1.1).

F. Simplified Binary Erasure Channel with Markovian State: Consider

the following binary erasure channel [DG06], which is a simplified (special) case of

the erasure channel of Example D and has been used to model packet losses in a

packet communication network, such as the Internet. The channel has binary input

and ternary output; X = {0, 1},Y = {0, E, 1}. Let Si denote the state of the erasure

channel when the packet i arrives such that when Si = 1, the packet is erased, and

when Si = 0, the packet gets through. For a given input, the channel output is

identical to the input if there is no erasure, and it is equal to the erasure symbol (E)

if an erasure occurs. Therefore, the channel transition matrices at states 0, 1 will be

as follows

Q0 =

 1 0 0

0 0 1

 and Q1 =

 0 1 0

0 1 0

 .
This channel can be considered as a special case of deletion channel in which the

erased packet is assumed to be known by the decoder. Therefore, in an erasure

channel, the receiver has also the side information about the state. In [DG06], it is

shown that feedback does not increase the capacity of this channel. We herein note

that the approach presented in this thesis gives the same result.
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Proposition 3.1.1. Feedback does not increase capacity of simplified binary erasure

channel with Markovian state and the feedback capacity is achieved by an i.u.d. input.

Proof. We first note that since the channel is quasi-symmetric for each state, the con-

ditional output entropy is maximized by uniform input distributions. What we further

need to show is the independence of the value attained by H(Yi|Y[i−1] = y[i−1]) from

previous input control actions. In particular, we need to show that PSi|Y[i−1]
(si|y[i−1])

is independent of past input control actions (see Lemma 3.1.4). It should be noted

that

PSi|Y[i−1]
(si|y[i−1]) =

∑
si−1

PSi|Si−1
(si|si−1)PSi−1|Y[i−1]

(si−1|y[i−1]).

Thus, given y[i−1], si−1 is deterministic and independent of x[i−1]. Integrating this fact

in our approach proves the desired result.

It has been shown that [DG06, Proposition 3.1] the capacity of this channel, with

and without feedback, is given by CFB = CNFB = (1 − pe) where pe is the erasure

probability.

This particular example has the benefit of learning the state deterministically by

only observing the output. We should remark that availability of both the state

information and output feedback, where we discuss in more detail in the next section,

has also been considered within different setups in some other works and the situations

for which feedback does not help increasing capacity are determined (see [PWG09,

Theorem 19] and [Vis99]).
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3.2 Feedback Capacity of Symmetric FSM Chan-

nels with CSIR

In the previous section, we show that if a quasi-symmetric finite-state Markov channel

satisfies Assumption 3.1.1 then feedback cannot increase the capacity. We now show

that if complete CSI is available at the decoder of a quasi-symmetric FSM channel

then feedback can not increase the capacity even in the absence of this condition.

Note that by solely modifying the decoding function, a feedback code now consists

of a sequence of encoding functions

ψi : {1, 2, ..., 2nR} × Y i−1 → X

for i = 1, 2, ...n and an associated decoding function

Υ : Yn × Sn → {1, 2, ..., 2nR}.

The main result of this section is as follows.

Theorem 3.2.1. For a quasi-symmetric FSM channel [X ,Y ,S, PS, Z, T,Φ] with com-

plete CSI available at the decoder its feedback capacity is given by

Cs
FB = H(Ỹ )−H(Z|S)

where H(Ỹ ) is the entropy rate of the output process {Ỹi} driven by an i.u.d. input

and H(Z|S) is the conditional entropy rate of the process {Zi}∞i=1.

We devote the remainder of the section to prove this theorem. To start, with

Fano’s inequality, we can show that Cs
FB ≤ lim infn→∞ sup{ψi}ni=1

1
n
I(W ;Y[n], S[n]).

Furthermore,

lim inf
n→∞

sup
{ψi}ni=1

1

n
I(W ;Y[n], S[n])



CHAPTER 3. SINGLE USER CHANNELS WITH FEEDBACK 61

= lim inf
n→∞

sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi, Si|Y[i−1], S[i−1])−H(Yi, Si|W,Y[i−1], S[i−1])

]
= lim inf

n→∞
sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1], S[i−1])−H(Yi|W,Si, Y[i−1], S[i−1])

]
(3.36)

= lim inf
n→∞

sup
{ψi}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1], S[i−1])−H(Yi|W,Si, Y[i−1], S[i−1], X[i])

]
(3.37)

≤ lim inf
n→∞

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1], S[i−1])−H(Yi|Si, Y[i−1], X[i])

]
(3.38)

= lim inf
n→∞

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1], S[i−1])−H(Zi|Si)

]
(3.39)

= lim inf
n→∞

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1])−H(Zi|Si)

]
(3.40)

where (3.36) is due to (3.1), (3.38) is due to (3.2) and (3.39) is due to Lemmas 3.1.2

and 3.1.5. Recall also that

Di
4
= {PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1]) : x[i−1] ∈ X i−1, y[i−1] ∈ Y i−1}.

Finally, (3.40) follows since

PYi|Si,Y[i−1],S[i−1]
(yi|si, y[i−1], s[i−1])

=
∑
xi

∑
x[i−1]

pC(yi|xi, si)PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])PX[i−1]|S[i],Y[i−1]

(x[i−1]|s[i], y[i−1])

=
∑
xi

∑
x[i−1]

pC(yi|xi, si)PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])

i−1∏
j=1

PXj |X[j−1],Y[j−1]
(xj|x[j−1], y[j−1]) (3.41)

= PYi|Si,Y[i−1]
(yi|si, y[i−1])

where (3.41) follows due to the fact that the feedback input at time j depends only

on (x[j−1], y[j−1]).



CHAPTER 3. SINGLE USER CHANNELS WITH FEEDBACK 62

Now, let us consider the following equation

sup
{Di}ni=1

1

n

n∑
i=1

[
H(Yi|Si, Y[i−1])−H(Zi|Si)

]
. (3.42)

Since H(Zi|Si) is independent of {Di}ni=1, it is sufficient to show that the term∑n
i=1 H(Yi|Si, Y[i−1]) is maximized by uniform {PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1])}ni=1.

Observe first that

H(Yi|Si, Y[i−1]) =
∑

si,y[i−1]

PSi,Y[i−1]
(si, y[i−1])H(Yi|Y[i−1] = y[i−1], Si = si) (3.43)

where

H(Yi|Y[i−1] = y[i−1], Si = si) = −
∑
yi

PYi|Y[i−1],Si(yi|y[i−1], si) logPYi|Y[i−1],Si(yi|y[i−1], si).

Therefore, the analysis in Lemma 3.1.3 still holds and hence,

D?i
4
= argmax

Di
H(Yi|Si, S[i−1], Y[i−1])

=

{
PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1]) =
1

|X |
,∀x[i−1] ∈ X i−1,∀y[i−1] ∈ Y i−1

}
for all xi ∈ X and for all i = 1, · · · , n. However, in order to claim the optimality

of uniform input distributions we still need to eliminate the effects of past control

actions as satisfied via Assumption 3.1.1 in the previous section.

Hence, consider PYi|Si,Y[i−1]
(yi|si,[i−1] ) when PXi|X[i−1],Y[i−1]

(xi|x[i−1], y[i−1]) is uni-

form. We have

PYi|Si,Y[i−1]
(yi|si,[i−1] ) =

∑
xi,x[i−1]

pC(yi|xi, si)PXi|X[i−1],Y[i−1]
(xi|x[i−1], y[i−1])

PX[i−1]|Si,Y[i−1]
(x[i−1]|si, y[i−1])

=
1

|X |
∑

xi,x[i−1]

pC(yi|xi, si)PX[i−1]|Si,Y[i−1]
(x[i−1]|si, y[i−1])

=
1

|X |
∑
x[i−1]

PX[i−1]|Si,Y[i−1]
(x[i−1]|si, y[i−1])

∑
xi

pC(yi|xi, si)
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=
1

|X |
∑
xi

fsi(Φ(xi, yi))

Note that the term 1
|X |
∑

xi
fsi(Φ(xi, yi)) is independent of past control actions and

therefore, we can conclude that
∑n

i=1H(Yi|Si, Y[i−1]) is maximized by uniform feed-

back control actions.

So far we have H(Yi|Si, X[i], Y[i−1]) = H(Zi|Si) and that
∑n

i=1H(Yi|Si, Y[i−1]) is

maximized by uniform input distributions. Note that as shown in (3.33) under uni-

form distribution H(Yi|Si, Y[i−1]) = H(Yi|Si). The proof of Theorem 3.2.1 can now

be completed directly by following the proof of Theorem 3.1.1 and hence, we can

conclude that feedback does not increase capacity of quasi-symmetric FSM channels

when CSI is available at the receiver.

3.3 Conclusion and Remarks

In this chapter, we presented a class of symmetric channels which encapsulates a

variety of discrete channels with memory. Motivated by several results in the litera-

ture, we established a class of symmetric FSM channels for which feedback does not

increase their capacity. We showed this result by first reformulating the optimization

problem in terms of dynamic programming and then proving that, under feedback,

the capacity achieving distribution is uniform. An important observation should be

highlighted again; when feedback exists, one can learn the channel via the past control

actions and as such may apply a nonuniform distribution which will result in a higher

output entropy and capacity. We present a sufficient condition, Assumption 3.1.1,

under which it is still possible to learn the channel via these past control actions;

however, this learning does not affect the optimal distribution. We then observe that
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Assumption 3.1.1 is not required when channel state information is available at the

receiver. It is also worth observing that even though we have emphasized finite-state

channels with Markovian state (i.e., FSM channels) due to their wide use in the litera-

ture, our result also holds when the state process is not Markovian but still stationary

ergodic.6 Finally, although this result covers a large class of discrete channels with

memory, we believe that by adopting the approach of this thesis, it is possible to show

a similar result for a further general class of both symmetric and asymmetric channels

whose feedback capacity is achieved by an i.i.d. input, both in the single-user and

multiple-user settings.

6In this case, Property (I) is modified by replacing PSi|Si−1
(si|si−1) with PSi|S[i−1]

(si|s[i−1]) and
the noise process is no longer an HMP but remains stationary ergodic.



Chapter 4

Multiple Access Channel with

Receiver Side Information

In this chapter, we study the problem of reliable communication over multiple-access

channels where the channel is driven by an independent and identically distributed

state process and the encoders and the decoder are provided with various degrees

of asymmetric noisy channel state information (CSI). The essential requirement we

impose is that the noisy CSI available to the encoders is realized via the corruption

of CSI by different noise processes, which gives a realistic physical structure of the

communication setup. We also allow the receiver to observe full CSI in the majority of

the results (the treatment for the case when there is no CSI at the receiver is discussed

in the next chapter). We consider several scenarios. For the case where the encoders

observe causal, asymmetric noisy CSI and the decoder observes complete CSI, inner

and outer bounds to the capacity region, which are tight for the sum-rate capacity, are

provided. Next, single-letter characterizations for the channel capacity regions under

each of the following system settings are established: (a) the CSI at the encoders

65
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are asymmetric deterministic functions of the CSI at the decoder and the encoders

have non-causal noisy CSI (its causal version is recently solved in [CY11]); (b) the

encoders observe asymmetric noisy CSI with asymmetric delays and the decoder

observes complete CSI; (c) a degraded message set scenario with asymmetric noisy CSI

at the encoders and complete and/or noisy CSI at the decoder. The main component

in these results is a generalization of a converse coding approach, recently introduced

in [CY11] for the MAC with asymmetric quantized CSI at the encoders and herein

considerably extended and adapted for the noisy CSI setup.

4.1 The Converse Coding Approach

The most relevant paper to this work is [CY11] which provides a converse coding

approach for the state-dependent MAC where asymmetric partial state information

is available at the encoders. In this work, we adopt and expand on the converse

technique of this paper and use it in a noisy setup. The converse coding approach

of [CY11] is based on team decision theoretic methods [Wit98] (see also [Yük13],

[MT09] and [NT11] for recent team decision and control theoretic approaches as well

as [YB13] for team decision theory as well as review of information structures) where

the authors use memoryless stationary team policies which play a key role in showing

that the past information is irrelevant. As the authors mention in [CY11, Remark

2], for the validity of their arguments, it would suffice that the state information

available at the decoder contains the ones available at the two transmitters. In this

way, the decoder does not need to estimate the coding policies used in decentralized

time-sharing.

For the noisy setup, we need to modify this approach to account for the fact that
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the decoder does not have access to the state information at the encoders, and that

the past state information does not lead to a tractable recursion. This difficulty is

overcome by showing that a product form on the team policies exists in the noisy

setup as well.

The rest of the chapter is organized as follows. In Section 4.2, we formally state

scenarios (1)-(4), and present the main results and several observations. In Section

4.3, we provide two examples in one of which (the modulo-additive state-dependent

MAC) we apply the result of [EZ00] and get the full capacity region by only con-

sidering the tightness of the sum-rate capacity. Finally, in Section 4.4, we present

concluding remarks.

4.2 Main Results

We consider a two-user memoryless state-dependent MAC, with two encoders, a, b,

and two independent message sources Wa and Wb which are uniformly distributed

in the finite sets Wa and Wb, respectively. The channel inputs from the encoders

are Xa ∈ Xa and Xb ∈ Xb, respectively, and the channel output is Y ∈ Y . The

channel state process is modeled as a sequence {St}∞t=1 of i.i.d. random variables in

some finite space S. Let (Sat , S
b
t ) denote a pair of random variables available at two

encoders, a, b, respectively, at time t. Throughout the paper, by asymmetric side

information we will refer to the case where {Sat 6= Sbt}, ∀t. Furthermore, by noisy

side information will refer to the case where (Sat , S
b
t , St) are correlated according to a

given joint distribution PSa,Sb,S(sa, sb, s).
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4.2.1 Asymmetric Causal Noisy CSIT

Let the two encoders have access to a causal noisy version of the state information

St at each time t ≥ 1, modeled by Sat ∈ Sa, Sbt ∈ Sb, respectively, where the joint

distribution of (St, S
a
t , S

b
t ) factorizes as

PSat ,Sbt ,St(s
a
t , s

b
t , st) = PSat |St(s

a
t |st)PSbt |St(s

b
t |st)PSt(st). (4.1)

The system is depicted in Fig. 4.1. Let W := (Wa,Wb) and St be fully available at the

receiver and assume that {(St, Sat , Sbt )}∞t=1 is a sequence of i.i.d. triples, independent

from (Wa,Wb). Therefore, we have that for any n ≥ 1,

PS[n],S
a
[n]
,Sb

[n]
,W(s[n], s

a
[n], s

b
[n],w) =

n∏
t=1

1

|Wa|
1

|Wb|
PSat |St(s

a
t |st)PSbt |St(s

b
t |st)PSt(st). (4.2)

The channel inputs at time t, i.e., Xa
t and Xb

t , are functions of the locally available

information (Wa, S
a
[t]) and (Wb, S

b
[t]), respectively. Let Xt := (Xa

t , X
b
t ). Then, the

laws governing n-sequences of state, input and output letters are given by

PY[n]|W,X[n],S[n],S
a
[n]
,Sb

[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n]) =

n∏
t=1

PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st), (4.3)

where the channel’s transition probability distribution, PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st), is

given a priori.

Definition 4.2.1. An (n, 2nRa , 2nRb) code with block length n and rate pair (Ra, Rb)

for a state-dependent MAC with causal noisy state information consists of

(1) A sequence of mappings for each encoder

φ
(a)
t : Sta ×Wa → Xa, t = 1, 2, ...n;

φ
(b)
t : Stb ×Wb → Xb, t = 1, 2, ...n.

2) An associated decoding function
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-
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-

-

?

6

-

-

Wa Encoder

φ
(a)
t (Wa, S

a
[t])

φ
(b)
t (Wb, S

b
[t])

Encoder

Channel

P (Yt|Xa
t , X

b
t , St) ψ(Y[n], S[n])

Decoder
Ŵa

Ŵb

Wb

Xa
t

Xb
t

Sat

Sbt

Yt

St

Figure 4.1: The multiple-access channel with asymmetric causal noisy state informa-
tion.

ψ : Sn × Yn →Wa ×Wb.

The system’s probability of error, P
(n)
e , is given by

P (n)
e =

1

2n(Ra+Rb)

2nRa∑
wa=1

2nRb∑
wb=1

Pr
(
ψ(Y[n], S[n]) 6= (wa, wb)|W = w

)
.

A rate pair (Ra, Rb) is achievable if for any ε > 0, there exists, for all n sufficiently

large an (n, 2nRa , 2nRb) code such that 1
n

log |Wa| ≥ Ra > 0, 1
n

log |Wb| ≥ Rb > 0 and

P
(n)
e ≤ ε. The capacity region of the state-dependent MAC, CFS, is the closure of

the set of all achievable rate pairs (Ra, Rb) and the sum-rate capacity is defined as

C
∑
FS := max(Ra,Rb)∈CFS(Ra +Rb).

Before proceeding with the main result, we introduce memoryless stationary team

policies [CY11] and their associated rate regions. Let the set of all possible functions

from Sa to Xa and Sb to Xb be denoted by Ta := Xa|Sa| and Tb := Xb|Sb|, respectively.

We shall refer to Ta-valued and Tb-valued random vectors as Shannon strategies.
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Definition 4.2.2. [CY11] A memoryless stationary (in time) team policy is a family

Π = {π = (πTa(·), πT b(·)) ∈ P(Ta)× P(Tb)} (4.4)

of probability distribution pairs on (Ta, Tb).

For every memoryless stationary team policy π, let RFS(π) denote the region of

all rate pairs R = (Ra, Rb) satisfying

Ra < I(T a;Y |T b, S) (4.5)

Rb < I(T b;Y |T a, S) (4.6)

Ra +Rb < I(T a, T b;Y |S) (4.7)

where S, T a, T b and Y are random variables taking values in S, Ta, Tb and Y,

respectively, and whose joint probability distribution factorizes as

PS,Ta,T b,Y (s, ta, tb, y) = PS(s)PY |Ta,T b,S(y|ta, tb, s)πTa(ta)πT b(tb). (4.8)

Let CIN := co

(⋃
πRFS(π)

)
denote the closure of the convex hull of the rate

regions RFS(π) given by (4.5)-(4.7) associated to all possible memoryless stationary

team polices as defined in (4.4).

Theorem 4.2.1 (Inner Bound to CFS). CIN ⊆ CFS.

Proof of Theorem 4.2.1. Fix (Ra, Rb) ∈ RFS(π).

Codebook Generation Fix πTa(t
a) and πT b(t

b). For each wa ∈ {1, · · · , 2nRa},

randomly generate its corresponding n-tuple ta[n],wa
, each according to

∏n
i=1 πTai (tai,wa).

Similarly, for each wb ∈ {1, · · · , 2nRb}, randomly generate its corresponding n-tuple

tb[n],wb
, each according to

∏n
i=1 πT bi (tbi,wb). The set of these codeword pairs form the

codebook, which is revealed to the decoder while codewords tli,wl are revealed to

encoder l, l = {a, b}.
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Encoding Define the encoding functions as follows: xai (wa) = φai (wa, s
a
[i]) =

tai,wa(s
a
i ) and xbi(wb) = φbi(wb, s

b
[i]) = tbi,wb(s

b
i) where tai,wa and tbi,wb denote the ith

component of ta[n],wa
and tb[n],wb

, respectively, and sai and sbi denote the last compo-

nents of sa[i] and sb[i], respectively, i = 1, · · · , n. Therefore, to send the messages wa

and wb, we simply transmit the corresponding ta[n],wa
and tb[n],wb

, respectively.

Decoding After receiving (y[n], s[n]), the decoder looks for the only (wa, wb) pair

such that (ta[n],wa
, tb[n],wb

, y[n], s[n]) are jointly ε−typical and declares this pair as its

estimate (ŵa, ŵb).

Error Analysis Without loss of generality, we can assume that (wa, wb) = (1, 1)

was sent. An error occurs, if the correct codewords are not typical with the received

sequence or there is a pair of incorrect codewords that are typical with the received

sequence. Define the events Eα,β
4
=
{

(T a[n],α, T
b
[n],β, Y[n], S[n]) ∈ An

ε

}
, α ∈ {1, · · · , 2nRa}

and β ∈ {1, · · · , 2nRb}. Then, by the union bound we get

P n
e = P

(
Ec

1,1

⋃
(α,β)6=(1,1)

Eα,β
)

≤ P (Ec
1,1) +

∑
α=1,β 6=1

P (Eα,β) +
∑

α6=1,β=1

P (Eα,β) +
∑

α 6=1,β 6=1

P (Eα,β) (4.9)

where Ec
1,1 denotes the complement set of E1,1. Since {Yi, Si, T ai , T bi }∞i=1 is an i.i.d.

sequence and by [CT06, Theorem 15.2.1], P (Ec
1,1) → 0 as n → ∞. Next, let us

consider the second term∑
α=1,β 6=1

P (Eα=1,β 6=1) =
∑

α=1,β 6=1

P ((T a[n],1, T
b
[n],β, Y[n], S[n]) ∈ An

ε )

(i)
=

∑
α=1,β 6=1

∑
(ta

[n]
,tb
[n]
,y[n],s[n])∈Anε

PT b
[n]

(tb[n])PTa[n],Y[n],S[n]
(ta[n], y[n], s[n])

≤
∑

α=1,β 6=1

|Anε |2−n[H(T b)−ε]2−n[H(Ta,Y,S)−ε] (4.10)

≤ 2nRb2−n[H(T b)+H(Ta,Y,S)−H(Ta,T b,Y,S)−3ε]
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(ii)
= 2n[Rb−I(T b;Y |S,Ta)−3ε] (4.11)

where (i) holds since for β 6= 1, T b[n],β is independent of (T a[n],1, Y[n], S[n]) and (ii)

follows since T b and (T a, S) are independent and I(T b;Y, T a, S) = I(T b;T a, S) +

I(T b;Y |T a, S) = I(T b;Y |T a, S), where I(T b;T a, S) = 0. Following the same steps

for (α 6= 1, β = 1) and (α 6= 1, β 6= 1) we get∑
α 6=1,β=1

P (Eα,β) ≤ 2n[Ra−I(Ta;Y |T b,S)−3ε]

∑
α 6=1,β 6=1

P (Eα,β) ≤ 2n[Ra+Rb−I(Ta,T b;Y |S)−3ε], (4.12)

and the rate conditions of the RFS(π) imply that each term tends in (4.9) tends

to zero as n → ∞. This shows the achievability of a rate pair (Ra, Rb) ∈ RFS(π).

Achievability of any rate pair in CIN follows from a standard time-sharing argument.

Let COUT :=

{
(Ra, Rb) ∈ R+ × R+ : Ra + Rb ≤ supπTa (ta)π

Tb
(tb) I(T a, T b;Y |S)

}
where R+ is the set of positive reals.

Theorem 4.2.2 (Outer Bound to CFS). CFS ⊆ COUT .

Proof of Theorem 4.2.2. We need to show that all achievable rates satisfy

Ra +Rb ≤ sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |S),

i.e., a converse for the sum-rate capacity. Following [CY11], for 1 ≤ t ≤ n, let

αµ :=
1

n
PS[t−1]

(µ) and η(ε) :=
ε

1− ε
log |Y|+ H(ε)

1− ε
. (4.13)

Observe that limε→0 η(ε) = 0 and∑
µ∈S(n)

αµ =
1

n

∑
1≤t≤n

∑
µ∈St−1

PS[t−1]
(µ) = 1, (4.14)
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where S(n) is the set of all S-strings of length less than n. Let∑
µ∈S(n)

αµI(T at , T
b
t ;Yt|St, S[t−1] = µ) :=

∑
1≤t≤n

∑
µ∈St−1

αµI(T at , T
b
t ;Yt|St, S[t−1] = µ).

First recall that, for all t ≥ 1, Xa
t = φ

(a)
t

(
Wa, S

a
[t]

)
= φ

(a)
t

(
Wa, S

a
[t−1], S

a
t

)
and

Xb
t = φ

(b)
t

(
Wb, S

b
[t]

)
= φ

(b)
t

(
Wb, S

b
[t−1], S

b
t

)
. Then, we can define the Shannon strate-

gies T at ∈ Ta and T bt ∈ Tb by putting, for every sa ∈ Sa and sb ∈ Sb,

T at (sa) := φ
(a)
t

(
Wa, S

a
[t−1], sa

)
, T bt (sb) := φ

(b)
t

(
Wb, S

b
[t−1], sb

)
. (4.15)

We now show that the sum of any achievable rate pair can be written as the convex

combinations of mutual information terms which are indexed by the realization of

past complete CSI.

Lemma 4.2.1. Let T at ∈ Ta and T bt ∈ Tb be the Shannon strategies induced by φ
(a)
t

and φ
(b)
t , respectively, as shown in (4.15). Assume that a rate pair R = (Ra, Rb), with

block length n ≥ 1 and a constant ε ∈ (0, 1/2), is achievable. Then,

Ra +Rb ≤
∑
µ∈S(n)

αµI(T at , T
b
t ;Yt|St, S[t−1] = µ) + η(ε). (4.16)

Proof. Let Tt := (T at , T
b
t ). By Fano’s inequality, we get

H(W|Y[n], S[n]) ≤ H(ε) + ε log(|Wa||Wb|). (4.17)

Observing that

I(W;Y[n], S[n]) = H(W)−H(W|Y[n], S[n])

= log(|Wa||Wb|)−H(W|Y[n], S[n]). (4.18)

Combining (4.17) and (4.18) gives

(1− ε) log(|Wa||Wb|) ≤ I(W;Y[n], S[n]) +H(ε)
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and

Ra +Rb ≤
1

n
log(|Wa||Wb|) ≤

1

1− ε
1

n

(
I(W;Y[n], S[n]) +H(ε)

)
. (4.19)

Furthermore,

I(W;Y[n], S[n]) =
n∑
t=1

[
H(Yt, St|S[t−1], Y[t−1])−H(Yt, St|W, S[t−1], Y[t−1])

]
(i)
=

n∑
t=1

[
H(Yt|S[t], Y[t−1])−H(Yt|W, S[t], Y[t−1])

]
(ii)

≤
n∑
t=1

[
H(Yt|S[t])−H(Yt|W, S[t], Y[t−1],Tt)

]
(iii)
=

n∑
t=1

[
H(Yt|S[t])−H(Yt|S[t],Tt)

]
=

n∑
t=1

I(Tt;Yt|S[t]) (4.20)

where (i) is implied by (4.2), in (ii) Tt := (T at , T
b
t ) are Shannon strategies whose

realizations are mappings tit : Sit → X i
t for i = {a, b} and thus (ii) holds since

conditioning does not increase entropy. Finally, (iii) follows since

PYt|W,St,S[t−1],Y[t−1],T
a
t ,T

b
t
(yt|w, st, s[t−1], y[t−1], t

a
t , t

b
t)

=
∑
sat ,s

b
t

PYt|St,Sat ,Sbt ,Tat ,T bt (yt|st, sat , sbt , tat , tbt)PSat ,Sbt |St(s
a
t , s

b
t |st)

= PYt|St,Tat ,T bt (yt|st, tat , tbt) (4.21)

where the first equality is verified by (4.3) and (4.2), where xit = tit(s
i
t) for i = {a, b}.

At this point, it is worth to note that by (4.21), one can remove S[t−1] from (4.20) in

the conditioning. However, we will soon observe why it is crucial to keep it when we

prove the product form. Now, let χ(ε) := H(ε)
n(1−ε) and combining (4.19)-(4.20) gives

Ra +Rb ≤
1

n
log(|Wa||Wb|)
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≤

(
1

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t])

)
+ χ(ε) + (n− 1)χ(ε)

(a)

≤ 1

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t]) + η(ε)− ε

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t])

=
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t]) + η(ε) (4.22)

where (a) is valid since I(T at , T
b
t ;Yt|S[t]) ≤ log |Y|. Furthermore,

I(T at , T
b
t ;Yt|S[t]) = n

∑
µ∈St−1

αµI(T at , T
b
t ;Yt|St, S[t−1] = µ), (4.23)

and substituting the above into (4.22) yields (4.16).

Note that, for any t ≥ 1, I(T at , T
b
t ;Yt|St, S[t−1] = µ) is a function of the joint

conditional distribution of channel state St, inputs T at , T bt and output Yt given the

past realization (S[t−1] = µ). Hence, to complete the proof of the outer bound, we

need to show that PTat ,T bt ,Yt,St|S[t−1]
(ta, tb, y, s|µ) factorizes as in (4.8). This is done in

the lemma below. In particular, it is crucial to observe that the knowledge of the

past state at the decoder, S[t−1], is enough to provide a product form on T a and T b.

Let

Υa
µa(ta) := {wa : φ

(a)
t (wa, s

a
[t−1] = µa) = ta}

Υb
µb

(tb) := {wb : φ
(b)
t (wb, s

b
[t−1] = µb) = tb} (4.24)

πµaTa(t
a) :=

∑
wa∈Υaµa (ta)

1

|Wa|

πµb
T b

(tb) :=
∑

wb∈Υbµb
(tb)

1

|Wb|

πµTa(t
a) :=

∑
µa

πµaTa(t
a)PSa

[t−1]
|S[t−1]

(µa|µ),

πµ
T b

(tb) :=
∑
µb

πµb
T b

(tb)PSb
[t−1]

|S[t−1]
(µb|µ), (4.25)
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where µa and µb denote particular realizations of Sa[t−1] and Sb[t−1], respectively.

Lemma 4.2.2. For every 1 ≤ t ≤ n and µ ∈ St−1, the following holds

PTat ,T bt ,Yt,St|S[t−1]
(ta, tb, y, s|µ) = PS(s)PY |S,Ta,T b(y|s, ta, tb)πµTa(t

a)πµ
T b

(tb).(4.26)

Proof. Let S := (St, S
a
t , S

b
t ) and s := (s, sat , s

b
t). Observe that

PTat ,T bt ,Yt,St|S[t−1]
(ta, tb, y, s|µ)

=
∑
sat∈Sa

∑
sbt∈Sb

PS,Tat ,T
b
t ,Yt|S[t−1]

(s, ta, tb, y|µ)

=
∑
sat∈Sa

∑
sbt∈Sb

PY |S,Tat ,T bt (y|s, ta, tb)PS,Tat ,T
b
t |S[t−1]

(s, ta, tb|µ) (4.27)

where (4.27) is shown in (4.21). Let us now consider the term PS,Tat ,T
b
t |S[t−1]

(s, ta, tb|µ)

above. We have the following

PS,Tat ,T
b
t |S[t−1]

(s, ta, tb|µ)

=
∑

wa∈Wa

∑
wb∈Wb

∑
µa

∑
µb

PW,Sa
[t−1]

,Sb
[t−1]

,S,Tat ,T
b
t |S[t−1]

(w, µa, µb, s, t
a, tb|µ)

(i)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
µa

∑
µb

PW,Sa
[t−1]

,Sb
[t−1]

,Tat ,T
b
t |S[t−1]

(w, µa, µb, t
a, tb|µ)

(ii)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
µa

∑
µb

1{tl=φ(l)t (wl,µl), l=a,b}
PW,Sa

[t−1]
,Sb

[t−1]
|S[t−1]

(w, µa, µb|µ)

(iii)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
µa

∑
µb

1{tl=φ(l)t (wl,µl), l=a,b}

1

|Wa|
1

|Wb|
PSa

[t−1]
,Sb

[t−1]
|S[t−1]

(µa, µb|µ)

(iv)
= PS(s)

∑
µa

PSa
[t−1]

|S[t−1]
(µa|µ)

∑
µb

PSb
[t−1]

|S[t−1]
(µb|µ)

∑
wa∈Wa

1

|Wa|
1{ta=φ

(a)
t (wa,µa)}

∑
wb∈Wb

1

|Wb|
1{tb=φ(b)t (wb,µb)}

(v)
= PS(s)

∑
µa

PSa
[t−1]

|S[t−1]
(µa|µ)

∑
wa∈Υaµa (ta)

1

|Wa|
∑
µb

PSb
[t−1]

|S[t−1]
(µb|µ)

∑
wb∈Υbµb

(tb)

1

|Wb|
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(vi)
= PS(s)

∑
µa

PSa
[t−1]

|S[t−1]
(µa|µ)πµaTa(t

a)
∑
µb

PSb
[t−1]

|S[t−1]
(µb|µ)πµb

T b
(tb)

(vii)
= PS(s)πµTa(t

a)πµ
T b

(tb) (4.28)

where (i) is due to (4.2) and (4.15), (ii) is valid by (4.15), (iii) is due to (4.2), (iv)

is valid by (4.1) and (4.15), (v) is valid due to (4.24) and (vi)− (vii) is valid due to

(4.25). Substituting (4.28) into (4.27) proves the lemma.

We can now complete the proof of Theorem 4.2.2. We have

Ra +Rb ≤
∑
µ∈S(n)

αµI(T at , T
b
t ;Yt|St, S[t−1] = µ) + η(ε)

=
∑
µ∈S(n)

αµI(T at , T
b
t ;Yt|St)πµTa (ta)πµ

Tb
(tb) + η(ε)

≤ sup
(πTa (ta)π

Tb
(tb)∈Π)

I(T at , T
b
t ;Yt|St) + η(ε),

where I(T at , T
b
t ;Yt|St)πµTa (ta)πµ

Tb
(tb) denotes the mutual information induced by the

product distribution πµTa(t
a)πµ

T b
(tb) and this step is valid since I(T at , T

b
t ;Yt|St, S[t−1] =

µ) is a function of the joint conditional distribution of channel state St, inputs T at , T
b
t

and output Yt given the past realization (S[t−1] = µ). Hence, since limε→0 η(ε) = 0,

any achievable pair satisfies Ra +Rb ≤ supπTa (ta)π
Tb

(tb) I(T a, T b;Y |S).

As a consequence of Theorems 4.2.1 and 4.2.2, we have the following corollary

which can be thought of as an extension of [Jaf06, Theorem 4] to the case where the

encoders have correlated CSI.

Corollary 4.2.1.

CFS∑ = sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |S). (4.29)

Proof of Corollary 4.2.1. We need to show that ∃ (Ra, Rb) ∈ CIN achieving (4.29).
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We follows steps akin to [CT06, p.535] where discrete memoryless MACs are consid-

ered. Let us fix πTa(t
a)πT b(t

b) and consider the rate constraints given in CIN

I(T a;Y |T b, S) = H(T a|T b, S)−H(T a|T b, Y, S) = H(T a)−H(T a|T b, Y, S) (4.30)

I(T b;Y |T a, S) = H(T b|T a, S)−H(T b|T a, Y, S) = H(T b)−H(T b|T a, Y, S) (4.31)

I(T a, T b;Y |S) = H(T a, T b)−H(T a, T b|Y, S)

= H(T a) +H(T b)−H(T a|T b, Y, S)−H(T b|Y, S), (4.32)

where (4.30), (4.31) and (4.32) are valid since T a and T b are independent of each other

and independent of S. Observe now that for any πTa(t
a)πT b(t

b), I(T a;Y |T b, S) +

I(T b;Y |T a, S) ≥ I(T a, T b;Y |S) since H(T b|Y, S) ≥ H(T b|T a, Y, S). Therefore, the

sum-rate constraint in CIN is always active and hence, there exists (Ra, Rb) ∈ CIN

achieving (4.29).

We conclude this section with a number of remarks.

Remark 4.2.1. One essential step in the proof of Theorem 4.2.2 is that, once we have

the complete CSI, conditioning on which allows a product form on T a and T b, there

is no loss of optimality (for the sum-rate capacity) in using associated memoryless

team policies instead of using all the past information at the receiver.

Remark 4.2.2. For the validity of Corollary 4.2.1, it is crucial to have the product

form on (T a, T b). If this is not the case, we would get that

I(T a;Y |T b, S) + I(T b;Y |T a, S)

= H(T a|T b) +H(T b|T a)−H(T a|T b, Y, S)−H(T b|T a, Y, S)

I(T a, T b;Y |S) = H(T a|T b) +H(T b)−H(T a|T b, Y, S)−H(T b|Y, S).

Therefore, it is possible to get an obsolete sum-rate constraint in CIN and hence,
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achievability of C
∑
FS is not guaranteed. It should be noted that the channel inputs are

not independent since Xa = T a(Sa) and Xb = T b(Sb).

4.2.2 Partial Asymmetric CSITs: Non-Causal Case

In this section, we consider the situation where the transmitters have access to partial

state information available at the decoder. In particular, let Sit = f i(Srt ), where

f i : Sr → Si, i = {a, b} and Sr ∈ Sr such that

PS[n],S
a
[n]
,Sb

[n]
,Sr

[n]
,W(s[n], s

a
[n], s

b
[n], s

r
[n],w) =

n∏
t=1

1

|Wa|
1

|Wb|
PSt,Sat ,Sbt ,Srt (st, s

a
t , s

b
t , s

r
t ).(4.33)

Let S := (St, S
a
t , S

b
t , S

r
t ) and s := (s, sat , s

b
t , s

r
t ). The channel is driven by the state

process {St}∞t=1 and hence,

PY[n]|W,X[n],S[n]
(y[n]|w,x[n], s[n]) =

n∏
t=1

PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st). (4.34)

Note that one can define an equivalent channel with conditional output probability

P eq
Y |Xa,Xb,Sr

(y|xa, xb, sr) =
∑
s∈S

PY |Xa,Xb,S(y|xa, xb, s)PS|Sr(s|sr). (4.35)

Hence, the causal setup of this problem is no more general than the setup in [CY11]

and the main contribution of this subsection is to show that the result of [CY11] also

holds for non-causal coding.

We keep the channel codes definition identical for the causal and non-causal cases,

except for the non-causal case we have; φ
(i)
t : Sni ×Wi → X n

i , i = {a, b}, t = 1, · · · , n.

Let Cnc denote the capacity region. We need to modify Definition 4.2.2 in order

to take the current CSI into account.

Definition 4.2.3. A memoryless stationary (in time) team policy is a family

Π̄ =
{
π̄ =

(
πXa|Sa(·|fa(sr)), πXb|Sb(·|f b(sr))

)
∈ P(Xa)× P(Xb)

}
. (4.36)
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For every π̄ defined in (4.36), Rnc(π̄) denotes the region of all rate pairs R =

(Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, Sr) (4.37)

Rb < I(Xb;Y |Xa, Sr) (4.38)

Ra +Rb < I(Xa, Xb;Y |Sr) (4.39)

where Sr, Xa, Xb and Y are random variables taking values in Sr, Xa, Xb and Y,

respectively, and whose joint probability distribution factorizes as

PSr,Xa,Xb,Y (sr, xa, xb, y)

= PSr(s
r)PY |Xa,Xb,Sr(y|xa, xb, sr)πXa|Sa(x

a|fa(sr))πXb|Sb(x
b|f b(sr)). (4.40)

Let co

(⋃
π̄Rnc(π̄)

)
denote the closure of the convex hull of the rate regions

Rnc(π̄) given by (4.37)-(4.39) associated to all possible memoryless stationary team

polices as defined in (4.36).

Theorem 4.2.3. Cnc = co

(⋃
π̄Rnc(π̄)

)
.

For the achievability proof, see [CY11, Section III] and observe that any rate which

is achievable with causal CSI is also achievable with non-causal CSI. The proof for

the non-causal case is realized by observing that there is no loss of optimality if not

only the past, as shown in [CY11], but also the future CSI is ignored given that the

receiver is provided with complete CSI. A similar observation for independent CSIT

is also made see [Jaf06, Theorem 5].

Converse Proof of Theorem 4.2.3. Let

αµp,f :=
1

n
PSr

[1,t−1]
,Sr

[t+1,n]
(µp, µf ). (4.41)
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Observe that (µp : µf ) ∈ Sn−1
r , where (v : w) denotes the concatenation of two vectors

v and w, and ∑
(µp:µf )

αµp,f :=
1

n

∑
1≤t≤n

∑
µp,µf

PSr
[1,t−1]

,Sr
[t+1,n]

(µp, µf ) = 1.

Lemma 4.2.3. Assume that a rate pair R = (Ra, Rb), with block length n ≥ 1 and a

constant ε ∈ (0, 1/2), is achievable. Then,

Ra ≤
∑

(µp:µf )

αµp,f I(Xa
t ;Yt|Xb

t , S
r
t , S

r
[t−1] = µp, S

r
[t+1,n] = µf ) + η(ε) (4.42)

Rb ≤
∑

(µp:µf )

αµp,f I(Xb
t ;Yt|Xa

t , S
r
t , S

r
[t−1] = µp, S

r
[t+1,n] = µf ) + η(ε) (4.43)

Ra +Rb ≤
∑

(µp:µf )

αµp,f I(Xa
t , X

b
t ;Yt|Srt , Sr[t−1] = µp, S

r
[t+1,n] = µf ) + η(ε) (4.44)

Proof. Let us first consider the sum-rate. With standard steps, we get

Ra +Rb ≤
1

1− ε
1

n

(
I(W;Y[n], S

r
[n]) +H(ε)

)
. (4.45)

Note that since Sr[n] is independent of W, we have I(W;Y[n], S
r
[n]) = I(W;Y[n]|Sr[n])

and

I(W;Y[n]|Sr[n]) =
n∑
t=1

[
H(Yt|Sr[n], Y[t−1])−H(Yt|W, Sr[n], Y[t−1])

]
(i)

≤
n∑
t=1

[
H(Yt|Sr[n])−H(Yt|W, Sr[n], Y[t−1])

]
(ii)
=

n∑
t=1

[
H(Yt|Sr[n])−H(Yt|W, Sr[n], Y[t−1],X[n])

]
(iii)
=

n∑
t=1

[
H(Yt|Sr[n])−H(Yt|Sr[n],Xt)

]
=

n∑
t=1

I(Xt;Yt|Sr[n]) (4.46)

where (i) follows since conditioning does not increase entropy, (ii) holds since X i
t =

φ
(i)
t (Wi, f

i(Sr[n])), i = {a, b}, and (iii) is due to (4.3). Combining (4.45) and (4.46)
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similar to (4.22), gives

Ra +Rb ≤
1

n

n∑
t=1

I(Xa
t , X

b
t ;Yt|Sr[n]) + η(ε) and (4.47)

I(Xa
t , X

b
t ;Yt|Sr[n]) = n

∑
µp,µf

αµp,f I(Xa
t , X

b
t ;Yt|Srt , Sr[t−1] = µp, S

r
[t+1,n] = µf ) (4.48)

and substituting the above into (4.47) yields (4.44).

Let us now consider encoder a. Using Fano’s inequality and standard steps we

first get,

Ra ≤
1

1− ε
1

n

(
I(Wa;Y[n], S

r
[n]) +H(ε)

)
. (4.49)

Furthermore,

I(Wa;Y[n], S
r
[n])

(i)

≤ I(Wa;Y[n]|Sr[n],Wb)

=
n∑
t=1

[
H(Yt|Sr[n], Y[t−1],Wb)−H(Yt|Sr[n], Y[t−1],W)

]
(ii)

≤
n∑
t=1

[
H(Yt|Sr[n],Wb)−H(Yt|Sr[n], Y[t−1],W)

]
(iii)
=

n∑
t=1

[
H(Yt|Sr[n],Wb, X

b
[n])−H(Yt|Sr[n], Y[t−1],W,X[n])

]
(iv)

≤
n∑
t=1

[
H(Yt|Sr[n], X

b
t )−H(Yt|Sr[n], Y[t−1],W,X[n])

]
(v)
=

n∑
t=1

[
H(Yt|Sr[n], X

b
t )−H(Yt|Sr[n], X

b
t , X

a
t )
]

=
n∑
t=1

I(Xa
t ;Yt|Xb

t , S
r
[n]) (4.50)

where (i) is due to (4.2) and conditioning does not increase entropy, (ii) holds since

conditioning does not increase entropy, (iii) holds since X i
t = φ(i)(Wi, f

i(Sr[n])), i =

{a, b}, (iv) is valid since conditioning does not increase entropy and finally, (v) is

valid due to (4.3) and Sit , i = {a, b}, being a function of Srt .
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Now combining (4.49)-(4.50) and following steps akin to (4.47) and (4.48), we can

verify (4.42). To verify (4.43) for encoder b it is enough to switch the roles of encoder

a and (b).

Observe now that for any t ≥ 1, I(Xa
t , X

b
t ;Yt|Srt , Sr[t−1] = µp, S

r
[t+1,n] = µf ) is a

function of PXa
t ,X

b
t ,Yt,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(xat , x
b
t , yt, s

r
t |µp, µf ). Hence, we need to show that

this distribution factorizes as in (4.40). Let

Υa
µp,µf

(xa, fa(sr)) := {wa : φ
(a)
t (wa, f

a(µp, µf ), f
a(sr)) = xa}

Υb
µp,µf

(xb, f b(sr)) := {wb : φ
(b)
t

(
wb, f

b(µp, µf ), f
b(sr)

)
= xb} (4.51)

π
µp,µf
Xa|Sa (xa|fa(sr)) :=

∑
wa∈Υaµp,µf

(xa,fa(sr))

1

|Wa|
,

π
µp,µf
Xb|Sb

(
xb|f b(sr)

)
:=

∑
wb∈Υbµp,µf

(xb,fb(sr))

1

|Wb|
. (4.52)

Lemma 4.2.4. For every 1 ≤ t ≤ n and (µp : µf ) ∈ Sn−1
r , the following holds

PXa
t ,X

b
t ,Yt,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(xa, xb, y, sr|µp, µf )

= PSr(s
r)PY |Sr,Xa,Xb(y|sr, xa, xb)πµp,µfXa|Sa(x

a|fa(sr))πµp,µf
Xb|Sb(x

b|f b(sr)).(4.53)

Proof. First observe that due to (4.3) we have

PXa
t ,X

b
t ,Yt,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(xa, xb, y, sr|µp, µf )

= PYt|Srt ,Xa
t ,X

b
t
(y|sr, xa, xb)PXa

t ,X
b
t ,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(xa, xb, sr|µp, µf ). (4.54)

Let us now consider the second term in (4.54). We have

PXa
t ,X

b
t ,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(xa, xb, sr|µp, µf )

=
∑

wa∈Wa

∑
wb∈Wb

PW,Xa
t ,X

b
t ,S

r
t |Sr[t−1]

,Sr
[t+1,n]

(w, xa, xb, sr|µp, µf )

(i)
=

∑
wa∈Wa

∑
wb∈Wb

1{xl=φ(l)(wl,f l(sr,µp,µf )), l=a,b}PWa,Wb,S
r
t |Sr[t−1]

,Sr
[t+1,n]

(wa, wb, s
r|µp, µf )
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(ii)
=

∑
wa∈Wa

∑
wb∈Wb

1{xl=φ(l)(wl,f l(sr,µp,µf )), l=a,b}
1

|Wa|
1

|Wb|
PSrt (s

r)

= PSrt (s
r)
∑

wa∈Wa

1

|Wa|
1{xa=φ(a)(wa,fa(sr,µp,µf ))}

∑
wb∈Wb

1

|Wb|
1{xb=φ(b)(wb,fb(sr,µp,µf ))}

(iii)
=

1

|Wa|
∑

wa∈Υaµp,µf
(xa,fa(sr))

1

|Wb|
∑

wb∈Υbµp,µf
(xb,fb(sr))

(iv)
= PSrt (s

r)π
µp,µf
Xa|Sa(x

a|fa(sr))πµp,µf
Xb|Sb(x

b|f b(sr)) (4.55)

where (i) follows since X i
t = φ(i)(Wi, f

i(Sr[n])), i = {a, b}, (ii) is valid since Wa and Wb

are independent of Sr[n] and state process being i.i.d. and (iii) follows due to (4.51)

and (iv) follows due to (4.52). Substituting (4.55) in (4.54) completes the proof.

We can now complete the proof of Theorem 4.2.3. With Lemma 4.2.3, it is shown

that any achievable rate pair can be approximated by the convex combinations of rate

conditions given in (4.37)-(4.39) which are indexed by (µp, µf ) and satisfy (4.40) for

joint state-input-output distributions. Hence, since limε→0 η(ε) = 0, any achievable

rate pair belongs to co

(⋃
π̄Rnc(π̄)

)
.

Consider now the setup in Section 4.2 in order to observe that for the non-causal

case the optimality of Shannon strategies is not guaranteed. Recall that, we have

I(W;Y[n], S[n])≤
n∑
t=1

[
H(Yt|S[n], Y[t−1])−H(Yt|W, S[n], Y[t−1],Tt)

]
(4.56)

where Tt := (T at , T
b
t ). Consider now the right hand side of (4.56) and observe that

PYt|W,S[n],Y[t−1],T
a
t ,T

b
t
(yt|w, s[n], y[t−1], t

a
t , t

b
t)

=
∑
sat ,s

b
t

PYt|St,Sat ,Sbt ,Tat ,T bt (yt|st, sat , sbt , tat , tbt)PSat ,Sbt |Y[t−1],St
(sat , s

b
t |y[t−1], st),

and therefore, the past channel outputs cannot be eliminated.
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4.2.3 Asymmetric Noisy CSIT with Delays

Consider the problem defined in Section 4.2.1 where the two encoders have accesses

to asymmetrically delayed, where delays are da ≥ 1 and db ≥ 1, respectively, and

noisy versions of the state information St at each time t ≥ 1, modeled by Sat−da ∈ Sa,

Sbt−db ∈ Sb, respectively. The rest of the channel model is identical and hence, (4.1),

(4.2) and (4.3) are valid throughout this section. We also assume that St is fully

available at the receiver. A code can be defined as in Definition 4.2.1, except now

φ
(a)
t : St−daa ×Wa → Xa, t = 1, 2, ...n;

φ
(b)
t : St−dbb ×Wb → Xb, t = 1, 2, ...n.1

Let Cad denotes the capacity region of the delayed setup.

In the main result of this section the team policies are composed of probability

distributions on the channel inputs rather than Shannon strategies.

Definition 4.2.4. A memoryless stationary (in time) team policy is a family

Π̃ =
{
π̃ = (πXa(·), πXb(·)) ∈ P(X a)× P(X b)

}
. (4.57)

For every memoryless stationary team policy π̃, Rad(π̃) denotes the region of all

rate pairs R = (Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, S) (4.58)

Rb < I(Xb;Y |Xa, S) (4.59)

Ra +Rb < I(Xa, Xb;Y |S) (4.60)

where S, Xa, Xb and Y are random variables taking values in S, X a, X b and Y,

1Obviously, when dl ≥ t, l = a, b then Xa
t = φ

(a)
t (Wa) and Xb

t = φ
(b)
t (Wb).
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respectively and whose joint probability distribution factorizes as

PS,Xa,Xb,Y (s, xa, xb, y) = PS(s)PY |Xa,Xb,S(y|xa, xb, s)πXa(xa)πXb(xb). (4.61)

Let co

(⋃
π̃Rad(π̃)

)
denotes the closure of the convex hull of the rate regions

Rad(π̃) given by (4.58)-(4.60) associated to all possible memoryless stationary team

polices as defined in (4.57).

Theorem 4.2.4. Cad = co

(⋃
π̃Rad(π̃)

)
.

Achievability can be shown via random coding arguments.

Converse Proof of Theorem 4.2.4. In the proof, we will use the fact that the delayed

setup can be modeled by taking the last da, db entries of causal setup as empty. Recall

that αµ is defined in (4.41).

Lemma 4.2.5. Assume that a rate pair R = (Ra, Rb), with block length n ≥ 1 and a

constant ε ∈ (0, 1/2), is achievable. Then,

Ra ≤
∑
µ∈S(n)

αµI(Xa
t ;Yt|Xb

t , St, S[t−1] = µ) + η(ε) (4.62)

Rb ≤
∑
µ∈S(n)

αµI(Xb
t ;Yt|Xa

t , St, S[t−1] = µ) + η(ε) (4.63)

Ra +Rb ≤
∑
µ∈S(n)

αµI(Xa
t , X

b
t ;Yt|St, S[t−1] = µ) + η(ε). (4.64)

Proof. For the sum-rate, observe that the derivation in (4.20) can be performed to

verify (4.64), as for di ≥ 1, T it = X i
t by taking Si[t−di+1,t−1] = ∅, i = {a, b}.

Let us now consider encoder a. We have

Ra ≤
1

n
log(|Wa|) ≤

1

1− ε
1

n

(
I(Wa;Y[n], S[n]) +H(ε)

)
. (4.65)

Furthermore,

I(Wa;Y[n], S[n])
(i)

≤ I(Wa;Y[n], S[n]|Wb, S
b
[n])
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=
n∑
t=1

[
H(Yt, St|S[t−1], Y[t−1],Wb, S

b
[n])−

H(Yt, St|S[t−1], Y[t−1],W, Sb[n])
]

(ii)
=

n∑
t=1

[
H(Yt|S[t], Y[t−1],Wb, S

b
[n])−H(Yt|S[t], Y[t−1],W, Sb[n])

]
(iii)
=

n∑
t=1

[
H(Yt|S[t], Y[t−1],Wb, S

b
[n], X

b
[n])−

H(Yt|S[t], Y[t−1],W, Sb[n], X
b
[n])
]

(iv)

≤
n∑
t=1

[
H(Yt|S[t], X

b
t )−H(Yt|S[t], Y[t−1],W, Sb[n], X

b
[n], X

a
[n])
]

(v)
=

n∑
t=1

[
H(Yt|S[t], X

b
t )−H(Yt|S[t], X

b
t , X

a
t )
]

=
n∑
t=1

I(Xa
t ;Yt|Xb

t , S[t]) (4.66)

where (i) is due to (4.2) and conditioning reduces entropy, (ii) is valid since

PSt|Sbt (st|s
b
t) = PSt|Y[t−1],S[t−1],Wa,Wb,S

b
[n]

(st|y[t−1], s[t−1], wa, wb, s
b
[n])

= PSt|Y[t−1],S[t−1],Wb,S
b
[n]

(st|y[t−1], s[t−1], wb, s
b
[n]) (4.67)

where the second equality is due to (4.2), (iii) is valid since Xb
t = φ

(b)
t

(
Wb, S

b
[t−db]

)
,

(iv) is valid since conditioning reduces entropy and finally, (v) is valid by (4.3).

Now, recall that χ(ε) = H(ε)
n(1−ε) and, combining (4.65) and (4.66) gives

Ra ≤
1

n

n∑
t=1

I(Xa
t ;Yt|Xb

t , S[t]) + η(ε). (4.68)

Furthermore,

I(Xa
t ;Yt|Xb

t , S[t]) = n
∑

µ∈St−1

αµI(Xa
t ;Yt|Xb

t , St, S[t−1] = µ), (4.69)

and substituting the above into (4.68) yields (4.62).

Finally, for encoder b, (4.63) can be verified by following the similar steps of

encoder a.
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Now since, for any t ≥ 1, conditional mutual information terms given in (4.62)-

(4.64) are functions of PXa
t ,X

b
t ,Yt,St|S[t−1]

(xa, xb, y, s|µ), in order to complete the proof

of the converse, we need to show that this term factorizes as in (4.61).

Lemma 4.2.6. For every 1 ≤ t ≤ n and µ ∈ St−1, the following holds

PXa
t ,X

b
t ,Yt,St|S[t−1]

(xa, xb, y, s|µ) = PS(s)PY |S,Xa,Xb(y|s, xa, xb)πµXa(xa)π
µ
Xb(x

b). (4.70)

Note that one of the crucial step in verifying the product form for the causal setup,

see (4.18) and (4.19), is the independence of Shannon strategies of the current state.

This also holds in the delayed setup. Therefore, let

Υi
µi

(xi) := {wi : φ
(i)
t (wi, s

i
[t−di] = µi) = xi}, i = a, b (4.71)

and

πµi
Xi(x

i) :=
∑

wi∈Υiµi
(xi)

1

|Wi|
, πµ

Xi(x
i) :=

∑
µi

πµi
Xi(x

i)PSi
[t−di]

|S[t−1]
(µi|µ), i = a, b.

Hence, (4.70) can be shown following the same steps in Lemma 4.2.2.

We can now complete the converse proof of Theorem 4.2.4. With Lemma 4.2.5 it is

shown that any achievable rate pair can be approximated by the convex combinations

of rate conditions which are indexed by µ ∈ S(n) and satisfy (4.61) for joint state-

input-output distributions. Hence, any achievable pair (Ra, Rb) ∈ co
(⋃

π̃Rad(π̃)
)
.

Remark 4.2.3 (Strictly Causal CSIT). When da = db = 1, Theorem 4.2.4 is the

capacity region of the setup with strictly causal CSITs. This case was considered in

the literature, e.g., see [LS13b], [LSY13], [LS13a] and [ZPS11], where it is shown

that strictly causal side information is helpful. Theorem 4.2.4 verifies that since the

full CSI is available at the receiver and since the decoder does not need to access the
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current CSI at the encoders, there exists no loss of optimality if the past information

at the encoders are ignored.

Remark 4.2.4 (CSI at Only One Encoder). One other conclusion of Theorem 4.2.4

is that in a situation where one of the encoders, say a, does not have an access to the

state information (i.e., da is large) then, there exists no loss of optimality if the the

past information at the other encoder is ignored.

4.2.4 Degraded Message Set with Noisy CSIT

Assume a common message is provided to both encoders and one of the encoders has

its own private message. Assume further that the encoder with the private message

has causal noisy CSI, whereas the encoder with the common message only observes

noisy state information with delay da ≥ 1. Let the common and the private messages

beWa andWb, respectively, and Sa[t−da], da ≥ 1, and Sb[t] denote the CSI at encoder a, b,

respectively, where (St, S
a
t , S

b
t ) satisfies (4.1) and (4.2). Hence, Xa

t = φ
(a)
t (Wa, S

a
[t−da])

and Xb
t = φ

(b)
t (Wa,Wb, S

b
[t]); see Fig. 4.2. Let Cdm denote the capacity region for this

channel. Recall that Tb = X |Sb|b .

Definition 4.2.5. A memoryless stationary (in time) team policy is a family

Π̂ =
{
π̂ =

(
πXa,T b(·, ·)

)
∈ P(X a × T b)

}
(4.72)

of probability distributions on (Xa, Tb).

Let for every π̂, Rdm(π̂) denote the region of all rate pairs R = (Ra, Rb) satisfying

Rb < I(T b;Y |Xa, S) (4.73)

Ra +Rb < I(Xa, T b;Y |S) (4.74)
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Figure 4.2: The multiple-access channel with degraded message set and with causal
noisy state information.

where S, Xa, T b and Y are random variables taking values in S, Xa, Tb and Y ,

respectively and whose joint probability distribution factorizes as

PS,Xa,T b,Y (s, xa, tb, y) = PS(s)PY |Xa,T b,S(y|xa, tb, s)πXa,T b(x
a, tb). (4.75)

Let co

(⋃
π̂Rdm(π̂)

)
denotes the closure of the convex hull of the rate regionsRdm(π̂)

given by (4.73) and (4.74) associated to all possible memoryless stationary team

polices as defined in (4.72).

Theorem 4.2.5. Cdm = co

(⋃
π̂Rdm(π̂)

)
.

Achievability. Fix (Ra, Rb) ∈ Rdm(π̂).

Codebook Generation Fix πXa(xa) and πT b|Xa(tb|xa). For each wa ∈ {1, · · · , 2nRa},

randomly generate xa[n],wa
, each according to

∏n
i=1 πXa

i
(xai,wa). Reveal this codebook

to encoder b and, for each wa ∈ {1, · · · , 2nRa} and wb ∈ {1, · · · , 2nRb}, encoder b ran-

domly generates tb[n],wb,wa
, each according to

∏n
i=1 πT bi |Xa

i
(tbi,wb |x

a
i,wa). These codeword

pairs form the codebook, which is revealed to the decoder.

Encoding Define the encoding functions as follows: xai (wa) = φai (wa, s
a
[i−da]) and
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xbi(wb) = φbi(wb, wa, s
b
[i]) = tbi,wb,wa(s

b
i) where xai,wa and tbi,wb,wa denote the ith component

of xa[n],wa
and tb[n],wb,wa

, respectively. Therefore, to send the messages wa and wb,

transmit the corresponding xa[n],wa
and tb[n],wb,wa

, respectively.

Decoding After receiving (y[n], s[n]), the decoder looks for the only (wa, wb) pair

such that (xa[n],wa
, tb[n],wb

, y[n], s[n]) are jointly ε−typical and declares this pair as its

estimate (ŵa, ŵb).

Error Analysis Let Eα,β
4
=
{

(Xa
[n],α, T

b
[n],β,α, Y[n], S[n]) ∈ Anε

}
, α ∈ {1, · · · , 2nRa}

and β ∈ {1, · · · , 2nRb} and assume that (wa, wb) = (1, 1) was sent. Then

P n
e = P

(
Ec

1,1

⋃
(α,β)6=(1,1)

Eα,β
)

≤ P (Ec
1,1) +

∑
α=1,β 6=1

P (Eα,β) +
∑

α 6=1,β=1

P (Eα,β) +
∑

α 6=1,β 6=1

P (Eα,β). (4.76)

Since {Yi, Si, Xa
i , T

b
i }∞i=1 is an i.i.d. sequence hence, P (Ec

1,1) → 0 for n → ∞. Next,

let us consider the second term∑
α=1,β 6=1

P (Eα=1,β 6=1)

=
∑

α=1,β 6=1

P ((Xa
[n],1, T

b
[n],β, Y[n], S[n]) ∈ An

ε )

(i)
=

∑
α=1,β 6=1

∑
(xa

[n]
,tb
[n]
,y[n],s[n])∈Anε

PT b
[n]
|Xa

[n]
(tb[n]|xa[n])PXa

[n]
,Y[n],S[n]

(xa[n], y[n], s[n])

≤
∑

α=1,β 6=1

|Anε |2−n[H(T b|Xa)−ε]2−n[H(Xa,Y,S)−ε]

≤ 2nRb2−n[H(T b|Xa)+H(Xa,Y,S)−H(Xa,T b,Y,S)−3ε]

(ii)
= 2n[Rb−I(T b;Y |S,Xa)−3ε] (4.77)

where (i) due to T b[n],β is independent of (Y[n], S[n]) given Xa
[n],1 and (ii) is due to

H(T b|Xa) +H(Xa, Y, S)−H(Xa, T b, Y, S)

= H(T b|Xa) +H(Xa, Y, S)−H(Y |Xa, T b, S)−H(Xa, T b, S)
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= H(Xa, Y, S)−H(Y |Xa, T b, S)−H(Xa, S)

= I(T b;Y |S,Xa)

where the second equality follows since T b and S are independent given Xa. Finally,∑
α 6=1,β 6=1

P (Eα 6=1,β 6=1) =
∑

α 6=1,β 6=1

P ((Xa
[n],α, T

b
[n],β, Y[n], S[n]) ∈ An

ε )

(iii)
=

∑
α 6=1,β 6=1

∑
(xa

[n]
,tb
[n]
,y[n],s[n])∈Anε

PT b
[n]
,Xa

[n]
(tb[n], x

a
[n])PY[n],S[n]

(y[n], s[n])

≤
∑

α 6=1,β 6=1

|Anε |2−n[H(T b,Xa)−ε]2−n[H(Y,S)−ε]

≤ 2n(Ra+Rb)2−n[H(T b,Xa)+H(Y,S)−H(Xa,T b,Y,S)−3ε]

(iv)
= 2n[Ra+Rb−I(Xa,T b;Y |S)−3ε] (4.78)

where (iii) holds since for α, β 6= 1, (T b[n],β, X
a
[n],α) is independent of (Y[n], S[n]) and

(iv) follows since

H(T b, Xa) +H(Y, S)−H(Xa, T b, Y, S)

= H(T b, Xa) +H(Y, S)−H(Y |Xa, S, T b)−H(Xa, S, T b)

= H(T b, Xa) +H(Y, S)−H(Y |Xa, S, T b)−H(Xa, T b)−H(S)

= I(Xa, T b;Y |S),

and the rate conditions of theRC(π̂) imply that each term tends in (4.76) tends to zero

as n→∞. Finally, observe that the analysis for the error event
∑

α 6=1,β=1 P (Eα,β) is

identical to the case of
∑

α 6=1,β 6=1 P (Eα,β) which induces the same sum-rate constraint.

To prove the converse, first note that the main motivation in indexing mutual

information terms by the past CSI, is to get a product form on the team policies. In

the cooperative setup, we do not require a product form and therefore, the convex
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combination argument is not essential. However, we herein keep this indexing (see

(4.75)) to avoid the use of a time sharing auxiliary random variable.

Converse Proof. First observe that, since Xb
t = φ

(b)
t

(
Wa,Wb, S

b
[t−1], S

b
t

)
, we have

T bt = φ
(b)
t

(
Wa,Wb, S

b
[t−1]

)
∈ Xb|Sb|. (4.79)

Lemma 4.2.7. Let T bt ∈ Tb be the Shannon strategy induced by φ
(b)
t as shown in

(4.79). Assume that a rate pair R = (Ra, Rb), with block length n ≥ 1 and a constant

ε ∈ (0, 1/2), is achievable. Then,

Rb ≤
∑
µ∈S(n)

αµI(T bt ;Yt|Xa
t , St, S[t−1] = µ) + η(ε) (4.80)

Ra +Rb ≤
∑
µ∈S(n)

αµI(Xa
t , T

b
t ;Yt|St, S[t−1] = µ) + η(ε) (4.81)

where αµ and η(ε) are defined in (4.13).

Proof. Let us first consider the sum-rate condition. Since,

I(W;Y[n], S[n]) ≤
n∑
t=1

[
H(Yt|S[t])−H(Yt|W, S[t], Y[t−1], X

a
t , T

b
t )
]

(i)
=

n∑
t=1

[
H(Yt|S[t])−H(Yt|S[t], X

a
t , T

b
t )
]

=
n∑
t=1

I(Xa
t , T

b
t ;Yt|S[t]), (4.82)

where (i) can be shown in a similar way as (4.21), we have,

Ra +Rb ≤
1

n

n∑
t=1

I(Xa
t , T

b
t ;Yt|S[t]) + η(ε)

I(Xa
t , T

b
t ;Yt|S[t]) = n

∑
µ∈St−1

αµI(Xa
t , T

b
t ;Yt|St, S[t−1] = µ). (4.83)

Substituting the above into (4.83) yields (4.81). Let us now consider encoder b. With
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Fano’s inequality and standard steps, we get

Rb ≤
1

n
log(|Wb|) ≤

1

1− ε
1

n

(
I(Wb;Y[n], S[n]) +H(ε)

)
. (4.84)

Following similar reasonings as in (4.66) we get,

I(Wb;Y[n], S[n]) ≤ I(Wb;Y[n], S[n]|Wa, S
a
[n])

=
n∑
t=1

[
H(Yt|S[t], Y[t−1],Wa, S

a
[n])

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n])
]

=
n∑
t=1

[
H(Yt|S[t], Y[t−1],Wa, S

a
[n], X

a
[n])

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n], X

a
[n])
]

≤
n∑
t=1

[
H(Yt|S[t], X

a
t )

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n], X

a
[n], T

b
t )
]

(i)
=

n∑
t=1

[
H(Yt|S[t], X

a
t )−H(Yt|S[t], X

a
t , T

b
t )
]

=
n∑
t=1

I(T bt ;Yt|Xa
t , S[t]) (4.85)

where (i) is valid since

PYt|S[t],Y[t−1],W,Sa
[n]
,Xa

[n]
,T bt

(yt|s[t], y[t−1],w, s
a
[n], x

a
[n], t

b
t)

(ii)
=

∑
sbt∈Sb

PYt|St,Sbt ,Xa
t ,T

b
t
(yt|st, sbt , xat , tbt)

PSbt |S[t],Y[t−1],W,Sa
[n]
,Xa

[n]
,T bt

(sbt |s[t], y[t−1],w, s
a
[n], x

a
[n], t

b
t)

(iii)
=

∑
sbt∈Sb

PYt|St,Sbt ,Xa
t ,T

b
t
(yt|st, sbt , xat , tbt)PSbt |St(s

b
t |st)

= PYt|St,Xa
t ,T

b
t
(yt|st, xat , tbt). (4.86)

where (ii) is due to (4.3) and (iii) is due to (4.1) and (4.2). Following (4.21), we

verify (4.80).
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Figure 4.3: The multiple-access channel with degraded message set and with noisy
state information at the receiver.

We now need to show that the distribution PXa
t ,T

b
t ,Yt,St|S[t−1]

(xa, tb, y, s|µ) factorizes

as in (4.75). Let first πµ
Xa,T b

(xa, tb) := PXa
t ,T

b
t |S[t−1]

(xa, tb|µ) and observe that

PXa
t ,T

b
t ,Yt,St|S[t−1]

(xa, tb, y, s|µ)

=
∑
sbt∈Sb

PYt|Xa
t ,X

b
t ,St

(y|xa, tb(sbt), s)PSbt |St(s
b
t |st)PSt(s)PXa

t ,T
b
t |S[t−1]

(xa, tb|µ)

= πµ
Xa,T b

(xa, tb)PSt(s)PYt|Xa
t ,T

b
t ,St

(y|xa, tb, s) (4.87)

where the equalities are verified by (4.3), by (4.1) and by the fact that (Xa
t , T

b
t ) is

independent of St.

We can now complete the converse proof of Theorem 4.2.5. With Lemma 4.2.7 it is

shown that any achievable rate pair can be approximated by the convex combinations

of rate conditions which are indexed by µ ∈ S(n) and satisfy (4.75) for joint state-

input-output distributions. Hence, any achievable pair (Ra, Rb) ∈ co
(⋃

π̂Rdm(π̂)
)
.

Remark 4.2.5. Theorem 4.2.5 shows that when the common message encoder does
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not have access to the current noisy CSI (since the delay da ≥ 1), by enlarging the

optimization space of the other encoder, via Shannon strategies, the past CSI can be

ignored without loss of optimality if the decoder is provided with complete CSI.

Note that in the degraded message set scenario a product form on the pair (Xa, T b)

is not required (see (4.75)). In connection with this observation, let us consider the

following noisy CSIR setup.

Let the encoder with the private message causally observe noisy state information,

whereas the encoder with the common message has no CSI, i.e., Xa
t = φ

(a)
t (Wa) and

Xb
t = φ

(b)
t (Wa,Wb, S

b
[t]), and the decoder also has access to noisy CSI at time t,

Srt ∈ Sr; see Fig. 4.3, where,

PS[n],S
r
[n]
,Sb

[n]
,W(s[n], s

r
[n], s

b
[n],w) =

n∏
t=1

1

|Wa|
1

|Wb|
PSt,Srt ,Sbt (st, s

r
t , s

b
t) (4.88)

and let C̄dm denote the capacity region for this setup.

Let for every memoryless stationary team policy π̂ defined in (4.72), R̄dm(π̂)

denote the region of all rate pairs R = (Ra, Rb) satisfying,

Rb < I(T b;Y |Xa, Sr) (4.89)

Ra +Rb < I(Xa, T b;Y |Sr) (4.90)

where Sr, Xa, T b and Y are random variables taking values in Sr, Xa, Tb and Y ,

respectively and whose joint probability distribution factorizes as

PSr,Xa,T b,Y (sr, xa, tb, y) = PSr(s
r)PY |Xa,T b,Sr(y|xa, tb, sr)πXa,T b(x

a, tb). (4.91)

Let co

(⋃
π̂ R̄dm(π̂)

)
denotes the closure of the convex hull of the rate regions R̄dm(π̂)

given by (4.89) and (4.90) associated to all possible π̂ as defined in (4.72).

Theorem 4.2.6. C̄dm = co

(⋃
π̂ R̄dm(π̂)

)
.
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Proof. The achievability proof is identical to that of Theorem 4.2.5. The converse

proof is also similar and therefore, we only provide a sketch. In particular, observe

the following lines of equations for the converse proof of the condition on Rb:

I(Wb;Y[n], S
r
[n]) ≤ I(Wb;Y[n], S

r
[n]|Wa)

=
n∑
t=1

[
H(Yt, S

r
t |Sr[t−1], Y[t−1],Wa)

−H(Yt, S
r
t |Sr[t−1], Y[t−1],Wa,Wb)

]
(i)
=

n∑
t=1

[
H(Yt|Sr[t], Y[t−1],Wa)−H(Yt|Sr[t], Y[t−1],Wa,Wb)

]
=

n∑
t=1

[
H(Yt|Sr[t], Y[t−1],Wa, X

a
t )

−H(Yt|Sr[t], Y[t−1],Wa,Wb, X
a
t )
]

(ii)

≤
n∑
t=1

[
H(Yt|Sr[t], Xa

t )−H(Yt|Sr[t], Y[t−1],Wa,Wb, X
a
t , T

b
t )
]

(iii)
=

n∑
t=1

[
H(Yt|Sr[t], Xa

t )−H(Yt|Sr[t], Xa
t , T

b
t )
]

=
n∑
t=1

I(T bt ;Yt|Xa
t , S

r
[t]) (4.92)

where (i) follows since state is i.i.d., where T bt is the Shannon strategy induced by

encoder b at time t as shown in (4.79), and (ii) is valid since conditioning does not

increase entropy, and (iii) is valid since

PYt|Sr[t],Y[t−1],Wa,Wb,X
a
t ,T

b
t
(yt|sr[t], y[t−1], wa, wb, x

a
t , t

b
t)

(iv)
=

∑
st∈S,sbt∈Sb

PYt|St,Sbt ,Xa
t ,T

b
t
(yt|st, sbt , xat , tbt)

PSbt ,St|Sr[t],Y[t−1],Wa,Wb,X
a
t ,T

b
t
(sbt , st|sr[t], y[t−1], wa, wb, x

a
t , t

b
t)

(v)
=

∑
st∈S,sbt∈Sb

PYt|St,Sbt ,Xa
t ,T

b
t
(yt|st, sbt , xat , tbt)PSbt ,St(s

b
t , st|srt )

= PYt|Srt ,Xa
t ,T

b
t
(yt|srt , xat , tbt) (4.93)
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where (iv) is due to (4.3) and (v) holds due to (4.88). Hence,

Rb ≤
∑

µr∈S(n)r

αµrI(T bt ;Yt|Xa
t , S

r
t , S

r
[t−1] = µr) + η(ε) (4.94)

Ra +Rb ≤
∑

µr∈S(n)r

αµrI(Xa
t , T

b
t ;Yt|Srt , Sr[t−1] = µr) + η(ε) (4.95)

where αµr := 1
n
PSr

[t−1]
(µr) and η(ε) is given in (4.13). We now need to show that the

joint distribution PXa
t ,T

b
t ,Yt,S

r
t |Sr[t−1]

(xa, tb, y, sr|µr) satisfies (4.91). Let πµr
Xa,T b

(xa, tb) :=

PXa
t ,T

b
t |Sr[t−1]

(xa, tb|µr) and observe that

PXa
t ,T

b
t ,Yt,S

r
t |Sr[t−1]

(xa, tb, y, sr|µr)

=
∑
sbt∈Sb

∑
st∈S

PYt|Xa
t ,X

b
t ,St

(y|xa, tb(sbt), s)PSbt ,St,Sr(s
b
t , st, s

r)PXa
t ,T

b
t |Sr[t−1]

(xa, tb|µr)

= πµ
Xa,T b

(xa, tb)PSrt (s
r)PYt|Xa

t ,T
b
t ,S

r
t
(y|xa, tb, sr) (4.96)

where the first equality is verified by (4.3) and by the fact that (Xa
t , T

b
t ) is independent

of (St, S
b
t , S

r
t ).

Remark 4.2.6. It should be observed that unlike Theorem 4.2.5 and results in the

previous sections, for the validity of Theorem 4.2.6, it is not required to have a Markov

condition on PSt,Sbt ,Srt (st, s
b
t , s

r
t ). Furthermore, the result also holds with no CSIR, i.e.,

Sr = ∅ is allowed, and in this case Theorem 4.2.6 is as an extension of [SBSV08,

Theorem 4] to a noisy setup.

Remark 4.2.7. For the validity of converse proof of Theorem 4.2.6 it is crucial that

Xa
t only depends on Wa. To be more explicit, let us assume Sr = ∅ and consider the

following steps of the converse

I(Wb;Y[n]) ≤
n∑
t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1],Wa,Wb, X

a
[n], T

b
t )

=
n∑
t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1], X

a
t , T

b
t ). (4.97)
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Since St is not available to the decoder, the above equality is valid if Xa
[n] does not

provide any information about St. Hence, in other words, whether CSITs are noisy

or not, if there is no CSI or noisy CSI at the decoder, the arguments above would

fail if the uninformed encoder observes some degree of CSI, i.e., da <∞ so that Xa
[n]

carry some information about (St, S
b
t , S

r
t ).

It should be noted that for the setup given in [SBSV08, Theorem 4], Theorem

4.2.6 provides an equivalent characterization. Recall that in [SBSV08, Theorem 4]

the informed encoder has full CSI, i.e., Xb
t = φ

(b)
t (Wa,Wb, S[t]), both the uniformed

encoder and the decoder have no CSI and the capacity region, CAS, is given as the

closure of all rate pairs (Ra, Rb) satisfying

Rb < I(U ;Y |Xa) (4.98)

Rb +Ra < I(U,Xa;Y ) (4.99)

for some joint measure on S × Xa ×Xb × Y × U having the form

PY |Xa,Xb,S(y|xa, xb, s)PXb|U,Xa,S(xb|u, xa, s)PS(s)PXa,U(xa, u), (4.100)

where |U| ≤ |S||Xa||Xb| + 1. On the other hand, for this setup, Theorem 4.2.6 gives

the capacity region, Cdm, as co

(⋃
π̂R

′
C(π̂)

)
where R′C(π̂) denotes the region of all

rate pairs R = (Ra, Rb) satisfying

Rb < I(T ;Y |Xa) (4.101)

Ra +Rb < I(T,Xa;Y ) (4.102)

where PY,T,Xa,Xb,S(y, t, xa, xb, s) factorizes as

PY |Xa,Xb,S(y|xa, xb, s)PXb|S,T (xb|s, t)PS(s)π̂Xa,T (xa, t), (4.103)

and T : S → Xb.



CHAPTER 4. MAC WITH CSIR 100

Although the relation between an auxiliary variable and Shannon strategies is well

understood for the single-user case (e.g., see [KSM07, Section 3.2]), it requires more

attention in the multi-user case; in particular, note the difference between |U| and

|T |. Hence, we provide a proof for Cdm = CAS.

Theorem 4.2.7. Cdm = CAS.

Lemma 4.2.8. Cdm ⊆ CAS.

Proof. Recall that T ∈ |T | = |Xb||S| and |U| ≤ |Xa||Xb||S|+ 1. Hence, we have either

|U| > |T | or else. In the case where |U| < |T |, we note that |U| is limited to a finite

set without loss of generality. Hence, we can always take |U| at least |T | such that

it satisfies (4.98), (4.99) and (4.100). Then we can directly conclude that Cdm ⊆ CAS

since PXb|S,T (xb|s, t) = PXb|S,T (xb|s, t, xa) = 1{xb=t(s)} and this is a special case of

PXb|U,Xa,S(xb|u, xa, s).

In order to prove the other direction, i.e., CAS ⊆ Cdm, let CEAS be the closure of all

rate pairs (Ra, Rb) satisfying

Rb < I(U ;Y |Xa) (4.104)

Rb +Ra < I(U,Xa;Y ) (4.105)

for some joint measure on S × Xa ×Xb × Y × U having the form

PY |Xa,Xb,S(y|xa, xb, s)1{xb=m(s,xa,u)}PS(s)PXa,U(xa, u), (4.106)

for some m : U × Xa × S → Xb, where |U| ≤ |S||Xa||Xb| + 1, and we first show that

CAS = CEAS, and following this, we show that CEAS ⊆ Cdm.

Lemma 4.2.9. CAS = CEAS.
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Proof. It is obvious that CEAS ⊆ CAS and hence, we need to show that CAS ⊆ CEAS. Let

P̄Xb,Xa,U,S(xb, xa, u, s) be a joint distribution in the form of (4.100), i.e.,

P̄Xb,Xa,U,S(xb, xa, u, s) = P̄Xb|Xa,U,S(xb|xa, u, s)PS(s)P̄Xa,U(xa, u). (4.107)

Let Λ̄ denote a |Xa||U||S|-by-|Xb| matrix where Λ̄i,jkl = P̄Xb|Xa,U,S(i|j, k, l), 1 ≤ i ≤

|Xb|, 1 ≤ j ≤ |Xa|, 1 ≤ k ≤ |U| and 1 ≤ l ≤ |S|. Hence, Λ̄ is a |Xa||U||S|-by-|Xb|

row stochastic matrix, i.e., Λ̄i,jkl ≥ 0, ∀i, j, k, l and
∑|Xb|

i=1 Λ̄i,jkl = 1, ∀j, k, l. Let Λ

denote a |Xa||U||S|-by-|Xb| binary stochastic matrix, that is a matrix with each row

has exactly one non-zero element, which is 1. Observe now that any row stochastic

matrix can be written as a convex combination of binary stochastic matrices (e.g.,

see [Hög77, Lemma 5] and [NFT07, Proposition IV.1]). Therefore, we have

Λ̄ =
k∑
i=1

λiΛ
(i),

k∑
i=1

λi = 1, (4.108)

where Λ(i) is a binary stochastic matrix and by [Hög77, Lemma 5], k ≤ (|Xa||U||S|)2.

Let, for the joint distribution P̄Xb,Xa,U,S(xb, xa, u, s),

R̄b < I(U ;Y |Xa)Λ̄, (4.109)

R̄a + R̄b < I(U,Xa;Y )Λ̄. (4.110)

Therefore, (R̄a, R̄b) ∈ CAS. Now, observe that for a fixed distribution PXa,U(xa, u),

both I(U,Xa;Y ) and I(U ;Y |Xa) are convex in PY |Xa,U(y|xa, u) and hence, convex in

PXb|Xa,U,S(·|xa, u, s). This and (4.108) imply that

I(U ;Y |Xa)Λ̄ ≤
k∑
i=1

λiI(U ;Y |Xa)Λ(i) , (4.111)

I(U,Xa;Y )Λ̄ ≤
k∑
i=1

λiI(U,Xa;Y )Λ(i) , (4.112)

where I(U ;Y |Xa)Λ(i) and I(U,Xa;Y )Λ(i) denote the mutual information terms in-

duced by Λ(i).
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Now, let (Ri
a, R

i
b), 1 ≤ i ≤ k, be such that

Ri
b ≤ I(U ;Y |Xa)Λ(i) ,

Ri
b +Ri

a ≤ I(U,Xa;Y )Λ(i) ,

and hence, (Ri
a, R

i
b) ∈ CEAS, 1 ≤ i ≤ k. Let (Rf

a , R
f
b ) =

∑k
i=1 λi(R

i
a, R

i
b). Since a

convex combination of achievable rates is also achievable, so (Rf
a , R

f
b ) ∈ CEAS. This

observation and inequalities (4.109)-(4.112) complete the claim that (R̄a, R̄b) ∈ CEAS.

Up to now, we have shown that Cdm ⊆ CAS and CEAS = CAS. In order to prove

that Cdm = CAS, it remains to show that CEAS ⊆ Cdm. Note that CEAS still depends

on PXa,U(xa, u) in which |U| can be larger than |T |. Hence, in the next lemma we

basically show that for every PXa,U(xa, u), there exists a π̂Ta,U(ta, u) which induces

the same rate constraints as induced by PXa,U(xa, u).

Lemma 4.2.10. CEAS ⊆ Cdm.

Proof. Let us fix a joint distribution P ∗
Y,Xa,Xb,U,S

(y, xa, xb, u, s) satisfying (4.106), i.e.,

P ∗Y,Xa,Xb,U,S(y, xa, xb, u, s) = P ∗Y |Xa,Xb,S(y|xa, xb, s)1{xb=m(s,xa,u)}PS(s)P ∗Xa,U(xa, u).

Observe that for every m satisfying xb = m(u, xa, s), one can define

xb = m(u, xa, s) = m̄(xa, u)(s), m̄(xa, u) ∈ T , (4.113)

where T is the set of all mappings from S to Xb. Now, let(
I(U ;Y |Xa)P ∗Y,Xa,U (y,xa,u), I(U,Xa;Y )P ∗Y,Xa,U (y,xa,u)

)
, (4.114)

denote the mutual information pair induced by P ∗Y,Xa,U(y, xa, u). We have

I(U,Xa;Y )P ∗Y,Xa,U (y,xa,u)
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=
∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U(y, xa, u) log
P ∗Y,U,Xa(y, u, xa)

P ∗Y (y)P ∗U,Xa(u, xa)

=
∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y,U,Xa(y, u, xa)

P ∗Y (y)P ∗U,Xa(u, xa)

(i)
=

∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y,U,Xa,T (y, u, xa, t)

P ∗Y (y)P ∗U,Xa,T (u, xa, t)

(ii)
=

∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y |Xa,T (y|xa, t)P ∗U,T,Xa(u, t, xa)

P ∗Y (y)P ∗U,T,Xa(u, t, xa)

=
∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y,Xa,T (y, xa, t)

P ∗Y (y)P ∗Xa,T (xa, t)

=
∑
t∈T

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,T (y, xa, t) log
P ∗Y,Xa,T (y, xa, t)

P ∗Y (y)P ∗Xa,t(x
a, t)

= I(T,Xa;Y )P ∗Y,Xa,T (y,xa,t), (4.115)

where (i) is valid since m̄(xa, u) ∈ T , i.e., for each (xa, u) there exists only one t ∈ T

such that PT |Xa,U(t|xa, u) = 1, (ii) is valid since

P ∗Y |Xa,T,U(y|xa, t, u)
(iii)
=

∑
s∈S

P ∗Y |Xa,T,U,S(y|xa, t, u, s)PS(s)

(iv)
=

∑
s∈S

PY |Xa,T,S(y|xa, t, s)PS(s)

=
∑
s∈S

P ∗Y,S|Xa,T (y, s|xa, t) = P ∗Y |Xa,T (y|xa, t), (4.116)

where (iii) is valid since S and (Xa, T, U) are independent and (iv) is valid due to

(4.3). Similarly, we have

I(U ;Y |Xa)P ∗Y,Xa,U (y,xa,u)

=
∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U(y, xa, u) log
P ∗Y,U |Xa(y, u|xa)

P ∗Y |Xa(y|xa)P ∗U |Xa(u|xa)

=
∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U(y, xa, u) log
P ∗Y,U,Xa(y, u, xa)

P ∗Y |Xa(y|xa)P ∗U,Xa(u, xa)



CHAPTER 4. MAC WITH CSIR 104

(v)
=

∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y,U,Xa,T (y, u, xa, t)

P ∗Y |Xa(y|xa)P ∗U,Xa,T (u, xa, t)

(vi)
=

∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y |T,Xa(y|t, xa)P ∗U,T,Xa(u, t, xa)

P ∗Y |Xa(y|xa)P ∗U,T,Xa(u, t, xa)

=
∑
t∈T

∑
u∈U

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,U,T (y, xa, u, t) log
P ∗Y,T |Xa(y, t|xa)

P ∗Y |Xa(y|xa)P ∗T |Xa(t|xa)

=
∑
t∈T

∑
y∈Y

∑
xa∈Xa

P ∗Y,Xa,T (y, xa, t) log
P ∗Y,T |Xa(y, t|xa)

P ∗Y |Xa(y|xa)P ∗T |Xa(t|xa)

= I(T ;Y |Xa)P ∗Y,Xa,T (y,xa,t), (4.117)

where (v) and (vi) follows from the same reasonings of (i) and (ii), respectively. Now,

let R
′

b < I(U ;Y |Xa)P ∗Y,Xa,U (y,xa,u) and R
′

b + R
′
a < I(U,Xa;Y )P ∗Y,Xa,U (y,xa,u). Hence,

(R
′
a, R

′

b) ∈ CEAS. Observe now that for a distribution in the form of P ∗Y,Xa,T (y, xa, t),

one can define π̂Xa,T (xa, t) = P ∗Xa,T (xa, t). Therefore, since Cdm = co

(⋃
π̂R

′
C(π̂)

)
,

and due to (4.115) and (4.117), (R
′
a, R

′

b) ∈ CGFS, which completes the claim.

Proof of Theorem 4.2.7. Follows from Lemmas 4.2.8 - 4.2.10.

4.3 Examples

We present two examples. In the first example, we discuss the state dependent

modulo-additive MAC with noisy CSIT and complete CSIR (as in Section 4.2.1)

and show that the proposed inner and outer bounds are tight and yield the capacity

region. In the second example we consider the problem defined in Section 4.2.2 where

the channel is a binary multiplier MAC whose state is an interference sequence.
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4.3.1 Modulo-additive MAC with Noisy CSIT

Recall that the results of Section 4.2.1 are given in terms of Shannon-strategies.

Hence, their computation requires an optimization over an extended space of the input

alphabet to a space of strategies and is often hard; in fact, very few explicit solutions

exist even in the single-user case. In [EZ00], modulo-additive single-user channel with

complete CSIT is considered and a closed-form solution for the capacity is derived.

Based on this result, we now consider the modulo-additive state-dependent MAC with

asymmetric noisy CSIT and show that for the sum-rate capacity, the optimal set of

strategies has uniform distribution. This enable us to determine the entire capacity

region by observing that under the uniform distribution both inner and outer bounds

are tight.

To be more explicit, we consider a two-user state-dependent MAC in which the

channel noise, defined by a process {Zt}∞t=1, is correlated with the state process. The

channel is given by Y = Xa ⊕ Xb ⊕ Z where Xa = Xb = Y = Z = {0, · · · , q − 1}

and Z, is conditionally independent of (Xa, Xb) given the state S and in the sequel

addition (and subtraction) is understood to be performed mod-q. Assume further

that we have the setup of Section 4.2.1. The following theorem is the main result

of this example and can be though as an extension of [EZ00, Theorem 1] to a noisy

multi-user setting.

Theorem 4.3.1. The capacity region of the modulo-additive state-dependent MAC

defined above is given by the closure of the rate pairs (Ra, Rb) satisfying

Ra < log q −Hmin

Rb < log q −Hmin
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Ra +Rb < log q −Hmin (4.118)

where Hmin := minta,tb H(Z + ta(Sa) + tb(Sb)|S).

Proof. First, recall the rate condition given in Theorem 4.2.2;

Ra +Rb ≤ H(Y |S)−H(Y |T a, T b, S). (4.119)

We first determine the optimal distributions of ta, tb, the distributions achieving the

sum-rate capacity, and then show that these distributions yield the same inner bound.

Let us first consider H(Y |T a, T b, S). Clearly, PY |Xa,Xb,S(y|xa, xb, s) = PZ|S(y − xa −

xb|s) and H(Y |T a, T b, S) ≥ minta,tb H(Y |T a = ta, T b = tb, S). Observe that

PY |Ta,T b,S(y|ta, tb, s) =
∑
sa,sb

PY |Ta,T b,Sa,Sb,S(y|ta, tb, sa, sb, s)PSa,Sb|S(sa, sb|s)

=
∑
sa,sb

PZ|S(Z = y − ta(sa)− tb(sb)|s)PSa,Sb|S(sa, sb|s)

= PZ+ta(Sa)+tb(Sb)|S(y|s). (4.120)

where the second step is valid since Z is conditionally independent of (Sa, Sb) given

S. Therefore, H(Y |T a = ta, T b = tb, S) = H(Z + ta(Sa) + tb(Sb)|S). Let (ta∗, tb∗) be

two mappings from Sa to Xa and Sb to Xb, respectively, for which H(Y |T a = ta∗, T b =

tb∗, S) = Hmin. Now recall that, by Corollary 4.2.1, we have

CFS∑ = sup
πTa (ta)π

Tb
(tb)

[
H(Y |S)−H(Y |T a, T b, S)

]
≤ sup

πTa (ta)π
Tb

(tb)

H(Y |S)−Hmin, (4.121)

and we now determine the policies {πTa(ta), ta ∈ Ta} and {πT b(tb), tb ∈ Tb} achiev-

ing the supremum above. Let us first define the following class of strategies

T ∗a := {taτ}, where taτ (s
a) = ta∗(sa) + τ, τ = 1, · · · , q (4.122)

T ∗b := {tbτ}, where tbτ (s
b) = tb∗(sb)− τ, τ = 1, · · · , q. (4.123)
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It should be noted that H(Y |T a = ta∗, T b = tb∗, S) = H(Y |T a = taτ , T
b = tbτ , S)

since H(Y |T a = ta, T b = tb, S) = H(Z + ta(Sa) + tb(Sb)|S). Note that H(Y |S) ≤

log |Y| = log q, but if we choose T a and T b uniformly distributed within T ∗a and T ∗b ,

respectively (with zero mass on strategies not in T ∗a and T ∗b ), we would get

PY |S(y|s) (i)
=

∑
sa,sb

∑
ta∈T ∗a

∑
tb∈T ∗b

PY |T b,T b,Sa,Sb,S(y|ta, tb, sa, sb, s) 1

q2
PSa,Sb|S(sa, sb|s)

=
∑
sa,sb

PSa,Sb|S(sa, sb|s) 1

q2

∑
ta∈T ∗a

∑
tb∈T ∗b

PZ|S(y − ta(sa)− tb(sb)|s)

(ii)
=

∑
sa,sb

PSa,Sb|S(sa, sb|s) 1

q2

∑
ta∈T ∗a

1

(iii)
=

1

q
(4.124)

where (i) valid since T a and T b are uniformly distributed, (ii) is due to (4.123) (i.e.,

follows from the fact that tb ∈ T ∗b traces all possible values of Z) and finally, (iii) is

valid since |T ∗a | = q. Therefore, we get that C
∑
FS = log q −Hmin which is achieved by

πTa(t
a) =

1

q
, ∀ta ∈ T ∗a , πT b(tb) =

1

q
, ∀tb ∈ T ∗b . (4.125)

Let us now consider the inner bound. In particular, we need to show that the sets of

policies in (4.125) give H(Y |T a, S) = H(Y |T b, S) = log q. Consider H(Y |T a, S) and

observe that

PY |Ta,S(y|ta, s) (iv)
=

∑
sa,sb

∑
tb∈T ∗b

PY |T b,T b,Sa,Sb,S(y|ta, tb, sa, sb, s)1

q
PSa,Sb|S(sa, sb|s)

=
∑
sa,sb

PSa,Sb|S(sa, sb|s)1

q

∑
tb∈T ∗b

PZ|S(y − ta(sa)− tb(sb)|s)

(v)
=

∑
sa,sb

PSa,Sb|S(sa, sb|s)1

q

=
1

q
(4.126)

where (iv) is valid since T b is uniformly distributed and (v) is due to (4.123) (i.e.,



CHAPTER 4. MAC WITH CSIR 108

follows from the fact that tb ∈ T ∗b traces all possible values of Z). Thus, H(Y |T a, S) =

log q. It can be shown similarly that under (4.125) H(Y |T b, S) = log q.

Finally, it is easy to see that when there is no side information at the encoders

and at the decoder the capacity region of modulo-additive state-dependent MAC is

given by the closure of rate pairs (Ra, Rb) where

Ra ≤ log q −H(Z)

Rb ≤ log q −H(Z)

Ra +Rb ≤ log q −H(Z). (4.127)

Observe that we have

H(Z + ta(Sa) + tb(Sb)|S) ≤ H(Z|S) +H(ta(Sa) + tb(Sb)|S)

Hmin = min
ta,tb

H(Z + ta(Sa) + tb(Sb)|S) ≤ min
ta,tb

[
H(Z|S) +H(ta(Sa) + tb(Sb)|S)

]
(vi)
= H(Z|S)

(vii)
< H(Z)

where (vi) can be achieved with any deterministic mapping and (vii) is valid since

Z and S (and hence S) are correlated. Therefore, availability of state information

strictly increases, by an amount of at least I(S;Z), the capacity region of the modulo-

additive state-dependent MAC.

4.3.2 Binary MAC with Interference

Consider the binary multiplier MAC with state process interfering the output, namely

Y = XaXb ⊕ S where Xa = Xb = Y = S = {0, 1}. Assume further that the

communication setup is given as in Section 4.2.2 with Sr = S ⊕ Zr where Zr ∼
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Ber(pr) is Bernoulli with P (Zr = 1) = pr . We now show that the capacity region,

with both causal and non-causal coding, of this channel is given by the closure of

(Ra, Rb) where Ra < 1−H(S|Sr), Rb < 1−H(S|Sr) and Ra +Rb < 1−H(S|Sr).

First recall the capacity region given in Theorem 4.2.3 and observe that

H(Y |Sr, Xa, Xb) = H(XaXb ⊕ S|Sr, Xa, Xb) = H(S|Sr, Xa, Xb) = H(S|Sr).

Hence, input distributions do not effect H(Y |Sr, Xa, Xb). Clearly, H(Y |Sr) ≤ 1,

H(Y |Sr, Xa) ≤ 1 and H(Y |Sr, Xb) ≤ 1 and we now show that equalities can be

achieved. More explicitly, we have the following optimizing distributions which can

be obtained using standard inequalities

argmax
π
Xl|Sl (x

l|f (sr)), l=a,b
H(Y |Sr) =

{
πXa|Sa(0|fa(0)) = πXa|Sa(0|fa(1)) = 0.5,

πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

(4.128)

argmax
π
Xl|Sl (x

l|f (sr)), l=a,b
H(Y |Sr, Xa) =

{
πXa|Sa(0|fa(0)) = πXa|Sa(0|fa(1)) = 0,

πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

(4.129)

argmax
π
Xl|Sl (x

l|f (sr)), l=a,b
H(Y |Sr, Xb) =

{
πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0,

πXa|Sa(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

(4.130)

and in the rest, let us show that these yield the equalities in the conditional entropies.

Let us start with Ra, i.e., H(Y |Sr, Xb). Note that

H(Y |Sr, Xb) =
∑
sr

∑
xb

PSr(s
r)πXb|Sb(x

b|f b(sr))H(Y |Sr = sr, Xb = xb). (4.131)

Substituting (4.130) in (4.131) gives

H(Y |Sr, Xb) =

PSr(0)H(Xa ⊕ S|Xb = 1, Sr = 0) + PSr(1)H(Xa ⊕ S|Xb = 1, Sr = 1).
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We next show that under (4.130) H(Xa ⊕ S|Xb = 1, Sr = 0) = 1, for which it is

enough to show that PXa⊕S|Xb,Sr(0|1, 0) = 0.5. We have

PXa⊕S|Xb,Sr(0|1, 0)

=
∑

s∈{0,1}

∑
xa∈{0,1}

PXa⊕S|S,Xa,Xb,Sr(0|s, xa, 1, 0)PS|Sr(s|0)πXa|Sa(x
a|fa(0)) (4.132)

= PS|Sr(0|1)
[
0.5PXa⊕S|S,Xa,Xb,Sr(0|0, 0, 1, 0) + 0.5PXa⊕S|S,Xa,Xb,Sr(0|0, 1, 1, 0)

]
+PS|Sr(1|1)

[
0.5PXa⊕S|S,Xa,Xb,Sr(0|1, 0, 1, 0) + 0.5PXa⊕S|S,Xa,Xb,Sr(0|1, 1, 1, 0)

]
= 0.5

where (4.132) is due to the Markov condition S → Sr → (Xa, Xb) and (4.36). We

can similarly show that PXa⊕S|Xb,Sr(0|1, 1) = 0.5 and hence, H(Xa ⊕ S|Xb = 1, Sr =

1) = 1. Therefore, H(Y |Sr, Xb) = 1. Since the above derivation is symmetric, under

(4.129) H(Y |Xa, Sr) = 1.

It now remains to show that with (4.128), H(Y |Sr) is equal to one. It should be

observed that

PXaXb⊕S|Sr(·|sr)
(i)
=

∑
xa,xb,s

PXaXb⊕S|Xa,Xb,S(·|xa, xb, s)πXa|Sa(x
a|fa(sr))πXb|Sb(x

b|f b(sr))PS|Sr(s|sr)

(ii)
= 0.25

∑
s∈{0,1}

PS|Sr(s|sr)
∑

xa,xb{0,1}

PXaXb⊕S|Xa,Xb,S(·|xa, xb, s)

= 0.5

where (i) is due to is due to the Markov condition S → Sr → (Xa, Xb) and (4.36),

(ii) is due to (4.128) and the last step is valid since for given s, there are only two

pairs of (xa, xb) for which PXaXb⊕S|Xa,Xb,S(·|xa, xb, s) = 1 (and zero for the other two).

Hence, H(Y |Sr) = 1.

Finally, it can be easily shown that the capacity region of Y = XaXb⊕S without
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CSIT and CSIR is given by the closure of (Ra, Rb) whereRa < 1−H(S), Rb < 1−H(S)

and Ra + Rb < 1−H(S). Therefore, availability of noisy CSI at the encoders (both

causal and non-causal) and at the decoder increases the capacity region by an amount

of I(S;Sr).

4.4 Conclusion and Remarks

We have considered several scenarios for the memoryless state-dependent MAC with

an i.i.d. state process, asymmetric noisy CSI at the encoders and complete and noisy

CSI at the receiver. When the encoders have access to causal noisy CSI, single-letter

inner and outer bounds, which are tight for the sum-rate capacity, are obtained. In

order to reduce the space of optimization, from Shannon strategies to channel inputs,

we consider the case where CSITs are asymmetric deterministic functions of noisy

CSIR. The causal setup of this problem is considered in [CY11] and a single-letter

characterization for capacity region is provided. Hence, we considered the non-causal

setup and showed that the causal and non-causal capacity regions are identical.

When the decoder does not need to access the current CSI at the encoder, which

matches with the delayed scenario, we observe that a single-letter characterization

of the capacity region can be obtained. We further discuss a degraded message set

scenario and show that when the common message encoder does not have an access to

the current noisy CSI, due to delay, it is possible to obtain a single-letter expression

for the capacity region. Since a product form is not required in this case, we observed

that as long as the common message encoder does not have access to CSI, then in

any noisy setup (the cases where no CSIR or noisy CSIR) it is possible to obtain the

capacity region.



Chapter 5

Multiple Access Channel without

Receiver Side Information

In this chapter, we generalize the sum-rate capacity result presented in the previous

section. In particular, it is shown that when the state processes are asymmetric,

Shannon strategies are optimal if the decoder is provided with some information which

makes the CSITs conditionally independent. With this result at hand, the next step

is to investigate what the minimum rate required to transmit such information to

the receiver is when there is no CSIR. By using the lossless CEO approach [GP79]

and adopting the recent proof technique of [LS13b, Theorem 1], we characterize the

rate required to transmit this information to the receiver. Therefore, we demonstrate

how far the Shannon strategies are away from the optimality when there is no CSIR.

Recall once again that when there is no CSIR, Shannon strategies are suboptimal;

see [LS13b] for a particular example.

The rest of the chapter is organized as follows. In Section 5.1 we formally state

the problem, in Section 5.2 we present the main result on the sum-rate capacity and

112
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give the converse proof sketch. In Section 5.3 we consider the case where there is

no CSIR and provide an inner bound to the capacity region and in Section 5.4 we

present concluding remarks.

5.1 Problem Setup

Consider a two-user memoryless state dependent MAC, with two encoders, a, b, and

two independent message sources Wa and Wb which are uniformly distributed in

the finite sets Wa and Wb, respectively. The channel inputs from the encoders are

Xa ∈ Xa and Xb ∈ Xb, respectively, and the channel output is Y ∈ Y . The channel

state process is modeled as a sequence {St}∞t=1 of i.i.d. random variables in some

finite space S. The two encoders have access to causal possibly correlated versions

of the state information St at each time t ≥ 1, modeled by Sat ∈ Sa, Sbt ∈ Sb,

respectively. We also assume that {(St, Sat , Sbt )}∞t=1 is a sequence of i.i.d. triples and

independent from (Wa,Wb). Therefore, we have that for any n ≥ 1 (4.2) is satisfied.

The channel inputs at time t, i.e., Xa
t and Xb

t , are functions of (Wa, S
a
[t]) and (Wb, S

b
[t]),

respectively. Let W := (Wa,Wb) and Xt := (Xa
t , X

b
t ), respectively. Then, the laws

governing n-sequences of state, input and output letters are given by

PY[n]|W,X[n],S[n],S
a
[n]
,Sb

[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n]) =

n∏
t=1

PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st), (5.1)

where the channel’s transition probability distribution, PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st), is

given a priori.
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Ŵb

Wb

Xa
t

Xb
t

Sat

Sbt

Yt

Vt

Figure 5.1: The multiple-access channel with asymmetric causal noisy state feedback.

5.2 Common Information at the Receiver

We first determine the sum-rate capacity when some information is available at the

receiver. Let {(Vt)}∞t=1, Vt ∈ V , be an external sequence of random variables that the

decoder observes (see Fig. 5.1) and satisfies the following

PV[n],Wa,Wb
(v[n], wa, wb) =

1

|Wa|
1

|Wb|

n∏
i=1

PVi(vi) (5.2)

PS[t],S
a
[t]
,Sb

[t]
,V[t]

(s[t], s
a
[t], s

b
[t], v[t]) = P (sa[t]|v[t])P (sb[t]|v[t])P (s[t], v[t]), 1 ≤ t ≤ n. (5.3)

Remark 5.2.1. Note that when {Sat }∞t=1 and {Sbt}∞t=1 are independent the process

{Vt}∞t=1 can be taken as a deterministic (or null) sequence. A more general example

is as follows: Let {Zt}∞t=1, {Za
t }∞t=1 and {Zb

t }∞t=1 be three noise processes which are

i.i.d. and independent of each other and where {Zt}∞t=1 is independent of {St}∞t=1 and

{Za
t }∞t=1 and {Zb

t }∞t=1 are independent of {Vt}∞t=1. Let Vt = St + Zt, S
a
t = Vt + Za

t ,

Sbt = Vt + Zb
t . In this case, equation (5.3) holds and Vt is only a noisy version of

St. These two examples demonstrate that the availability of the process {Vt}∞t=1 at the

receiver is in general a less restrictive scenario than the availability of complete CSI
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at the receiver.

Definition 5.2.1. An (n, 2nRa , 2nRb) code with block length n and rate pair (Ra, Rb)

for the state dependent MAC with causal noisy state information consists of

(1) A sequence of mappings for each encoder

φ
(a)
t : Sta ×Wa → Xa, t = 1, 2, ...n;

φ
(b)
t : Stb ×Wb → Xb, t = 1, 2, ...n.

2) An associated decoding function

ψ : Vn × Yn →Wa ×Wb.

The system’s probability of error, P
(n)
e , an achievable rate pair, the capacity region

and the sum-rate capacity is defined in a similar manner of Chapter 4. Let C and C
∑

denote the capacity region and the sum-rate capacity, respectively. Let, as before, the

set of all possible functions from Sa to Xa and Sb to Xb be denoted by Ta := Xa|Sa| and

Tb := Xb|Sb|, respectively. Recall also that Ta-valued and Tb-valued random vectors

are called as Shannon strategies.

Definition 5.2.2. A memoryless stationary (in time) team policy is a family

Π = {π = (πTa(·), πT b(·)) ∈ P(Ta)× P(Tb)} (5.4)

of probability distribution pairs on (Ta, Tb).

For every memoryless stationary team policy π, let R(π) denote the region of all

rate pairs R = (Ra, Rb) satisfying

Ra < I(T a;Y |T b, V ) (5.5)



CHAPTER 5. MAC WITHOUT CSIR 116

Rb < I(T b;Y |T a, V ) (5.6)

Ra +Rb < I(T a, T b;Y |V ) (5.7)

where V , T a, T b and Y are random variables taking values in V, Ta, Tb and Y,

respectively, and whose joint probability distribution factorizes as

PV,Ta,T b,Y (v, ta, tb, y) = PV (v)PY |Ta,T b,V (y|ta, tb, v)πTa(t
a)πT b(t

b). (5.8)

Let Cin := co

(⋃
πR(π)

)
denote the closure of the convex hull of the rate regions

R(π) given by (5.5)-(5.7) associated to all possible memoryless stationary team polices

as defined in (5.4).

Theorem 5.2.1 (Inner Bound to C). Cin ⊆ C.

Note that {Yi, Vi, T ai , T bi }∞i=1 is an independent sequence and hence, the proof is

identical to Theorem 4.2.1. Let

Co :=

{
(Ra, Rb) ∈ R+ ×R+ : Ra +Rb ≤ sup

πTa (ta)π
Tb

(tb)

I(T a, T b;Y |V )

}
,

where R+ is the set of positive reals.

Theorem 5.2.2 (Outer Bound to C). C ⊆ Co.

Proof of Theorem 5.2.2. As the proof is similar to the proof of Theorem 4.2.2, we

herein provide the sketch. We need to show that all achievable rates satisfy

Ra +Rb ≤ sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |V ),

i.e., a converse for the sum-rate capacity. Let αµ := 1
n
PV[t−1]

(µ) and η(ε) := ε
1−ε log |Y|+

H(ε)
1−ε . Observe that limε→0 η(ε) = 0 and

∑
µ∈V(n) αµ = 1 where V(n) is the sets of all V-

strings of length less than n. Recall further that, for all t ≥ 1, Xa
t = φ

(a)
t

(
Wa, S

a
[t]

)
=

φ
(a)
t

(
Wa, S

a
[t−1], S

a
t

)
and Xb

t = φ
(b)
t

(
Wb, S

b
[t]

)
= φ

(b)
t

(
Wb, S

b
[t−1], S

b
t

)
. Then, we can
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define the Shannon strategies T at ∈ Ta and T bt ∈ Tb by putting, for every sa ∈ Sa and

sb ∈ Sb,

T at (sa) := φ
(a)
t

(
Wa, S

a
[t−1], sa

)
T bt (sb) := φ

(b)
t

(
Wb, S

b
[t−1], sb

)
. (5.9)

Lemma 5.2.1. Let T at ∈ Ta and T bt ∈ Tb be the Shannon strategies induced by φ
(a)
t

and φ
(b)
t , respectively, as shown in (5.9). Assume that a rate pair R = (Ra, Rb), with

block length n ≥ 1 and a constant ε ∈ (0, 1/2), is achievable. Then,

Ra +Rb ≤
∑
µ∈V(n)

αµI(T at , T
b
t ;Yt|Vt, V[t−1] = µ) + η(ε). (5.10)

The main idea in the converse proof that we provide in this section is to show that

there is no loss of optimality if we ignore the past CSI at the encoders given that the

decoder is provided with the process {Vt}. The following steps show that memoryless

stationary team policies are as good as any policy that the encoders can apply. To

show this, observe that, for any t ≥ 1, I(T at , T
b
t ;Yt|Vt, V[t−1] = µ) is a function of

the joint conditional distribution of Vt, inputs T at , T bt and output Yt given the past

realization (V[t−1] = µ). Hence, to complete the proof of the outer bound, we need

to show that PTat ,T bt ,Yt,Vt|V[t−1]
(ta, tb, y, v|µ) factorizes as in (5.8). This is done in the

lemma below. In particular, it is crucial to observe that having V[t−1] at the decoder

is enough to provide a product form on T a and T b. Let

Υa
µa(ta) := {wa : φ

(a)
t (wa, s

a
[t−1] = µa) = ta}

Υb
µb

(tb) := {wb : φ
(b)
t (wb, s

b
[t−1] = µb) = tb} (5.11)

πµaTa(t
a) :=

∑
wa∈Υaµa (ta)

1

|Wa|

πµb
T b

(tb) :=
∑

wb∈Υbµb
(tb)

1

|Wb|
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πµTa(t
a) :=

∑
µa

πµaTa(t
a)PSa

[t−1]
|V[t−1]

(µa|µ)

πµ
T b

(tb) :=
∑
µb

πµb
T b

(tb)PSb
[t−1]

|V[t−1]
(µb|µ), (5.12)

where µa and µb denote particular realizations of Sa[t−1] and Sb[t−1], respectively.

Lemma 5.2.2. For every 1 ≤ t ≤ n and µ ∈ V t−1, the following holds

PTat ,T bt ,Yt,Vt|V[t−1]
(ta, tb, y, v|µ) = PV (v)PY |V,Ta,T b(y|v, ta, tb)πµTa(t

a)πµ
T b

(tb). (5.13)

Proof follows from (4.2), (5.3), (5.9), (5.11) and (5.12).

We now complete the proof of Theorem 5.2.2. With Lemma 5.2.1 it is shown that

the sum of any achievable rate pair can be approximated by the convex combinations

of rate conditions given in (5.7) which are indexed by µ ∈ V(n) and satisfy (5.8). More

explicitly, we have

Ra +Rb ≤
∑
µ∈V(n)

αµI(T at , T
b
t ;Yt|Vt, V[t−1] = µ) + η(ε)

=
∑
µ∈V(n)

αµI(T at , T
b
t ;Yt|Vt)πµTa (ta)πµ

Tb
(tb) + η(ε)

≤ sup
(πTa (ta)π

Tb
(tb)∈Π)

I(T at , T
b
t ;Yt|Vt) + η(ε).

Hence, since limε→0 η(ε) = 0, any achievable pair satisfies

Ra +Rb ≤ sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |V ).

As a consequence of Theorems 5.2.1 and 5.2.2, we have the following theorem.

Theorem 5.2.3.

C
∑

= sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |V ). (5.14)
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Proof of Theorem 5.2.3. We need to show that ∃ (Ra, Rb) ∈ Cin achieving (5.14). Let

us fix πTa(t
a)πT b(t

b) and consider the rate constraints given in Cin

I(T a;Y |T b, V ) = H(T a)−H(T a|T b, Y, V ) (5.15)

I(T b;Y |T a, V ) = H(T b)−H(T b|T a, Y, V ) (5.16)

and

I(T a, T b;Y |V ) = H(T a) +H(T b)−H(T a|T b, Y, V )−H(T b|Y, V ), (5.17)

where (5.15), (5.16) and (5.17) are valid since T a and T b are independent of each other

and independent of V . Observe now that for any πTa(t
a)πT b(t

b), I(T a;Y |T b, V ) +

I(T b;Y |T a, V ) ≥ I(T a, T b;Y |S) since H(T b|Y, V ) ≥ H(T b|T a, Y, V ). Therefore, the

sum-rate constraint in Cin is always active and hence, there exists (Ra, Rb) ∈ Cin

achieving (5.14).

Remark 5.2.2. Let Sa = (Sap , Sc) and Sb = (Sbp, Sc), where Sap an Sbp are independent.

This scenario is considered in common information problems, e.g. [Wyn75]), and

for the optimality of Shannon strategies for this setup, it is sufficient to take V =

Sc. We also remark that the common information between the given set of random

variables is a well studied subject in information theory and there are several notions

of common information which are characterized by defining different measures on

common randomness. The interested reader is referred to [EGK11, Section 14.2.2]

for a more detailed discussion.

Remark 5.2.3. Let

O := inf
{V :P

Sa,Sb,V,S
(sa,sb,v,s)=PSa|V (sa|v)P

Sb|V (sb|v)PV,S(v,s)}
sup

πTa (ta)π
Tb

(tb)

I(T a, T b;Y |V )

Cout :=
{

(Ra, Rb) ∈ R+ ×R+ : Ra +Rb ≤ O
}
. (5.18)
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Due to Theorem 5.2.3, we have

C ⊆ Cout. (5.19)

5.3 An Achievable Region without CSIR

So far, we have shown that for the sum-rate capacity, when CSITs are correlated, the

Shannon strategies are optimal provided that the decoder is provided with a random

variable under which the CSITs are conditionally independent. It is now natural to

consider the situation when there is no CSIR and try to convey this random variable to

the receiver in order to examine how far Shannon strategies are away from optimality.

More explicitly, consider the process {(Sat , Sbt , St)} and let us assume there exists a

process {Vt} such that

PSat ,Sbt ,St,Vt(s
a
t , s

b
t , st, vt) = PSat |Vt(s

a
t |vt)PSbt |Vt(s

b
t |vt)PSt,Vt(st, vt). (5.20)

The question of interest is if Sat and Sbt are provided to the encoders such as in the

previous section and the decoder has no CSI, what is the rate required to convey Vt

to the receiver.

It should first be recalled that a similar problem appears in the source coding

setting, which is known as the lossless CEO problem, and the tight characterization

of the achievable rates is known under the Markov condition (5.20) [GP79, Theorem

1,2]; it can be summarized as follows. Let {(Sat , Sbt , Vt)}nt=1 denote i.i.d. copies of a

triplet of random variables such that

PSat ,Sbt ,Vt(s
a, sb, v) = PSat |Vt(s

a|v)PSbt |Vt(s
b|v)PVt(v).

Let there be two encoders-a,b which observe Sa, Sb, respectively and the decoder is

interested in a lossless reconstruction of V . Let Rceo be the region of all achievable
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rate pairs. Let (S̃a, S̃b), taking values in finite sets, be a pair of random variables

with

PSa,Sb,V,S̃a,S̃b(s
a, sb, v, s̃a, s̃b) = PS̃a|Sa(s̃

a|sa)PS̃b|Sb(s̃
b|sb)PSa,Sb,V (sa, sb, v). (5.21)

Let P(λ) be the set of all random variables A = (Sa, Sb, V, S̃a, S̃b) satisfying (5.21)

and H(V |S̃a, S̃b) ≤ λ. For A ∈ P(λ), let Rgp(A) be the region of rate pairs (Ra, Rb)

where

Ra > I(Sa; S̃a|S̃b) (5.22)

Rb > I(Sb; S̃b|S̃a) (5.23)

Ra +Rb > I(Sa, Sb; S̃a, S̃b). (5.24)

Theorem 5.3.1. [GP79, Theorem 1,2] Rceo = c̄o

(⋃
A∈P(0)Rgp(A)

)
where P(0)

consists of A satisfying (5.21) with H(V |S̃a, S̃b) = 0.

Note that Rceo is non-empty if and only if H(V |S̃a, S̃b) = 0 is satisfied.

In [LS13b] state-dependent MAC with two independent states each known to one

encoder causally and strictly causally is considered. The authors propose a novel

coding scheme which combines distributed Wyner-Ziv source coding with side in-

formation and channel coding via a block Markov scheme with backward decoding.

This inner bound is attained by using two compression indexes one for each of the

state information at one encoder and sending both of them to the receiver. In order

to convey V to the receiver, we use the technique in this inner bound and the rate

region of the lossless CEO approach and obtain an inner bound.

Before we present this bound, note that only the decoding function in Definition

5.2.1 is changed to ψ : Yn → Wa × Wb while the other definitions such as error

probability, achievable rate pair and capacity region are unchanged. Let Cns denote
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the capacity region for this scenario.

Let V := (V, V a, V b), S := (S, Sa, Sb), X := (Xa, Xb) and v, s, x denote their

particular realizations, respectively. Let Pcr(λ) be the collection of all random vari-

ables

(V, V a, V b, T a, T b, Y, S, Sa, Sb, Xa, Xb), where V ∈ V , T i ∈ Ti, V i ∈ Vi, i = a, b

whose joint distribution can be written as

PV,Ta,T b,S,X(v, ta, tb, y, s,x) = PY |X,S(y|x, s)1{xa=ta(sa)}1{xb=tb(sb)}PTa(t
a)PT b(t

b)

PV a|Sa(v
a|sa)PV b|Sb(vb|sb)PSa|V (sa|v)PSb|V (sb|v)PV,S(v, s) (5.25)

and satisfy H(V |V a, V b) ≤ λ. Let Rcr be the convex hull of the collection of all

(Ra, Rb) satisfying

Ra ≤ I(T a;Y |T b, V a, V b, V )− I(V a;Sa|V b, Y ) (5.26)

Rb ≤ I(T b;Y |T a, V a, V b, V )− I(V b;Sb|V a, Y ) (5.27)

Ra +Rb ≤ I(T a, T b;Y |V a, V b, V )− I(V a, V b;Sa, Sb|Y ) (5.28)

for some (V, V a, V b, T a, T b, Y, S, Sa, Sb, Xa, Xb) ∈ Pcr(0).

Theorem 5.3.2. Rcr ∈ Cns.

Remark 5.3.1. To the best of our knowledge, Theorem 5.2.3 covers the results in the

literature for the sum-rate capacity of state dependent MACs. Note that when Sa and

Sb are independent, we can simply take (Va, Vb) deterministic and hence, the minus

terms in (5.28) are zero. Now, the supremum of the sum-rate constraint gives the

sum-rate capacity.

The proof of Theorem 5.3.2 is an extension of the idea presented in [LS13b] and

it introduces the random variable V , following the lossless CEO approach, which is



CHAPTER 5. MAC WITHOUT CSIR 123

a function of the auxiliary random variables (V a, V b). To summarize the idea, note

that the minus terms in (5.26)- (5.28) correspond to the rates required to transmit

(V a, V b) in a distributed Wyner-Ziv network [Gas04]. In [LS13b], Sa and Sb are

independent and therefore so are V a and V b. However, it should be noted that the

rate region of the distributed Wyner-Ziv network is obtained when the pair (Sa, Sb)

is correlated. Therefore, since the Markov condition (5.25) implies that

I(V a, V b;Sa, Sb|Y ) =

I(V a;Sa) + I(V b;Sb) + I(V a;V b|Y )− I(V b;V a, Y )− I(V a;V b, Y )

we can write (5.26)-(5.28) as

Ra ≤ I(T a;Y |T b, V a, V b)−Ra′

Rb ≤ I(T b;Y |T a, V a, V b)−Rb′

Ra +Rb ≤ I(T a, T b;Y |V a, V b)−Ra′ −Rb′

Ra′ ≥ I(V a;Sa)− I(V a;V b, Y )

Rb′ ≥ I(V b;Sb)− I(V b;V a, Y )

Ra′ +Rb′ ≥ I(V a;Sa) + I(V b;Sb) + I(V a;V b|Y )

−I(V b;V a, Y )− I(V a;V b, Y ) (5.29)

where the last three equations correspond to the rate pairs given in [Gas04, Theorem

2] for distributed coding of correlated sources.

Throughout the proof, we keep the notation of [LS13b] and typical sequences and

typical sets are used as defined in [CK81] (see Definition 2.2.3).

Before we prove Theorem 5.3.2, following [LS13b, Lemma 1], we need to get two

intermediate results. First note that, for some distribution of the form (5.25) and
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(Ra, Rb) satisfying (5.26)-(5.28) imply that

Ra +Rb ≤ I(T a, T b;Y |V a, V b, V )− I(V a, V b;Sa, Sb|Y )

= I(T a, T b;Y, V a, V b, V )− I(V a, V b;Sa, Sb|Y )

= I(T a, T b;Y ) + I(T a, T b;V a, V b, V |Y )− I(V a, V b, V ;Sa, Sb|Y )

≤ I(T a, T b;Y ) (5.30)

where the last line follows since (V a, V b) ↔ (Sa, Sb) ↔ (Y, T a, T b). Note that if

I(T a, T b;Y ) = 0, then (5.30) imply that both Ra and Rb must be zero and hence

achievable. Therefore, we can consider the case where I(T a, T b;Y ) > 0. Note that this

implies I(T a;Y |T b) > 0 or I(T b;Y |T a) > 0 since by (5.25), I(T b;Y |T a) ≥ I(T b;Y )

and therefore, I(T a, T b;Y ) ≤ I(T b;Y |T a) + I(T a;Y |T b). In the rest of the proof,

without loss of generality (WLOG), we assume

I(T a;Y |T b) > 0. (5.31)

Furthermore, we have the following lemma.

Lemma 5.3.1. If under a distribution of the form (5.25), (Ra, Rb) satisfy (5.26)-

(5.28) and I(T b;Y, Sa|T a) = 0, then Rb must be zero and Ra can not exceed I(T a;Y ).

In this case (Ra, Rb) is achievable by using the MAC as a single user channel from

Xa to Y .

Proof of Lemma 5.3.1. Under the conditions of the lemma we have

Rb ≤ I(T b;Y |T a, V a, V b, V )− I(V b;Sb|V a, Y )

= I(T b;Y |T a, V a, V b)− I(V b;Sb|V a, Y )

≤ I(T b;Y, Sa|T a, V a, V b)− I(V b;Sb|V a, Y, Sa) (5.32)

= I(T b;Y, Sa|T a, V b)− I(V b;Sb|Y, Sa). (5.33)
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Note that (5.32) is valid since I(T b;Y |T a, V a, V b, V ) ≤ I(T b;Y, Sa|T a, V a, V b, V ) and

I(V b;Sb|V a, Y ) = H(V b|V a, Y )−H(V b|Sb, V a, Y )

≥ H(V b|V a, Y, Sa)−H(V b|Sb, V a, Y )

(i)
= H(V b|V a, Y, Sa)−H(V b|Sb, V a, Y, Sa)

= I(V b;Sb|V a, Y, Sa)

where (i) follows since V b → Sb → (Y, Sa) which is implied by (5.25). We now verify

(5.33) in two steps. First note that

I(V b;Sb|V a, Y, Sa) = H(V b|V a, Y, Sa)−H(V b|V a, Y, Sa, Sb)

= H(V b|Y, Sa)−H(V b|Sb)

where the second equlaity is valid due to (5.25) which also implies V b → (Y, Sa)→ V a.

Furthermore, note that

I(T b;Y, Sa|T a, V a, V b) = H(T b|T a, V a, V b)−H(T b|Y, Sa, T a, V a, V b)

(ii)
= H(T b|T a, V b)−H(T b|Y, Sa, T a, V a, V b)

(iii)
= H(T b|T a, V b)−H(T b|Y, Sa, T a, V b) (5.34)

where under (5.25), (ii) holds since T b is independent of (V a, V b) and (iii) holds since

T b ↔ (Y, Sa, T a, V b)↔ V a which can be observed as

PT b|Y,Sa,Ta,V a,V b(t
b|y, sa, ta, va, vb)

=

∑
s∈S
∑

sb∈Sb PS,T b,Y,Ta,V a,V b(s, t
b, y, ta, va, vb)∑

tb∈Tb

∑
s∈S
∑

sb∈Sb PS,T b,Y,Ta,V a,V b(s, sb, sa, tb, y, ta, va, vb)

(iv)
=

∑
s∈S
∑

sb∈Sb PY |S,Ta,T b(y|s, t
a, tb)PV a|Sa(v

a|sa)PS,T b,Ta,V b(s, t
b, ta, vb)∑

tb∈Tb

∑
s∈S
∑

sb∈Sb PY |S,Ta,T b(y|s, t
a, tb)PV a|Sa(va|sa)PS,T b,Ta,V b(s, tb, ta, vb)

=
PV a|Sa(v

a|sa)
∑

s∈S
∑

sb∈Sb PY |S,Ta,T b(y|s, t
a, tb)PS,T b,Ta,V b(s, t

b, ta, vb)

PV a|Sa(va|sa)
∑

tb∈Tb

∑
s∈S
∑

sb∈Sb PY |S,Ta,T b(y|s, t
a, tb)PS,T b,Ta,V b(s, tb, ta, vb)

= P (tb|y, sa, ta, vb)
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where (iv) is valid due to (4.3) and (5.25). We now show that Rb must be zero.

Starting from (5.33), we have

Rb ≤ I(T b;Y, Sa|T a, V b)− I(V b;Sb|Y, Sa)

= I(T b;Y, Sa, V b|T a)− I(V b;Sb|Y, Sa)

= I(T b;Y, Sa|T a) + I(T b;V b|T a, Y, Sa)− I(V b;Sb|Y, Sa)
(v)
= H(V b|T a, Y, Sa)−H(V b|T a, Y, Sa, T b)−H(V b|Y, Sa) +H(V b|Sb, Y, Sa)

= H(V b|T a, Y, Sa)−H(V b|T a, Y, Sa, T b)−H(V b|Y, Sa) +H(V b|Sb)

≤ H(V b|Sb)−H(V b|T a, Y, Sa, T b)

≤ 0 (5.35)

where the second equality holds since under (5.25) T b is independent of (T a, V b),

(v) is due to the assumption that I(T b;Y, Sa|T a) = 0 and the others are due to

(5.25) and the chain rule; in particular, the last step is due to the Markov condition

V b → Sb → (T a, Y, Sa, T b). Note now that Ra ≤ I(T a;Y ), since Rb = 0 and

Ra = Ra +Rb

(vi)

≤ I(T a, T b;Y )

≤ I(T a;Y ) + I(T b;Y, Sa|T a)

= I(T a;Y ).

where (vi) is due to (5.30).

Therefore, in the proof of the main theorem, WLOG we assume (5.31) holds and

I(T b;Y, Sa|T a) > 0. (5.36)

Proof of Theorem 5.3.2. Let (Ra, Rb) satisfy (5.26)-(5.28). The communication is

performed in B + 3 blocks where the first B blocks have blocklengths n and the last
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three blocks have blocklengths n1, n2 and n3, respectively. The sole purpose of the

last three blocks is to convey to the receiver the description of the states in block B.

Let us now specify these lengths:

n1 =
nRa′

µ1

(5.37)

n2 =
nRb′

µ2

(5.38)

n3 =
n2 (H(Sa) + δ)

µ1

=
nRb′ (H(Sa) + δ)

µ1µ2

(5.39)

where I(T a;Y |T b) > µ1 > 0 for some µ1 > 0; it is crucial to have positive µ1 which

is satisfied by 5.31, and where I(T b;Y, Sa|T a) > µ2 > 0 for some µ2, see (5.36).

Codebook Generation Pick RSa , RSb , Ra′ , Rb′ such that Ra′ ≤ RSa , Rb′ ≤ RSb .

1) Generate 2nRSa sequences va[n][ja], ja ∈ {1, · · · , 2nRSa} i.i.d. according to PV a(·).

Randomly partition the indices {ja : 1 ≤ ja ≤ 2nRSa} into 2nRa′ bins. Denote by

ka(ja) the bin ja belongs to and by αa(ka) the content of the bin with number

ka.

2) Generate 2n(Ra+Ra′ ) vectors ta[n][wa, ka], wa ∈ {1, · · · , 2nRa}, ka ∈ {1, · · · , 2nRa′}

i.i.d. according to PTa(·).

3) Generate 2nRSb sequences vb[n][jb], jb ∈ {1, · · · , 2nRSb} i.i.d. according to PV b(·).

Randomly partition the indices {jb : 1 ≤ jb ≤ 2nRSb} into 2nRb′ bins. Denote by

kb(jb) the bin jb belongs to and by αb(kb) the content of the bin with number

kb.

4) Generate 2n(Rb+Rb′ ) vectors tb[n][wb, kb], wb ∈ {1, · · · , 2nRb}, kb ∈ {1, · · · , 2nRb′}

i.i.d. according to PT b(·).
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Repeat the above steps independently B times with the same distribution and rates.

The codebook for the last three blocks are generated as follows:

Block B+1

1) Generate one length-n1 codeword tb[n1],B+1 i.i.d. according to PT b(·).

2) Generate 2nRa′ length-n1 codewords ta[n1],B+1[k̃a], k̃a ∈ {1, · · · , 2nRa′} i.i.d.

according to PTa(·).

Block B+2

1) Generate one length-n2 codeword ta[n2],B+2 i.i.d. according to PTa(·).

2) Generate 2nRb′ length-n2 codewords tb[n2],B+2[k̃b], k̃b ∈ {1, · · · , 2nRb′} i.i.d.

according to PT b(·).

Block B+3

1) Generate 2n2(H(Sa)+δ̃) length-n3 codewords ta[n3],B+3[k̄a] i.i.d. according to

PTa(·), k̄a ∈ {1, · · · , 2n2(H(Sa)+δ̃)}.

2) Generate one length-n3 codeword tb[n3],B+3 i.i.d. according to PT b(·).

The codebook is revealed to the encoders and the decoder. The encoding operation

depends on the block number. Let τ ∈ [1 : B] denote the block number.

Encoding Let wa,τ ∈ [1 : 2nRa ] and wb,τ ∈ [1 : 2nRb ] denote the messages to be

sent in block τ .

Block 1. Encoder a, b sends ta[n],1[wa,1, 1] and tb[n],1[wb,1, 1], respectively.
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Block τ , τ ∈ [2 : B]. Encoder q knows sq[n],τ−1, q ∈ {a, b}, and looks for the

sequences vq[n],τ−1 (where vq[n],τ−1[·] denote the sequences generated in block τ−1)

to find the first index jq ∈ {1, · · · , 2nRSq}, q ∈ {a, b}, such that(
vq[n],τ−1[jq], s

q
[n],τ−1

)
∈ TV q ,Sq . (5.40)

Denote these indices by ja,τ−1 and jb,τ−1, respectively. If a vector vq[n],τ−1[jq,τ−1]

satisfying (5.40) does not exist, then the encoder picks a default index, say

jq,τ−1 = 1. Denote by kq,τ the bin number to which jq,τ−1 belongs. Then

Encoder a sends: ta[n],τ [wa,τ , ka,τ ]

Encoder b sends: tb[n],τ [wb,τ , kb,τ ]. (5.41)

Block B+1. User a knows sa[n],B and inspects the sequences va[n],B, i.e., v[n]

sequences generated in block B, and selects the first index ja ∈ [1 : 2nRSa ] such

that

(va[n],B[ja], s
a
[n],B) ∈ TV a,Sa . (5.42)

Denote this index by ja,B. If an index can not be found, then let ja,B = 1.

Denote by ka,B+1 the bin number to which ja,B belongs. Then

Encoder a sends: ta[n1],B+1[ka,B+1]

Encoder b sends: tb[n1],B+1. (5.43)

Block B+2. User b knows sb[n],B and inspects the sequences vb[n],B and selects the

first index jb ∈ [1 : 2nRSb ] such that

(vb[n],B[jb], s
b
[n],B) ∈ TV b,Sb . (5.44)

Denote this index by jb,B. If an index can not be found, then let jb,B = 1.
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Denote by kb,B+1 the bin number to which jb,B belongs. Then

Encoder a sends: ta[n2],B+2

Encoder b sends: tb[n2],B+2[kb,B+1]. (5.45)

Block B+3. User a transmits an almost lossless description of sa[n2],B+2, for ex-

ample, using [CT06, Section 7.13] for transmitting a source over a noisy channel.

Hence, if ka,B+3 is the index of sa[n2],B+2 in the set of all δ̃-typical sequences, then

Encoder a sends: ta[n3],B+3[ka,B+3]

Encoder b sends: tb[n3],B+3. (5.46)

Decoding Let y[n],τ denote the channel output in block τ . Decoding starts at

block B + 3.

Block B+3. Decoder looks for an index k̂a,B+3 such that(
ta[n3],B+3[k̂a,B+3], tb[n3],B+3, y[n3],B+3

)
∈ TTa,T b,Y . (5.47)

If k̂a,B+3 does not exist or is not unique an error is declared. Otherwise, it

sets ŝa[n2],B+2 to be the sequence whose index is k̂a,B+3 in the set of all δ̃-typical

sequences.

Block B+2. Decoder has y[n2],B+2 and also ŝa[n2],B+2. Decoder looks for an index

k̂b,B+2 such that(
ta[n2],B+2, t

b
[n2],B+2[k̂b,B+2], ŝa[n2],B+2, y[n2],B+2

)
∈ TTa,T b,Sa,Y . (5.48)

If an index satisfying (5.48) does not exist or is not unique an error is declared.

Block B+1. Decoder looks for an index k̂a,B+1 such that(
ta[n1],B+1[k̂a,B+1], tb[n1],B+1, y[n1],B+1

)
∈ TTa,T b,Y . (5.49)
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If an index satisfying (5.49) does not exist or is not unique an error is declared.

Block τ , τ ∈ [2 : B]. Decoder has k̂a,τ+1, k̂b,τ+1 and y[n],τ and it looks for

va[n][ĵa] ∈ αa(k̂a,τ+1), and vb[n][ĵb] ∈ αb(k̂b,τ+1) such that(
va[n][ĵa], v

b
[n][ĵb], y[n],τ

)
∈ TV a,V b,Y . (5.50)

If such a pair does not exist, or is not unique, an error is declared. Note that

(va[n][ĵa], v
b
[n][ĵb]) consists of the compressed state sequences in Block τ . Using

this, decoder tries to estimate the messages (wa,τ , wb,τ ) as well as (ka,τ , kb,τ ),

which are the bin numbers of states in block τ − 1. Specifically, the decoder

looks for(
ta[n],τ [ŵa,τ , k̂a,τ ], t

b
[n],τ [ŵb,τ , k̂b,τ ], v

a
[n][ĵa], v

b
[n][ĵb], y[n],τ

)
∈ TTa,T b,V a,V b,Y . (5.51)

If such indices do not exist or not unique an error is declared.

Block 1. Works as in the blocks 2, · · · , B except k̂a,1 = k̂b,1 = 1.

Let (ŵa,τ , ŵb,τ ), τ ∈ {1, · · · , B} denote the decoder outputs.

Error Analysis Let us first verify that by decoding the last three blocks we

obtain (ka,B+1, kb,B+1) with high probability.

Block B+3. Let EB+3
k′ :=

{(
ta[n3][k

′], tb[n3], y[n3]

)
∈ TTa,T b,Y

}
. Hence, the proba-

bility of error in block B + 3, P e
B+3, satisfies

P e
B+3 ≤ Pr

EB+3,c
ka,B+3

⋃
ka,B+3 6=k̂a,B+3

EB+3

k̂a,B+3


≤ Pr

(
EB+3,c
ka,B+3

)
+

∑
ka,B+3 6=k̂a,B+3

Pr
(
EB+3

k̂a,B+3

)
.

Note that Pr
(
EB+3,c
ka,B+3

)
→ 0 as n3 → ∞, which is satisfied when n → ∞ (see
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5.39). For the other term, following standard arguments, we have∑
ka,B+3 6=k̂a,B+3

Pr
(
EB+3

k̂a,B+3

)
=

∑
ka,B+3 6=k̂a,B+3

P
((
ta[n3][k̂a,B+3], tb[n3], y[n3]

)
∈ TTa,T b,Y

)
=

∑
ka,B+3 6=k̂a,B+3

∑
(
ta
[n3]

[k̂a,B+3],tb
[n3]

,y[n3]

)
∈T

Ta,Tb,Y

P
(
ta[n3][k̂a,B+3]

)
P
(
tb[n3], y[n3]

)
≤ 2n2(H(Sa)+δ̃)2−n3(I(Ta;Y |T b))

= 2
nRb′
µ2

(H(Sa)+δ̃)2
−
nRb′ (H(Sa)+δ)

µ1µ2
(I(Ta;Y |T b)) (5.52)

where (5.52) is due to (5.38) and (5.39). Therefore,
∑

ka,B+3 6=k̂a,B+3
P
(
EB+3

k̂a,B+3

)
→

0 as n→∞ since I(T a;Y |T b) > µ1 > 0 (recall that µ1 > 0 is satisfied by 5.31)

which guarantees that ka,B+3 is decoded correctly.

Block B+2. The decoder has both y[n2],B+2 and ŝa[n2],B+2 and tries to estimate

kb,B+1. Let EB+2

k′′
:=
{(
tb[n2][k

′′
], ta[n2], y[n2], ŝ

a
[n2],B+2

)
∈ TTa,T b,Y,Sa

}
. The proba-

bility of error in block B + 2, P e
B+2, satisfies

P e
B+2 ≤ Pr

(
EB+2,c
kb,B+1

)
+

∑
kb,B+1 6=k̂b,B+1

Pr
(
EB+2

k̂b,B+1

)
.

Note that Pr
(
EB+2,c
kb,B+1

)
→ 0 as n2 → ∞, which is satisfied when n → ∞ (see

5.38). For the other term, we have∑
kb,B+1 6=k̂b,B+1

Pr
(
EB+2

k̂b,B+1

)
=

∑
kb,B+1 6=k̂b,B+1

P
((
tb[n2][k̂b,B+1], ta[n2], y[n2], ŝ

a
[n2],B+2

)
∈ TTa,T b,Y,Sa

)
=

∑
kb,B+1 6=k̂b,B+1

∑
(
tb
[n2]

[k̂b,B+1],ta
[n2]

,y[n2],ŝ
a
[n2],B+2

)
∈T

Ta,Tb,Y,Sa

P
(
tb[n2][k̂b,B+1]

)
×P

(
ta[n2], y[n2], ŝ

a
[n2],B+2

)
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≤ 2nRb′2−n2(I(T b;Y,Sa|Ta))

= 2nRb′2
−
nRb′
µ2

(I(T b;Y,Sa|Ta)) (5.53)

where (5.53) is due to (5.38). Therefore,
∑

kb,B+1 6=k̂b,B+1
P
(
EB+2

k̂a,B+2

)
→ 0 as

n → ∞ since I(T b;Y, Sa|T a) > µ2 > 0 (recall that µ2 > 0 is satisfied by 5.36)

which guarantees that kb,B+1 is decoded correctly.

Block B+1. Similar to the decoding processes in blocks B+3, B+2, the decoder

estimates ka,B+1 with arbitrarily low error probability, as n → ∞, by setting

n1 =
nRa′
µ1

. Analysis is similar and hence, we skip the details.

For the error analysis in blocks τ ∈ [1 : B], we use the fact that ka,B+1 and kb,B+1 is

decoded with low error probability and WLOG assume that (wa,τ , wb,τ ) = (1, 1), ∀τ

and specific sequence of pairs (ka,[2:B+3], kb,[2:B+3]) is chosen.

Let sq[B] :=
(
sq[n],1, · · · , s

q
[n],B

)
, q ∈ {a, b}, and define the following events:

A1,τ (s
a
[n],τ , s

b
[n],τ ) :=

{(
va[n][ja], s

a
[n],τ

)
∈ TV a,Sa ,

(
vb[n][jb], s

b
[n],τ

)
∈ TV b,Sb ,

for some jq ∈ {1, · · · , 2nRSq}, q ∈ {a, b}
}

A2,1(sa[n],1, s
b
[n],1) :=

{(
ta[n],1[1, 1], tb[n],1[1, 1], sa[n],1, s

b
[n],1

)
∈ TTa,T b,Sa,Sb

}
A3,τ (s

a
[n],τ , s

b
[n],τ ) :=

{(
ta[n],τ [1, ka,τ ], t

b
[n],τ [1, kb,τ ], s

a
[n],τ , s

b
[n],τ

)
∈ TTa,T b,Sa,Sb

}
B2,τ (ja, jb) :=

{(
va[n],τ [ja], v

b
[n],τ [jb], y[n],τ

)
∈ TV a,V b,Y

}
B3,τ (wa, ka, wb, kb, ja, jb) :={(

ta[n],τ [wa, ka], t
b
[n],τ [wb, kb], v

a
[n],τ [ja], v

b
[n],τ [jb], y[n],τ

)
∈ TTa,T b,V a,V b,Y

}
and

A := A2,1(sa[n],1, s
b
[n],1)

B⋂
τ=1

A1,τ (s
a
[n],τ , s

b
[n],τ )

B+1⋂
τ=2

A3,τ (s
a
[n],τ , s

b
[n],τ )
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βτ := Bc2,τ (ja,τ , jb,τ )
⋃

ja∈αa(ka,τ+1), jb∈αb(kb,τ+1)
(ja,jb)6=(ja,τ ,jb,τ )

B2,τ (ja, jb) (5.54)

γτ := Bc3,τ (1, ka,τ , 1, kb,τ , ja,τ , jb,τ )⋃
(wa,ka,wb,kb)6=(1,ka,τ ,1,kb,τ )

B3,τ (wa, ka, wb, kb, ja,τ , jb,τ ). (5.55)

The error event is E :=
⋃B
τ=1 {(ŵa,τ , ŵb,τ ) 6= (wa,τ , wb,τ )} and hence, it is sufficient to

show that

lim
n→∞

P (E|sa[B], s
b
[B]) = 0, ∀(sa[B], s

b
[B]) ∈ T BSa,Sb (5.56)

where T B
Sa,Sb

is the B product of TSa,Sb . Note that

E ⊆ Ac ∪ βB ∪ γB ∪

{
B−1⋃
τ=1

(βτ ∪ γτ )

}
and hence,

P (E|sa[B], s
b
[B])

≤ P

(
Ac ∪ βB ∪ γB ∪

{
B−1⋃
τ=1

(βτ ∪ γτ )

}∣∣∣∣sa[B], s
b
[B]

)

≤ P
(
Ac
∣∣sa[B], s

b
[B]

)
+ P

(
βB ∪ γB ∪

{
B−1⋃
τ=1

(βτ ∪ γτ )

}∣∣∣∣A, sa[B], s
b
[B]

)
(5.57)

where (5.57) is valid since for any events E1, E2

P (E1 ∪ E2|θ) = P (E1|θ) + P (E2 ∩ Ec
1|θ)

≤ P (E1|θ) + P (E2|Ec
1, θ)P (Ec

1|θ) ≤ P (E1|θ) + P (E2|Ec
1, θ).

For τ ∈ [1 : B], let γc[τ+1,B] := {γcτ+1, · · · , γcB} and βc[τ+1,B] := {βcτ+1, · · · , βcB}. Re-

peating the above steps recursively, we get

P (E|sa[B], s
b
[B]) ≤ P

(
Ac|sa[B], s

b
[B]

)
+ P

(
βB|A, sa[B], s

b
[B]

)
+ P

(
γB|A, sa[B], s

b
[B], β

c
B

)
+P

(
B−1⋃
τ=1

(βτ ∪ γτ ) |A, sa[B], s
b
[B], β

c
B, γ

c
B

)
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≤ P
(
Ac|sa[B], s

b
[B]

)
+ P

(
βB|A, sa[B], s

b
[B]

)
+ P

(
γB|A, sa[B], s

b
[B], β

c
B

)
+

B−1∑
τ=1

[
P
(
βτ |A, sa[B], s

b
[B], γ

c
[τ+1,B], β

c
[τ+1,B]

)
+ P

(
γτ |A, sa[B], s

b
[B], γ

c
[τ+1,B], β

c
[τ,B]

)]
(i)
= P

(
Ac|sa[B], s

b
[B]

)
+ P

(
βB|A, sa[B], s

b
[B]

)
+ P

(
γB|A, sa[B], s

b
[B], β

c
B

)
+

B−1∑
τ=1

[
P
(
βτ |A, sa[B], s

b
[B], γ

c
τ+1

)
+ P

(
γτ |A, sa[B], s

b
[B], γ

c
τ+1, β

c
τ

)]
(ii)
= P

(
Ac|sa[B], s

b
[B]

)
+ P

(
βB|A, sa[B], s

b
[B]

)
+ P

(
γB|A, sa[B], s

b
[B], β

c
B

)
+(B − 1)

[
P
(
βτ |A, sa[B], s

b
[B], γ

c
τ+1

)
+ P

(
γτ |A, sa[B], s

b
[B], γ

c
τ+1, β

c
τ

)]
(5.58)

for some fixed τ and (i) holds since βτ ↔ (A, sa[B], s
b
[B], γ

c
τ+1)↔ (γc[τ+2,B], β

c
[τ+1,B]) and

γτ ↔ (A, sa[B], s
b
[B], γ

c
τ+1, β

c
τ ) ↔ (γc[τ+2,B], β

c
[τ+1,B]) and (ii) holds because of the inde-

pendent codebook construction across the blocks. It should be noted that conditioned

on γcτ+1, the decoder has at hand the correct bin indices of the previous block, i.e.,

(k̂a,τ+1, k̂b,τ+1) = (ka,τ+1, kb,τ+1). Let us now consider each term in (5.58).

By the covering lemma 2.3.1,

lim
n→∞

P
(
Ac|sa[B], s

b
[B]

)
= 0 whenever RSa > I(V a;Sa) and RSb > I(V b;Sb). (5.59)

For the term P
(
βB|A, sa[B], s

b
[B]

)
, note that the decoder knows the correct bin indices

ka,B+1 and kb,B+1. Since P (Bc2,B(ja,B, jb,B))→ 0, we have,

P
(
βB|A, sa[B], s

b
[B]

)
≤

P
( ⋃
ja∈αa(ka,B+1)

ja 6=ja,B

B2,B(ja, jb,B)
∣∣A, sa[B], s

b
[B]

)
+ P

( ⋃
jb∈αb(kb,B+1)

jb 6=jb,B

B2,B(ja,B, jb)
∣∣A, sa[B], s

b
[B]

)
+P
( ⋃
ja∈αa(ka,B+1), jb∈αb(kb,B+1)

ja 6=ja,B , jb 6=jb,B

B2,B(ja, jb)
∣∣A, sa[B], s

b
[B]

)
. (5.60)
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By standard typicality arguments,

P
( ⋃
ja∈αa(ka,B+1)

ja 6=ja,B

B2,B(ja, jb,B)
∣∣A, sa[B], s

b
[B]

)
≤ 2n(RSa−Ra′ )2−n[I(V a;V b,Y )−δ] (5.61)

for some δ > 0, limn→∞ δ = 0. Similarly,

P
( ⋃
jb∈αb(kb,B+1)

jb 6=jb,B

B2,B(ja,B, jb)
∣∣A, sa[B], s

b
[B]

)
≤ 2n(R

Sb
−Rb′ )2−n[I(V b;V a,Y )−δ]. (5.62)

For the last term in (5.60), we invoke [Gas04, Lemma 8] (see Appendix 2.3.2 for the

statement of the lemma) and obtain

P
( ⋃
ja∈αa(ka,B+1), jb∈αb(kb,B+1)

ja 6=ja,B , jb 6=jb,B

B2,B(ja, jb,B)
∣∣A, sa[B], s

b
[B]

)
≤

2n(RSa+R
Sb
−Ra′−Rb′ )2−n[I(V a;Y,V b)+I(V b;Y,V a)−I(V a,V b|Y )−δ]. (5.63)

Hence, limb→∞ P
(
βB|A, sa[B], s

b
[B]

)
= 0 if

RSa −Ra′ < I(V a;V b, Y )

RSb −Rb′ < I(V b;V a, Y )

RSa +RSb −Ra′ −Rb′ < I(V a;Y, V b) + I(V b;Y, V a)− I(V a, V b|Y ). (5.64)

Consider now the term P
(
γB|A, sa[B], s

b
[B], β

c
B

)
where βcB guarantees that the de-

coder has at hand the compressed version of the state information at block B,

(va[n],B[ja,B], vb[n],B[jb,B]). Note that this pair is independent of Shannon strategies

generated in block B. Recall now that

γB := Bc3,B(1, ka,B, 1, kb,B, ja,B, jb,B)
⋃

(wa,ka,wb,kb)6=(1,ka,B ,1,kb,B)

B3,B(wa, ka, wb, kb, ja,B, jb,B)

where limn→∞ P
(
Bc3,B(1, ka,B, 1, kb,B, ja,B, jb,B)

)
= 0. We can decompose the union as⋃

(wa,ka,wb,kb)6=
(1,ka,B ,1,kb,B)

B3,B(wa, ka, wb, kb, ja,B, jb,B) =
⋃

(wa,ka) 6=(1,ka,B)

B3,B(wa, ka, 1, kb,B, ja,B, jb,B)
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⋃
(wb,kb)6=(1,kb,B)

B3,B(1, ka,B, wb, kb, ja,B, jb,B)
⋃

(wb,kb)6=(1,kb,B)
(wa,ka)6=(1,ka,B)

B3,B(wa, ka, wb, kb, ja,B, jb,B).

(5.65)

For the first union in the right hand side of (5.65), we have

P

( ⋃
(wa,ka) 6=(1,ka,B)

B3,B(wa, ka, 1, kb,B, ja,B, jb,B)
∣∣A, sa[B], s

b
[B], β

c
B

)
=

P

( ⋃
(wa,ka)6=(1,ka,B)

(
ta[n],B[wa, ka], t

b
[n],B[1, kb,B], va[n],B[ja,B], vb[n],B[jb,B], y[n],B

)
∈ TTa,T b,V a,V b,Y

∣∣A, sa[B], s
b
[B], β

c
B

)
≤

∑
(wa,ka)6=(1,ka,B)

∑
(ta[n],B [wa,ka],tb

[n],B
[1,kb,B ],va

[n],B
[ja,B ],vb

[n],B
[jb,B ],y[n],B)

∈T
Ta,Tb,V a,V b,Y[

P (ta[n],B[wa, ka]
∣∣A, sa[B], s

b
[B], β

c
B)

P (tb[n],B[1, kb,B], va[n],B[ja,B], vb[n],B[jb,B], y[n],B

∣∣A, sa[B], s
b
[B], β

c
B)

]
≤ 2n(Ra+Ra′ )2−n[−H(Ta,T b,Y,V a,V b)+H(Ta)+H(T b,Y,V a,V b)−δ]

= 2n(Ra+Ra′ )2−n[−I(T
a;Y |V a,V b,T b)−δ] (5.66)

for some δ > 0, limn→0 δ = 0. For each τ ∈ [1 : B], we can obtain similar results for

the terms in the right hand side of (5.65) and hence conclude that,

lim
n→∞

P
(
γB|A, sa[B], s

b
[B], β

c
B

)
= 0

if

Ra +Ra′ < I(T a;Y |V a, V b, T b)

Rb +Rb′ < I(T b;Y |V a, V b, T a)

Ra +Rb +Ra′ +Rb′ < I(T a, T b;Y |V a, V b). (5.67)
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We can similarly show that the other terms in (5.58), i.e., P
(
βτ |A, sa[B+1], s

b
[B+1], γ

c
τ+1

)
and P

(
γτ |A, sa[B+1], s

b
[B+1], γ

c
τ+1, β

c
τ

)
, tends to zero with large blocklengths.

Recall that V is a function of (V a, V b), V a−Sa−(Y, V b) and V b−Sb−(Y, V a) and

therefore, combining (5.59), (5.64) and (5.67) shows that (5.56) is satisfied whenever

Ra +Ra′ < I(T a;Y |V a, V b, T b, V )− I(V a;Sa|V b, Y )

Rb +Rb′ < I(T b;Y |V a, V b, T a)− I(V b;Sb|V a, Y )

Ra +Rb +Ra′ +Rb′ < I(T a, T b;Y |V a, V b)− I(V a, V b;Sa, Sb|Y ). (5.68)

In order to complete the proof, we finally need to show that the rate of the above

scheme approaches (Ra, Rb) for largeB. This follows from [LS13b, Equations (52),(53)];

we here give the details for the sake of completeness.

Recall that the total transmission time is B + 3 blocks where the first B blocks

have length n and the rest have n1, n2 and n3, respectively, where these lengths are

given in (5.37)-(5.39). Therefore, the scheme has the effective rates, (Ra, Rb)

(Ra, Rb)
nB

nB + n1 + n2 + n3

= (Ra, Rb)
B

B +
Ra′
µ1

+
Rb′
µ2

+
Rb′ (H(Sa)+δ)

µ1µ2

which approaches (Ra, Rb) for large B.

Remark 5.3.2. One conclusion of Theorem 5.3.2 and 5.2.3 is that the Shannon

strategies are far from optimality by at most I(V a, V b;Sa, Sb|Y ) when there is no

CSIR; note that the maximum sum-rate in the inner bound above is given as

max
(V,V a,V b,Ta,T b)∈Pcr(0)

I(T a, T b;Y |V a, V b, V )− I(V a, V b;Sa, Sb|Y )

which can be shown via a similar proof as the one for Theorem 5.2.3, by showing that

the sum-rate constraint is always active.
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5.4 Conclusion and Remarks

In this chapter, we have investigated the memoryless state dependent MACs where

each encoder is provided with asymmetric correlated CSI in a causal way. We first

show that for the optimality of Shannon strategies for the sum-rate capacity, it is suffi-

cient to have the decoder provided with a side information under which the correlated

CSITs become conditionally independent. This observation generalizes the known re-

sults which either assume independent CSITs or full CSI at the receiver. We next

consider the situation where there is no CSIR. We provide an inner bound, which is

inspired from the lossless CEO approach and uses the technique provided in [LS13b],

to demonstrate the rate required to convey the aforementioned side information to

the receiver.



Chapter 6

Summary and Conclusion

6.1 Summary

The main purpose of this thesis is to investigate the influence, from the channel

capacity perspective, of the channel output feedback and the channel side information

(CSI) in the single and multiterminal communication systems. By the definition

of channel capacity, one needs to work on large blocklengths and arguably, one of

the most important objectives in channel coding problems is to obtain single letter

expressions for the set of all achievable rates. Obtaining such expressions for the

capacity regions in multiterminal setups is, in general, hard, and in the situations

where the channel output feedback and the side information are also involved in the

problem setup, it is arguably more challenging. Indeed, for many such problems single

letter expressions are still unknown. The two of the essential ingredients of a channel

coding problem when there is feedback or side information can be succinctly given

by the facts that the problem has a stochastic dynamic and the information patterns

at the decision makers, i.e., the encoder(s) and the decode(s), might have degraded

140
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characteristics. These two facts lead to alternative formulations of the problem in

a stochastic control framework and many contributions have already been available

for such channel coding problems. In a broad sense, the main contributions of this

thesis are obtaining some complete solutions by using tools and ideas from stochastic

control theory. Let us now recall these contributions.

The first part of this thesis has dealt with the channel output feedback problem

for channels with memory. Motivated by the known fact that even for channels with

memory, feedback might not increase capacity, we have obtained in Chapter 3 a larger

class of channels with memory whose feedback and non-feedback capacities are identi-

cal. The main tool used to derive this result is the dynamic programming formulation

of the optimization problem that the converse of feedback capacity problem reduces

to.

The second part of this thesis has considered the state-dependent multiple access

channels (MAC) where asymmetric noisy side information is provided to the encoders.

In Chapter 4, by first assuming that there exists full CSI at the receiver, we have

obtained single-letter expressions for the capacity regions under several scenarios.

Achievability of these regions follows from standard arguments of joint typicality

coding and hence, the original ingredient of these results is the team decision based

converse coding approach. More explicitly, to obtain a single-letter expression for the

capacity region, the presented converse coding approach shows that the past (and

future in the non-causal setup) is irrelevant. This is obtained by showing that under

any policy that one can achieve using an arbitrary decentralized coding policy, the

same performance can be achieved by using memoryless stationary team policies.

Depending on what information available to which decision makers as well as the
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statistical dependence between these information, we have further shown that in some

situations it might not be required to have full CSI at the receiver. It is worth to stress

that although the same results could be obtained via using the standard tools from

information theory, such as introducing axillary random variables for time-sharing,

we believe such a converse approach is insightful and can be used to obtain further

results in multiuser information theory.

The state-dependent MAC has been an active research area and there exist many

contributions based on the information classification (see the literature review in

Chapter 1). Among these one can observe that in the situation when there is no CSI

at the receiver, complete characterizations are available mainly under the assumption

of private messages’ degradation, i.e., one encoder knows the other’s private message.

Indeed, one of the most classical problems in this setup, a two-user MAC with causal

(or non-causal) CSI available at the encoders and no CSI at the receiver, is still open.

The associated single user problem has been solved by Shannon and the capacity is

given in terms of the Shannon strategies which are shown to be suboptimal for the

MAC problem. This fact motivated us to find the information required to be made

available to the receiver so that a tight converse in terms of Shannon strategies is

possible. Characterization of this information, which is shown in Chapter 5, is then

used to determine the rate required to transmit this information to the receiver when

the receiver has no CSI. This rate is determined by using the technique of a recently

proposed inner bound as well as the result of the lossless CEO source coding problem.

The obtained inner bound also demonstrates how far, at most, the Shannon strategies

are away from optimality.
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6.2 Suggestions for Future Research

In recent years a considerable amount of research has been devoted to understand

the fundamental limits on information flow in networks and to design optimal cod-

ing techniques and protocols that achieve these limits [EGK11]. The theory in this

direction has been referred to as Network Information Theory (NIT) and the results

presented in this thesis contribute to this broad area. NIT aims to extend Shannon’s

point-to-point information theory results to networks such as broadcast, interference

and relay networks. Hence, a potential future direction of research can be extending

the results on the state-dependent MAC presented in this thesis to other types of

multiterminal models.

Although for many NIT problems a complete solution is yet to be developed,

there are many achievable regions with some of them having a tight converse. When

the available results are examined, it is observed that in order to get a single-letter

expression, the usual approach, which is also the critical step, is to correctly represent

the time dependent variable via some auxiliary random variables. The single letter

characterization then follows by applying some results from convex analysis such

as the support lemma [CK81]. In classical Shannon theoretic results, such as DMC

channel capacity, the expression is given in terms of physically represented parameters,

such as the channel input and output, and hence, one critique that can be made

against using auxiliary random variables is the lack of such a physical representation

among the systems parameters. The team based approach presented in the second

part of this thesis, on the other hand, follows a different approach by showing that

the past or future is irrelevant. Therefore, it is worth to explore this approach for

other multiterminal systems.
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One should recall that the expression for the feedback capacity of channels with

arbitrary memory is given in terms of the inf-information rates. We can define it

more explicitly as follows.

Definition 6.2.1. [VH93] The liminf in probability of a sequence of random variables

{Xt} is defined as the largest extended real number α such that ∀ε > 0

lim
t→∞

P(Xt ≤ α− ε) = 0.

Denote this number α by lim infinprobXt.

Let

−→
P X[T ]|Y[T ]

(x[T ]|y[T ])
4
=

T∏
i=1

PXt|X[t−1],Y[t−1]
(xt|x[t−1], y[t−1])

−→
P X[T ]|Y[T ]

PY[T ]
(X[T ], Y[T ])

4
=
−→
P X[T ]|Y[T ]

(x[T ]|y[T ])PY[T ]
(y[T ]).

In [TM09] and [Tat00], it is shown that the feedback capacity of arbitrary channels

is equal to

CFB = sup
{DT }∞T=1

I(X → Y )

DT = {{PXt|X[t−1],Y[t−1]
(xt|x[t−1], y[t−1])}Tt=1}

where X and Y are channel input and output, respectively, and I(X → Y ) =

lim infinprob
1
T

−→
i (X[T ];Y[T ]) where

−→
i (X[T ];Y[T ])

4
= log

PX[T ],Y[T ]
(x[T ], y[T ])

−→
P X[T ]|Y[T ]

PY[T ]
(x[T ], y[T ])

.

It should be observed that the optimization problem given in CFB is very difficult to

solve. The usual way to deal with this is to assume some sort of ergodicity in the

channel model [Tat00], more specifically, one makes suitable assumptions so that the

channel is information stable. To that end the authors in [Tat00] examined the class

of Markov channels and they show that the problem of feedback coding for Markov
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channels can be cast as a partially observed stochastic control problem. Hence, they

can use the tools of dynamic programming to solve the mutual information optimiza-

tion problem underlying the capacity problem [Tat00, Chapter 4].

Another possible future work can be extending the results presented in Chapter 3

to the case of arbitrary channels with memory. The first step required in this direction

is to formulate CFB as a stochastic control problem for arbitrary channels and use

dynamic programming to solve the optimization problem.
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[ŞAY09b] N. Şen, F. Alajaji, and S. Yüksel. On the feedback capacity of a dis-

crete non-binary noise channel with memory. In Proc. Canadian Work.

Information Theory, Ottawa, Canada, May 2009.
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