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INITIALIZATION AND CURING POLICIES FOR P\'OLYA
CONTAGION NETWORKS\ast 
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Abstract. We investigate optimization policies for resource distribution in network epidemics
using a model that derives from the classical P\'olya process. This model, called the P\'olya network
contagion process, is based on a modified urn sampling scheme that accounts for both temporal
and spatial contagion between neighboring nodes in a network. We study two infection mitigation
problems---one which takes place upon initialization and one which occurs continually as the P\'olya
network process develops. We frame these problems as resource allocation problems with fixed bud-
gets and analyze a suite of potential policies. Due to the complexity of these problems, we introduce
effective proxy measures for the average infection rate in each case. We also prove that the two-sided
infection-curing game on the so-called expected network exposure admits a Nash equilibrium. In
both the curing and initialization scenarios, we introduce heuristic policies that primarily function
on the basis of limiting the number of targeted nodes within a particular network setup. Simula-
tions are run for mid-to-large--scale networks to compare performance of our heuristics to provably
convergent gradient descent algorithms run on the simplified proxy measures.
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temporal and spatial contagion, initialization and curing policies
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1. Introduction. The study of epidemics on networks is an active research topic;
see, e.g., [12, 33, 42] and the references therein. Real-life examples include the propa-
gation of burst errors in a wireless communication channel [3], of a biological disease
through a population [27], of malware in computer or smartphone systems [16], and
the dissemination of rumors [40] and competing opinions [1] in social networks.

Controlling the spread of contagion in networks has been thoroughly investigated
for various systems, including the well-known susceptible-infected-susceptible (SIS)
and susceptible-infected-recovered (SIR) models [42] and extensions [34], models based
on real epidemic data [43], and cascade models [12]. Other studies address link removal
via immunization [29], optimization of curing resources [9], message-passing meth-
ods [26], optimal control under performance and resource usage trade-offs [25, 38],
and competing or coevolving contagions within networks [24, 28, 30, 35, 44]. We
herein study initialization and curing strategies and related game-theoretic problems
for the (infinite-memory) P\'olya network contagion model introduced in [21, 22].

The classical P\'olya process [13, 36, 37] is a temporal contagion process that evolves
via a sampling method from a single urn containing a finite number of red and black
balls, representing units of ``infection"" and ``healthiness,"" respectively. This model has
been used in applications such as consensus dynamics [14] and generalized for various
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POLICIES FOR P\'OLYA CONTAGION NETWORKS S171

other purposes [10, 11]. The P\'olya network contagion process [21, 22] generalizes this
sampling scheme to a general network, where each node is equipped with its own urn,
by allowing for spatial interactions between neighboring nodes. This is realized by
forming a ``super urn"" for each node by combining its individual urn with the urns of
its neighboring nodes [21, 22].

The resulting P\'olya model for network contagion [21, 22] is similar to the SIS
model [2, 12, 45]. The P\'olya model can be operated in two modes---an infinite-memory
mode where the reinforcing balls added at each time step remain permanently in the
underlying urn of each node, and a finite-memory mode where the added balls at a
given time step remain in the system only for a fixed number of future time steps
(this mode results in a finite-order Markov network contagion process). While it was
empirically observed in [22] that the P\'olya network contagion model can mimic the
behavior of the SIS process, particularly in the finite-memory (Markovian) mode,
there are some notable differences between the two models. For example, the P\'olya
model benefits from exactly computable expressions for the joint and marginal prob-
abilities of infection of its discrete-time contagion process, while the underlying (or
exact) Markov process of the SIS model is typically represented and analyzed via a
dynamical system using mean-field approximations; see, e.g., [2, 31, 41, 42]. Fur-
thermore, the P\'olya model captures the network contagion process at a microscopic
level by associating an urn to each node, whose composition of red and black balls
at each time step represents a granular profile for the degree of infection and health-
iness of that node, which upon interaction with urns of nodes in proximity results
in infected/healthy states with each super urn draw. This allows us to minutely and
analytically capture the stochastic evolution of the network-wide contagion process.
Finally, the underlying discrete-time Markov chain of the SIS model has an absorbing
(all-healthy or disease-free) state [41], while the P\'olya model does not in general1 as
its contagion process is symbiotically generated from its initial state (of red/black ball
mixtures in the individual urns of the nodes) via the P\'olya ball sampling mechanism.

In this paper, we examine resource allocation problems for the (infinite-memory)
P\'olya network contagion process. The first problem considers a one-time application
of a control policy upon initialization of the network, while the second concerns the
continual distribution of resources as the network contagion process develops. Both of
these aim to manipulate the ``average network-wide infection rate."" Section 3 concerns
the setup and analysis of the first such problem, while section 4 concerns the second.
More specifically, the initialization problem concerns one party judiciously control-
ling the distribution of resources in an effort to minimize the average network-wide
infection rate. This is a novel preemptive infection mitigation problem not typically
considered in SIS models due to the P\'olya model's inherent characteristics where con-
tagion organically develops and propagates from initial network conditions. Resources
in this case concern the distribution of red and black balls within a network prior to
any draws taking place. We focus on the one-sided finite horizon case, wherein a
player controls the allocation of black balls according to a fixed budget, with the goal
of minimizing the average infection rate at some fixed point in the future. We provide
a series of results showing that optimal policies for this problem satisfy two conditions:
nested nodes will receive no resources, and symmetric red ball initializations will yield

1The P\'olya model is more general than the exact SIS Markov process as it allows different
asymptotic contagion behaviors. For example, in the finite-memory M mode with homogeneous
parameters, the P\'olya network process is an Mth order irreducible and aperiodic Markov chain with
a unique stationary distribution that is not necessarily the all-healthy state with probability one.
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S172 HARRINGTON, ALAJAJI, AND GHARESIFARD

symmetric black ball initializations (where the notion of ``symmetry"" is detailed using
fundamental ideas from graph theory). Since determining the average infection rate
at time n \geq 1 becomes increasingly complex as n grows, we use the average infection
rate at n = 1 to simplify the problem, and we prove that under certain conditions this
proxy measure admits an optimal policy. An algorithm for such an optimal policy
using gradient descent is used for comparisons with our own heuristic policies. We
detail three varieties of heuristic policies, each of which works on the basis of limiting
our set of viable target nodes. The first set of policies targets the set of ``inner nodes,""
the second works through a layered application of this inner node targeting technique,
and the last works by iteratively targeting the most central nodes until full network
coverage (either direct or indirect) is obtained. We provide two different algorithms
for determining these target sets and variations based on previous heuristics (see [23]).

The second control problem, referred to as the ``infection-curing problem"" or the
``Delta-curing problem,"" concerns reactive intervention policies deployed during the
progress of contagion in the network. In this setup, which is an extension of the
contagion-curing problem studied in [23], we define a two-player game on the average
infection rate for a given network. Prior work on competitive dynamics over SIS
and social networks include [35] and [30], respectively. To simplify the problem of
finding optimal policies, we consider a game on the proxy measure of the expected
network exposure, which we show to be convex in the curing parameters and concave
in the infection parameters. We prove that under budget constraints, there exists a
deterministic Nash equilibrium [32] for this game, which can be realized via gradient
descent algorithms. We also develop heuristic policies for the Delta-curing problem
using the same methods as in the initialization case. Finally, we provide simulations
to demonstrate the performance of the proposed heuristics for the initialization and
curing problems on both sparse and dense large-scale networks. These policies are
compared to optimal policies for the one-step proxy measures.

The rest of the paper is organized as follows. In section 2, we describe in sufficient
detail the P\'olya network contagion process [22]. The initialization and infection-curing
problems are theoretically investigated in sections 3 and 4, respectively. Heuristic op-
timization strategies for the above problems are developed in section 5, and simulation
results are presented in section 6. Finally, conclusions are stated in section 7.

2. P\'olya network contagion. We devote this section to some background on
the classical P\'olya urn process and the (infinite-memory) P\'olya network contagion
process under study. Throughout, results are derived using standard probability con-
cepts, found in texts such as [4, 18]. Given the probability space (\Omega ,\scrF , P ), consider
the dimension-N stochastic process \{ Zn\} \infty n=1, where Zn = (Z1,n, . . . , ZN,n) is a ran-
dom vector on \Omega at time n. Here the process indices specify time indices, while the
vector indices delineate spatial indices (for nodes in a network). For i = 1, . . . , N ,
we write the n-tuple (Zi,1, . . . , Zi,n) as Zn

i . We represent by \{ \scrF n\} \infty n=1 the natural
filtration on the process \{ Zn\} \infty n=1 (i.e., \scrF n = \sigma (\{ Zn

j \} Nj=1) is the \sigma -field generated by
the stochastic process up to time n).

2.1. Classical P\'olya process [13, 36, 37]. An urn initially contains T = R+B
balls of which R \in \BbbZ >0 are red and B \in \BbbZ >0 black. At time n, a ball is drawn from
the urn and returned with \Delta > 0 balls of the same color. The random variable Zn is
used to indicate the color of the ball on the nth draw: if the draw is red, Zn = 1; and
if it is black, Zn = 0. Setting Un := (R+\Delta 

\sum n
t=1 Zt)/(T + n\Delta ) as the proportion of

red balls in the urn after the nth draw, the conditional probability of drawing a red
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POLICIES FOR P\'OLYA CONTAGION NETWORKS S173

ball at time n, given the past draw history (Z1, . . . , Zn - 1), is given by

P (Zn = 1 | Z1, . . . , Zn - 1) =
R+\Delta 

\sum n - 1
t=1 Zt

T + (n - 1)\Delta 
= Un - 1.(2.1)

The process \{ Zn\} \infty n=1 is exchangeable (thus stationary) and nonergodic, with both Un

and 1
n

\sum n
t=1 Zt converging almost surely (a.s.) to a Beta distributed random variable

with parameters R
\Delta and B

\Delta [15, 36]. We next describe the P\'olya network contagion
process [22, 23], which generates spatial contagion in addition to temporal contagion.

2.2. P\'olya network contagion process [21, 22]. Let \scrG = (V, \scrE ) be a graph,
where V = \{ 1, . . . , N\} is the set of N \in \BbbZ >0 nodes and \scrE \subseteq V \times V is the set of edges.
Throughout, \scrG is assumed to be undirected (i.e., (i, j) \in \scrE if and only if (j, i) \in \scrE 
for all i, j \in V ) and connected (i.e., there exists a series of edges connecting any two
nodes in \scrG ). Let \scrN i = \{ v \in V : (i, v) \in \scrE \} be the set of neighbors to node i, and
let \scrN \prime 

i = \{ i\} \cup \scrN i. Each node i \in V is assigned an urn with Ti = Ri + Bi balls of
which Ri \in \BbbZ \geq 0 are red and Bi \in \BbbZ \geq 0 are black. We denote the black and red ball
initializations by the vectors B := (B1, . . . , BN ) and R := (R1, . . . , RN ), respectively.
We will refer to B as the curing initialization and R as the infection initialization.

As illustrated Figure 1, we form a super urn for node i by combining its individual
urn with the urns of its neighboring nodes. We use \=Ri =

\sum 
j\in \scrN \prime 

i
Rj and \=Bi =\sum 

j\in \scrN \prime 
i
Bj to denote the number of red and black balls, respectively, in node i's super

urn, and we assume throughout that \=Ri + \=Bi > 0 for all i \in V (to ensure that the
super urn associated to each node is nonempty). The total number of balls in the ith
super urn is given by \=Ti = \=Ri + \=Bi. Similar to the classical P\'olya process, a draw is
conducted for each node at each time, and then a number of balls of the same color
are added to that node's individual urn. In this case, however, the draw is conducted
on the super urn of each node. As well, we may allow for the number of added balls
to vary based on which node the draw was for, the color of the draw, and the time
at which the draw occurred. Thus, for node i at time n, if a red ball is drawn, we
add \Delta r,i(n) red balls to node i's individual urn, and if a black ball is drawn, we add
\Delta b,i(n) black balls to node i's individual urn. We also assume that there exist i \in V
and n such that \Delta b,i(n) +\Delta r,i(n) > 0. We let Zi,n indicate the color of the nth draw
for node i: if the draw is red, Zi,n = 1; and if it is black, Zi,n = 0.

Node 1’s super urn

1

2 3

4
5 6

7

Fig. 1. Illustration of a super urn in a network [20].

The above parameters naturally translate into opinion dynamics applications in-
volving two competing brands (red versus black). In this case, the initial red ball
composition in node i represents the belief of the individual (residing in node i) about

D
ow

nl
oa

de
d 

05
/0

7/
22

 to
 1

30
.1

5.
24

4.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S174 HARRINGTON, ALAJAJI, AND GHARESIFARD

the red brand at time n = 0. As each node interacts at time n \geq 1 with its neighbors
(via the super urn), its belief is altered (via the reinforcement parameters \Delta b,i(n) and
\Delta r,i(n)) based on the opinions of the neighboring nodes. Furthermore, translating
the above parameters to the framework of an epidemic in a population, black and red
balls represent units of ``healthiness"" (such as white blood cells) and ``infection"" (such
as bacteria or viruses), respectively [22]. In the super urn of a given node (such as
a ``person"" or an ``organism""), white blood cells (resp., bacteria) combine to improve
(resp., impair) the overall health in the node's neighborhood. Drawing red at time
n from the super urn means that the bacteria in the neighborhood were successful
in replicating, making the individual more infected or less immune; otherwise, they
were healthier since the white blood cells reproduced (as balls of the same color as
the drawn balls are added). Thus, when Zi,n = 1, we declare that node i is infected
at time n, and if Zi,n = 0, then it is healthy.

We refer to \{ \Delta b,i(n)\} \infty n=1 as the curing parameters (which in the biological epi-
demic setting can translate into medical therapeutics) and \{ \Delta r,i(n)\} \infty n=1 as the in-
fection parameters for node i. From an urn-sampling point of view, these \Delta 's are
nonnegative integers; however, we allow them to be nonnegative real numbers for
mathematical convenience (e.g., when determining optimal control policies). The
same assumption is used for the initialization parameters B and R. The N -tuple of
draw values at each time step yields the network contagion process \{ Zn\} \infty n=1, where
Zn = (Z1,n, . . . , ZN,n). If desired, we can also separate out the individual draw process
\{ Zi,n\} \infty n=1 for a given node i. We introduce some metrics to measure the infection
spread in the network.

Similar to the classical P\'olya process, we denote the proportion of red balls in
node i's urn after the nth draw by Ui,n. For Ti > 0, letting

Xi,n = Ti +

n\sum 
t=1

\Delta r,i(t)Zi,t +\Delta b,i(t)(1 - Zi,t)(2.2)

represent the total number of balls in node i's urn after the nth draw, we can write

Ui,n =
Ri +

\sum n
t=1 \Delta r,i(t)Zi,t

Xi,n
.(2.3)

Note that Ui,0 = Ri

Ti
is the initial (at time n = 0) proportion of red balls in node i's

individual urn. We denote the proportion of red balls in the super urn of node i at
time n by Si,n. This proportion is given by

Si,n =
\=Ri +

\sum 
j\in \scrN \prime 

i

\sum n
t=1 \Delta r,j(t)Zj,t\sum 

j\in \scrN \prime 
i
Xj,n

=

\sum 
j\in \scrN \prime 

i
Uj,nXj,n\sum 

j\in \scrN \prime 
i
Xj,n

,(2.4)

where Si,0 =
\=Ri
\=Ti

is the initial proportion of red balls in node i's super urn. We set

\~Sn :=
1

N

N\sum 
i=1

Si,n

as the network exposure, which is a function of the underlying network contagion
process \{ Zn\} \infty n=1. For notational ease, we typically omit these arguments unless oth-
erwise noted; e.g., for node i, we will write Si,n rather than Si,n(\{ Zn

j \} Nj=1).
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The conditional probability of drawing a red ball for node i at time n, given all
past draws \{ Zn - 1

j \} Nj=1 := \{ (Z1,1, . . . , Z1,n - 1), . . . , (ZN,1, . . . , ZN,n - 1)\} , is given by

P
\bigl( 
Zi,n = 1| \{ Zn - 1

j \} Nj=1

\bigr) 
=

\=Ri +
\sum 

j\in \scrN \prime 
i

\sum n - 1
t=1 \Delta r,j(t)Zj,t\sum 

j\in \scrN \prime 
i
Xj,n - 1

= Si,n - 1.(2.5)

This is analogous to (2.1), except that it depends on Si,n rather than Ui,n. The n-fold
joint probability of the network \scrG is given for ani \in \{ 0, 1\} n, i \in V , by

P
(n)
\scrG (an1 , . . . , a

n
N ) := P (\{ Zn

i = ani \} Ni=1) =

n\prod 
t=1

P (\{ Zi,t = ai,t\} Ni=1| \{ Zt - 1
i = at - 1

i \} Ni=1)

=

n\prod 
t=1

N\prod 
i=1

(Si,t - 1)
ai,t(1 - Si,t - 1)

1 - ai,t .(2.6)

Finally, we define the network average infection rate at time n as

\~In :=
1

N

N\sum 
i=1

P (Zi,n = 1),(2.7)

which is a key metric to study the asymptotic behavior of the network contagion
process. We can further break down (2.7) by noting that

P (Zi,n = 1) =
\sum 

\{ an - 1
j \} N

j=1

P (Zi,n = 1| \{ Zn - 1
j = an - 1

j \} Nj=1)P (\{ Zn - 1
j = an - 1

j \} Nj=1)

=
\sum 

\{ an - 1
j \} N

j=1

Si,n - 1(\{ an - 1
j \} Nj=1)P

(n - 1)
\scrG (\{ an - 1

j \} Nj=1),(2.8)

where the summation is over all possible draw histories an - 1
j \in \{ 0, 1\} n - 1, j \in V .

Measures \~Sn and \~In are closely related and depend on the underlying network
topology and initial ball distributions. As \~In is difficult to analyze for all n, we will
use \~I1 and \~Sn as proxy metrics to simplify the analysis or gain insight about \~In.

3. Initialization problems. When aiming to limit the spread of infection for
the P\'olya network contagion model, there are different ways to implement a curing
policy. One method is to control the allocation of the curing parameters \{ \Delta b,i(n)\} Ni=1

at each time n, as explored in section 4. We can, alternatively, control how the process
is initialized as a preemptive measure, which we herein study.

The initialization parameters B \in \BbbR N
\geq 0 and R \in \BbbR N

\geq 0 can be tailored to alter the
evolution of the P\'olya network contagion process for a given network. The goal is to
optimally allocate such resources. These optimizations may be performed for either
or both sets of initialization parameters subject to a budget \scrB \in \BbbR \geq 0. We start with

the one-sided initialization problem, wherein we aim to minimize \~In over the black
ball initialization parameters B subject to a budget \scrB b. Throughout this section we
assume the initial distribution of red balls R is known and fixed such that \=Ri > 0 for
all i \in V .

Problem 3.1 (one-sided finite horizon constrained budget initialization). For
a fixed time n, minimize the average infection rate \~In subject to a budget \scrB b on the
curing initialization B = (B1, . . . , BN ); i.e., find

min
\{ Bi\} N

i=1\in \BbbR N
\geq 0

:
\sum N

i=1 Bi\leq \scrB b

\~In.
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S176 HARRINGTON, ALAJAJI, AND GHARESIFARD

Although the above problem can be extended to the infinite horizon case, we limit
ourselves to a finite horizon. Moreover, a two-sided initialization problem, wherein
the objective is to minimize \~In over both sets of initialization parameters B and R,
can be considered. However, we focus only on Problem 3.1, where for n = 1 we have

\~I1 =
1

N

N\sum 
i=1

P (Zi,1 = 1) =
1

N

N\sum 
i=1

\=Ri

\=Ri + \=Bi
.(3.1)

Note that \~I1, which is well defined over \{ (B,R) \in \BbbR 2N
\geq 0 | \=Bi + \=Ri \not = 0\forall i \in V \} , is

convex in B and concave in R. We use (3.1) to provide some simplifications regarding
solutions to Problem 3.1 for n = 1. We then extend these results for arbitrary n.

3.1. Outer node allocation. We first show that for Problem 3.1 with n = 1,
nodes with a nested neighborhood (as specified in the lemma below) can be ignored.
We refer to such nodes as ``outer nodes"" due to their topological location.

Lemma 3.2. For a general network \scrG = (V, \scrE ) equipped with the P\'olya network
contagion model, if for any nodes i, j \in V we have \scrN \prime 

i \subset \scrN \prime 
j , then any initial distribu-

tion that minimizes \~I1 over the choice of B will satisfy Bi = 0. Likewise, any initial
distribution that maximizes \~I1 over the choice of R will satisfy Ri = 0.

Proof. Consider a given initial distribution of black balls B = (B1, . . . , BN ) and

red balls R = (R1, . . . , RN ). As written in (3.1), we have \~I1 = 1
N

\sum N
k=1

\=Rk
\=Rk+ \=Bk

.

Without loss of generality, assume that \scrN \prime 
1 \subset \scrN \prime 

2, and let the distribution B\ast =
(0, B1 +B2, B3, . . . , BN ) be an alternative curing initialization. For a given node k \in 
V , we have three cases to consider: (1) k \in \scrN \prime 

1 =\Rightarrow k \in \scrN \prime 
2; (2) k /\in \scrN \prime 

1 and k \in \scrN \prime 
2;

(3) k /\in \scrN \prime 
2 =\Rightarrow k /\in \scrN \prime 

1. For cases (1) and (3), note that
\sum 

l\in \scrN \prime 
k
Bl =

\sum 
l\in \scrN \prime 

k
B\ast 

l .

For case (2), we have
\sum 

l\in \scrN \prime 
k
Bl \leq 

\sum 
l\in \scrN \prime 

k
B\ast 

l with equality if and only if B1 = 0.

Denoting \=B\ast 
k =

\sum 
l\in \scrN \prime 

k
B\ast 

l , we have

\=Rk

\=Rk + \=Bk
\geq 

\=Rk

\=Rk + \=B\ast 
k

\forall k \in V.

Therefore, for \~I1 as a function of the initial distribution of black balls we have that
\~I1(B

\ast ) \leq \~I1(B). The proof for the maximization case follows similarly.

To extend Lemma 3.2 for general n, we derive the following intermediate results.

Lemma 3.3. Consider two sequences of draw values \{ anj \} Nj=1 and \{ bnj \} Nj=1 that are
equal, except for some (k, s) \in V \times \{ 1, . . . , n\} , where ak,s = 1 and bk,s = 0. Then
P (Zi,n+1 = 1| \{ Zn

j = anj \} Nj=1) \geq P (Zi,n+1 = 1| \{ Zn
j = bnj \} Nj=1) for all i \in V .

Proof. Assume that k \in \scrN \prime 
i (note that if this is not the case, the two values we

wish to compare are equal). Let

y =
\sum 
j\in \scrN \prime 

i

n\sum 
t=1

aj,t\Delta r,j(t) and x =
\sum 
j\in \scrN \prime 

i

n\sum 
t=1

(1 - aj,t)\Delta b,j(t).
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Then letting y\ast = y  - \Delta r,k(s) and x\ast = x+\Delta b,k(s), we obtain

P (Zi,n+1 = 1| \{ Zn
j = anj \} Nj=1) \geq 

\=Ri + y
\=Ri + \=Bi + y + x\ast 

\geq 
\=Ri + y\ast 

\=Ri + \=Bi + y\ast + x\ast 

= P (Zi,n+1 = 1| \{ Zn
j = bnj \} Nj=1).

Intuitively, this result states that the process is self-reinforcing; i.e., higher rates of
infection increase the likelihood of the infection recurring. We will use this lemma in
the proof of Lemma 3.4. Given the general form of \~In given in (2.7), we next compare
the performance of two curing initializations, B and B\ast , in limiting the spread of
infection. In order to differentiate between the resultant probabilities, we will use \ast to
denote any probability obtained using the curing initialization B\ast , e.g., \~I\ast n = \~In(B

\ast ).

Lemma 3.4. Consider a general network \scrG = (V, \scrE ) equipped with the P\'olya net-
work contagion model with two different curing initializations B = (B1, . . . , BN )
and B\ast = (B\ast 

1 , . . . , B
\ast 
N ). If S\ast 

i,t(a
t
1, . . . , a

t
N ) \leq Si,t(a

t
1, . . . , a

t
N ) for all (i, t) \in V \times 

\{ 1, . . . , n\} and any sequence of draws an = (a1,s, . . . , aN,s)
n
s=1 \in \{ 0, 1\} N\times n, then

\~I\ast n+1 \leq \~In+1.

Proof. Let \{ Yi,t : t = 1, . . . , n, i = 1 . . . , N\} be independent random variables
each uniformly distributed on the unit interval [0,1]. For all i = 1, . . . , N , let Zi,t and
Z\ast 
i,t be inductively defined for t = 1, . . . , n by

(3.2) Zi,t =

\Biggl\{ 
1 if Yi,t \leq Si,t - 1(\{ Zt - 1

i \} Ni=1),

0 otherwise,

and

(3.3) Zi,t =

\Biggl\{ 
1 if Yi,t \leq S\ast 

i,t - 1(\{ Z
\ast ,t - 1
i \} Ni=1),

0 otherwise.

Here we assume that Si,0 \geq S\ast 
i,0 for all i = 1 . . . , N . Note that since

P (Zi,t = 1| \{ Zt - 1
i \} Ni=1) = Si,t - 1(\{ Zt - 1

i \} Ni=1),

and P (Z\ast 
i,t = 1| \{ Z\ast ,t - 1

i \} Ni=1) = S\ast 
i,t - 1(\{ Z

\ast ,t - 1
i \} Ni=1)

for all i = 1, . . . , N and t = 1, . . . , n, the processes have the required P\'olya network
process distribution with initializations B and B\ast , respectively.

We claim that if for some t \in \{ 1, . . . , n  - 1\} the sequence \{ Zt - 1
i \} Ni=1 dominates

\{ Z\ast ,t - 1
i \} Ni=1, in the sense that Zi,s \geq Z\ast 

i,s for all i = 1, . . . , N and s = 1, . . . , t - 1, then

\{ Zt
i\} Ni=1 dominates \{ Z\ast ,t

i \} Ni=1. To prove this claim, note that by repeated application
of Lemma 3.3, we have that

Si,t - 1(\{ Zt - 1
i \} Ni=1) \geq S\ast 

i,t - 1(\{ Z
\ast ,t - 1
i \} Ni=1)

for all i = 1, . . . , N ; specifically, since Zi,s \geq Z\ast 
i,s means that either Zi,s = Z\ast 

i,s or
Zi,s = 1 and Z\ast 

i,s = 0, Lemma 3.3 is applied K = | \{ (i, s) : Zi,s \not = Z\ast 
i,s\} | times.

This, (3.2), and (3.3) then give Zi,t \geq Z\ast 
i,t, which in turn implies that \{ Zt

i\} Ni=1 domi-

nates \{ Z\ast ,t
i \} Ni=1, finishing the proof of the claim.
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To proceed with the proof of the result, by using the conclusion of the claim for
t = 0, which vacuously holds by the assumption that Si,0 \geq S\ast 

i,0 for all i = 1, . . . , N ,
we obtain Zi,1 \geq Z\ast 

i,1, i = 1, . . . , N . Applying now the result of the claim inductively,
for t = 2, . . . , n, we obtain that

Zi,t \geq Z\ast 
i,t, i = 1, . . . , N, t = 1, . . . , n,

with probability one. Thus the event \{ Z\ast 
i,t = 1\} implies \{ Zi,t = 1\} ; so P (Z\ast 

i,t = 1) \leq 
P (Zi,t = 1) for all i = 1, . . . , N and t = 1, . . . , n. Hence \~I\ast t \leq \~I\ast t for all t = 1, . . . , n.

We can now use this result to extend Lemma 3.2 to the case of a general time n.

Theorem 3.5. For a general network \scrG = (V, \scrE ) equipped with the P\'olya network
contagion model, if for any nodes i, j \in V we have \scrN \prime 

i \subset \scrN \prime 
j , then any curing initial-

ization that minimizes \~In will satisfy Bi = 0. Likewise, any infection initialization
that maximizes \~In will satisfy Ri = 0.

Proof. Without loss of generality, assume \scrN \prime 
1 \subset \scrN \prime 

2. Consider the general form
of Si,n(a

n
1 , . . . , a

n
N ):

\=Ri +
\sum 

j\in \scrN \prime 
i

\sum n
t=1 aj,t\Delta r,j(t)

\=Ri + \=Bi +
\sum 

j\in \scrN \prime 
i

\sum n
t=1(aj,t\Delta r,j(t) + (1 - aj,t)\Delta b,j(t))

.(3.4)

Letting B\ast 
1 = 0, and B\ast 

2 = B1 + B2, as in the proof of Lemma 3.2, we have for any
i \in V that \=B\ast 

i \geq \=Bi. Substituting this into (3.4) yields that S\ast 
i,n \leq Si,n for any

realization of the draw process, any i \in V , and any time t. Applying Lemma 3.4
yields the desired result.

3.2. Symmetry. The next simplification we make regarding solutions to Prob-
lem 3.1 has to do with networks with ``symmetry"" properties, as described below. We
start with some preliminaries, referring the reader to [7, 8, 17] for more details.

Definition 3.6. An automorphism of a graph \scrG = (V, \scrE ) is a permutation \tau of
V , such that (u, v) \in \scrE if and only if (\tau (u), \tau (v)) \in \scrE . The set of automorphisms of a
given graph forms a group under the composition operation, called the automorphism
group of \scrG and denoted Aut(\scrG ).

Definition 3.7. For a graph \scrG = (V, \scrE ), if H \leq Aut(\scrG ) is a subgroup of auto-
morphisms of \scrG , then u, v \in V are similar under H if there exists an automorphism
in H which maps u to v. Equivalence classes defined by similarity under H are called
orbits of the graph \scrG by H. The sets of orbits by H form a partition of the vertices
of \scrG , called an orbit partition.

If there exists an automorphism which maps between two different nodes, it means
that those nodes are distinguishable only by their labels. For our purposes, ``symme-
try"" between nodes is characterized by graph automorphisms, and an orbit partition
allows us to divide a network based on these symmetries. Our goal is to prove that
under certain conditions, sets of nodes that are similar under some H \leq Aut(\scrG ) will
be treated equivalently; i.e., they will all be given the same number of resources by
an optimal policy. We start with a preliminary result.

Lemma 3.8. Consider a general network \scrG = (V, \scrE ) with a given initialization
(B,R) = (B1, . . . , BN , R1, . . . , RN ). Suppose that there exists a subset of nodes V \prime \subset 
V such that \=Ri = \=Rj for all i, j \in V \prime , and that we can find an alternate curing
initialization B\ast = (B\ast 

1 , . . . , B
\ast 
N ) such that \=B\ast 

i = 1
| V \prime | 

\sum 
j\in V \prime 

\=Bj for all i \in V \prime . Then\sum 
i\in V \prime P \ast (Zi,1 = 1) \leq 

\sum 
i\in V \prime P (Zi,1 = 1).
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Proof. We prove this result by induction on | V \prime | . For the base case of | V \prime | = 2,
consider two nodes i, j \in V such that \=Ri = \=Rj . Let \=B\ast 

i = \=B\ast 
j = 1

2 (
\=Bi + \=Bj). We have

P (Zi,1 = 1) + P (Zj,1 = 1) =
\=Ri

\=Ri + \=Bi
+

\=Ri

\=Ri + \=Bj
,(3.5)

P \ast (Zi,1 = 1) + P \ast (Zj,1 = 1) =
2 \=Ri

\=Ri +
1
2 (

\=Bi + \=Bj)
.(3.6)

The difference between (3.5) and (3.6) yields

\=Ri

\=Ri + \=Bi
+

\=Ri

\=Ri + \=Bj
 - 2 \=Ri

\=Ri +
1
2 (

\=Bi + \=Bj)

= \=Ri

\biggl[ 
(2 \=Ri + \=Bi + \=Bj)( \=Ri +

1
2 (

\=Bi + \=Bj)) - 2( \=Ri + \=Bi)( \=Ri + \=Bj)

( \=Ri + \=Bi)( \=Ri + \=Bj)( \=Ri +
1
2 (

\=Bi + \=Bj))

\biggr] 
= \=Ri

\biggl[ 
2 \=R2

i + 2 \=Ri( \=Bi + \=Bj) +
1
2 (

\=Bi + \=Bj)
2  - 2 \=R2

i  - 2 \=Ri( \=Bi + \=Bj) - 2 \=Bi
\=Bj

( \=Ri + \=Bi)( \=Ri + \=Bj)( \=Ri +
1
2 (

\=Bi + \=Bj))

\biggr] 
= \=Ri

\biggl[ 1
2 (

\=Bi  - \=Bj)
2

( \=Ri + \=Bi)( \=Ri + \=Bj)( \=Ri +
1
2 (

\=Bi + \=Bj))

\biggr] 
\geq 0.

Now, consider a subset of nodes V \prime \subset V such that \=Ri = \=Rj for all i, j \in V \prime , and
suppose | V \prime | = m+1, wherem \geq 2. Without loss of generality, let V \prime = \{ 1, . . . ,m+1\} .
We assume the result holds for any subset of m of these nodes and prove it must hold
for V \prime . We can write that

m\sum 
i=1

P (Zi,1 = 1) =

m\sum 
i=1

\=Ri

\=Ri + \=Bi
\geq m

\=R1

\=R1 +
1
m

\sum m
i=1

\=Bi

.

Let \=B = 1
m

\sum m
i=1

\=Bi, and let \=B\ast 
i = 1

m+1 (m
\=B + \=Bm+1) for all i \in V \prime . We note that

\=B\ast 
i = 1

m+1

\sum 
j\in V \prime 

\=Bj for all i \in V \prime . We have

\sum 
i\in V \prime 

P (Zi,1 = 1) \geq m
\=R1

\=R1 + \=B
+

\=R1

\=R1 + \=Bm+1
,(3.7)

\sum 
i\in V \prime 

P \ast (Zi,1 = 1) = (m+ 1)
\=R1

\=R1 +
1

m+1 (m
\=B + \=Bm+1)

.(3.8)

Taking the difference between the right-hand sides of (3.7) and (3.8), we have

\=R1

\Biggl[ 
m( \=R1 + \=Bm+1) + ( \=R1 + \=B)

( \=R1 + \=B)( \=R1 + \=Bm+1)
 - m+ 1

\=R1 +
1

m+1 (m
\=B + \=Bm+1)

\Biggr] 

= \=R1

\Biggl[ 
m

m+1 (
\=B2 + \=B2

m+1  - 2 \=B \=Bm+1)

( \=R1 + \=B)( \=R1 + \=Bm+1)( \=R1 +
1

m+1 (m
\=B + \=Bm+1))

\Biggr] 

= \=R1

\Biggl[ 
m

m+1 (
\=B  - \=Bm+1)

2

( \=R1 + \=B)( \=R1 + \=Bm+1)( \=R1 +
1

m+1 (m
\=B + \=Bm+1))

\Biggr] 
\geq 0.

Thus, we have shown that redistributing resources within the set V \prime leads to a reduc-
tion of the average infection rate within that set of nodes.
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We now use this result to prove that for networks with symmetry, solutions to
Problem 3.1 will be symmetric in nature as well. Suppose for a graph \scrG = (V, \scrE )
we have an automorphism \tau of \scrG . Assuming \scrG is finite, we have that Aut(\scrG ) is a
finite group, and thus we can use \tau to generate a cyclic subgroup \langle \tau \rangle of Aut(\scrG ). The
subgroup \langle \tau \rangle is necessarily finite and of finite order. We also have that for any node
i in V there exists some integer k \in \BbbZ >0 such that i = \sigma k(i). We will denote by ki
the smallest such integer for which this holds for a given i \in V .

Theorem 3.9. For a network \scrG = (V, \scrE ) with a given initialization (B,R), con-
sider an automorphism \tau of \scrG . Let m be the order of the cyclic subgroup \langle \tau \rangle of Aut(\scrG ).
Suppose Ri = R\tau (i) for all i \in V . Let B\ast be an alternate curing initialization such

that B\ast 
i = 1

m

\sum m
j=1 B\tau j(i) for all i \in V . Then, \~I\ast 1 \leq \~I1.

Proof. Note that for a given i \in V , \=Ri =
\sum 

j\in \scrN \prime 
i
Rj . We have that if j \in \scrN \prime 

i ,

then \tau k(j) \in \scrN \prime 
\tau k(i) for any k \in \BbbZ >0. Since by assumption Rj = R\tau (j) = R\tau k(j) for

all j \in \scrN \prime 
i , we have that \=Ri = \=R\tau k(i) for all i \in V and k \in \BbbZ >0. From Lemma 3.8, we

need only to prove that \=B\ast 
i = 1

ki

\sum ki

j=1
\=B\tau j(i) for all i \in V . We start with

\=B\ast 
i =

\sum 
j\in \scrN \prime 

i

B\ast 
j =

\sum 
j\in \scrN \prime 

i

1

m

m\sum 
l=1

B\tau l(j).

We note that for a given positive integer p,

p

kj\sum 
l=1

B\tau l(j) =

kj\sum 
l=1

(B\tau l(j) +B\tau l+kj (j) + \cdot \cdot \cdot +B
\tau l+(p - 1)kj (j)

) =

pkj\sum 
l=1

B\tau l(j),

which follows from the definition of kj . Since m is the order of \langle \tau \rangle , we have \tau m(j) = j,
and since kj is the smallest such integer for which this holds, we must have kj | m (i.e.,
kj divides m). Choosing p = m

kj
and using the identity between the leftmost and

rightmost terms in the above equation, we have that

1

kj

kj\sum 
l=1

B\tau l(j) =
p

pkj

kj\sum 
l=1

B\tau l(j) =
1

pkj

pkj\sum 
l=1

B\tau l(j) =
1

m

m\sum 
l=1

B\tau l(j),

and thus

\=B\ast 
i =

\sum 
j\in \scrN \prime 

i

1

m

m\sum 
l=1

B\tau l(j) =
1

m

m\sum 
l=1

\sum 
j\in \scrN \prime 

i

B\tau l(j) =
1

m

m\sum 
l=1

\sum 
j\in \scrN \prime 

\tau l(i)

Bj

=
1

m

m\sum 
l=1

\=B\tau l(i) =
1

ki

ki\sum 
l=1

\=B\tau l(i).

The result then follows from Lemma 3.8.

Another way to think about Theorem 3.9 is that the optimal allocation distributes
resources equally within sets of the orbit partition by \langle \tau \rangle . We assume that infection
resources are distributed evenly within this orbit partition, a consequence of assuming
that Ri = R\tau (i) for all i \in V . We then prove that redistributing curing resources

within each set of the partition, i.e., letting B\ast 
i = 1

m

\sum m
j=1 B\tau j(i) for all i \in V , will

result in a decrease in the overall average infection rate.
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Algorithm 1. Constrained gradient descent on a simplex [5].

f(x1, . . . , xN )\leftarrow function to be minimized
Start at an arbitrary node:
y1 = (y1,1, . . . , y1,N ) = (\scrB b, 0, . . . , 0)
\bff \bfo \bfr k = 1 : stoptime \bfd \bfo 

Find the direction of steepest descent:
i = argminj\in V

\partial f
\partial xj
| yk

Move only in that direction:
\=yk,i = \scrB b, and \=yk,j = 0 for all j \not = i
Select the step size using the limit minimization rule:
\alpha k = argmin\alpha \in [0,1] f(yk + \alpha (\=yk  - yk))
Perform the gradient descent:
yk+1 = yk + \alpha k(\=yk  - yk)

\bfe \bfn \bfd \bff \bfo \bfr 

We finish this part with a few remarks. First, due to the complicated nature of \~In,
it is difficult to analytically prove this result for time n > 1. Also, while Theorem 3.9
can be applied to a given automorphism, one can push this idea further. Consider a
network \scrG = (V, \scrE ), and the orbit partition of \scrG by Aut(\scrG ), denoted P = \{ V1, . . . , Vq\} ,
where q \leq N . For any given initialization, (B,R), for which \=Ri = \=Rj if i and j are

similar under Aut(\scrG ), we postulate that we can reduce the average infection rate \~In by
redistributing curing resources evenly within each set of the partition. To elaborate,
for each i \in V , if i \in Vk, we conjecture that taking B\ast 

i = 1
| Vk| 

\sum 
j\in Vk

Bj yields that

\~In(B
\ast ) \leq \~In(B) for any n. This conjecture is supported empirically, but for reasons

of space, we omit including a sample simulation.

3.3. Gradient descent. As in [22], and further explored in section 4, one can
implement a gradient descent algorithm [5] to find solutions to Problem 3.1. We
focus on minimizing the proxy measure \~I1 over the curing initialization B subject to
a budget \scrB b. It is easy to use gradient flow techniques to find an optimal policy, which
will make full use of the budget \scrB b, for this one-step problem.

Proposition 3.10 (gradient descent conditions). For a general network \scrG =
(V, \scrE ) equipped with the P\'olya network contagion model under an infection initializa-
tion R satisfying \=Ri > 0 for each i \in V , the average infection rate at time one, \~I1, is
convex with respect to the curing initialization parameters B. Moreover, the feasible
set \scrX = \{ \{ Bi\} Ni=1 \in \BbbR N

\geq 0| 
\sum N

i=1 Bi = \scrB b\} is convex and compact.

Referring to (3.1), we note that \~I1, as a function of the curing distribution, B, is
simply a summation of functions of the form f(x) = c

c+aT\bfx 
, where aT is a row vector

containing only ones or zeros, x is a column vector such that xi = Bi \forall i \in V , and
c \in \BbbR >0 is constant. Since any f(x) of this form is convex in x for x \in \BbbR N

\geq 0, we obtain

that \~I1 is convex in B (which follows because the feasible set \scrX is convex and compact,
the proof of which is straightforward). Of note, however, is the fact that we require
\=Ri > 0 for each i \in V in order to ensure that the feasible set \scrX remains valid. If this
is satisfied, we can then use a constrained gradient descent method [5, Chapter 2], as
described in Algorithm 1. This algorithm will converge to an optimal solution for the
one-step optimization problem, but not necessarily for the n-step case.

4. Curing-infection problems. A reactive technique to mitigate network in-
fection is to control the allocation of the curing parameters, \{ \Delta b,i(n)\} Ni=1, subject to a
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S182 HARRINGTON, ALAJAJI, AND GHARESIFARD

fixed budget, \scrB . As in the initialization setup, this can be done for a finite or infinite
horizon. Previously, [23] examined the problem of minimizing the limiting average
infection rate and introduced a number of heuristic optimization policies. We begin
by refocusing the problem in a game-theoretic setup.

We consider a two-player game where player one minimizes the average infection
rate \~In, while player two maximizes it. Player one controls the distribution of curing
parameters, \{ \Delta b,i(n)\} Ni=1, subject to budget \scrB b, while player two controls the infection
parameters, \{ \Delta r,i(n)\} Ni=1, under budget \scrB r. The budget in each case is fixed for all
time steps, and the allocation of resources for a given time n is determined prior to
any draws being made at that time. Thus, if either player allocates resources to a
node for which the opposite color ball is drawn, those resources will go to waste.

Formally, player one's objective is to find

min
\{ \{ \Delta b,i(k)\} N

i=1:
\sum N

i=1 \Delta b,i(k)=\scrB b\} ,k=1,...,n

\~In,(4.1)

assuming the minimum exists, while player two's objective is to find

max
\{ \{ \Delta r,i(k)\} N

i=1:
\sum N

i=1 \Delta r,i(k)=\scrB r\} ,k=1,...,n

\~In,(4.2)

assuming the maximum exists. We refer to (4.1)--(4.2) as the Delta-curing problem.
Since finding an optimal control policy for either player is not tractable for a gen-

eral network, we provide a simplified one-step optimization problem by adopting the
expected network exposure, E[ \~Sn| \scrF n - 1], as a proxy metric to optimize instead of \~In.
We thus consider a two-player zero-sum game, where player one minimizes E[ \~Sn| \scrF n - 1]
over \{ \Delta b,i(n)\} Ni=1 and player two maximizes the same value over \{ \Delta r,i(n)\} Ni=1. We
begin with an important result about the expected network exposure.

Proposition 4.1 (convexity-concavity of network exposure). For a general net-
work \scrG = (V, \scrE ) equipped with the P\'olya network contagion model under arbitrary
initial conditions, the expected network exposure E[ \~Sn| \scrF n - 1] is convex with respect to
\{ \Delta b,i(n)\} Ni=1 and concave with respect to \{ \Delta r,i(n)\} Ni=1 for all n.

Proof. Using (2.2) and (2.4), we consider E[ \~Sn| \scrF n - 1] as a function of the vectors

x = (x1, . . . , xN )T = (\Delta b,1(n), . . . ,\Delta b,N (n))T ,

y = (y1, . . . , yN )T = (\Delta r,1(n), . . . ,\Delta r,N (n))T

by reformulating (2.4) as follows:

Si,n = fi,n(x,y,Zn) =
ci + \delta i(y,Zn)

ci + di + \sigma i(x,Zn) + \delta i(y,Zn)
,

where

ci = \=Ri +

n - 1\sum 
t=1

\sum 
j\in \scrN \prime 

i

\Delta r,j(t)Zj,t, di = \=Bi +

n - 1\sum 
t=1

\sum 
j\in \scrN \prime 

i

\Delta b,j(t)(1 - Zj,t),

\delta i(y,Zn) =
\sum 
j\in \scrN \prime 

i

yjZj,n, \sigma i(x,Zn) =
\sum 
j\in \scrN \prime 

i

xj(1 - Zj,n).

Alternatively, we let A represent the adjacency matrix, including self-loops, for
our given network \scrG , where Aij = 1 if and only if i \in \scrN \prime 

j , and Aij = 0 otherwise. We
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then construct an N \times N square matrix, D, where Dij = Aij(1  - Zj,n). Letting Di

represent the ith row of the matrix D, we have that \sigma i(x,Zn) = Dix. Likewise, we
can construct an N \times N square matrix, C, where Cij = AijZj,n. Letting Ci represent
the ith row of the matrix C, we have that \delta i(y,Zn) = Ciy, and hence

fi,n(x,y,Zn) =
ci + Ciy

ci + di + Ciy +Dix
,

where we have dropped the dependencies of the matrices C andD on Zn for simplicity.
Taking the expectation of Si,n given the history of the contagion process up to time
n - 1, we have

E[Si,n| \scrF n - 1] = E[fi,n(x,y,Zn)| \scrF n - 1]

=
\sum 

\bfz n\in \{ 0,1\} N

fi,n(x,y, zn)P (Zn = zn| \{ Zn - 1
j \} Nj=1 = \{ zn - 1

j \} Nj=1).(4.3)

P (Zn = zn| \{ Zn - 1
j \} Nj=1 = \{ zn - 1

j \} Nj=1) is independent of our choice of x, and for

any fixed realization zn = (z1,n, . . . , zN,n) \in \{ 0, 1\} N , fi,n(x,y, zn) is convex in x over
\BbbR N

\geq 0 (the proof is given in [23]). Hence, E[Si,n| \scrF n - 1] is convex in x over \BbbR N
\geq 0, and

thus so too is E[ \~Sn| \scrF n - 1]. Concavity in y follows from a symmetry argument since

1 - fi,n(x,y,Zn) =
di +Dix

ci + di + Ciy +Dix

is convex in y, thus showing fi,n(x,y,Zn) is concave in y. The rest of the proof
follows as in the convexity argument for x.

The natural symmetry of this model makes this result intuitive and facilitates the
game-theoretic setup. We have proven that E[ \~Sn| \scrF n - 1] is convex in x and concave in
y over \BbbR N

\geq 0\times \BbbR N
\geq 0. In order to get a better understanding of this function, we consider

the partial derivatives with respect to x and y:

\nabla \bfx fi,n(x,y, zn) =
 - \nabla \bfx Dix(ci + Ciy)

(ci + di + Ciy +Dix)2
,

\nabla \bfy fi,n(x,y, zn) =
\nabla \bfy Ciy(di +Dix)

(ci + di + Ciy +Dix)2
,

\partial 

\partial xj
Dix = Aij(1 - zj,n), and

\partial 

\partial yj
Ciy = Aijzj,n.

Since Aij and zj,n can only take values in \{ 0, 1\} , we have that \partial 
\partial xj

fi,n(x,y, zn) \leq 0 and
\partial 

\partial yj
fi,n(x,y, zn) \geq 0. Using this fact in conjunction with (4.3), we obtain that over the

space \scrX \times \scrY = \BbbR N
\geq 0\times \BbbR N

\geq 0, E[ \~Sn| \scrF n - 1] has no saddle point. Given our fixed allocation
budgets \scrB b and \scrB r, we restrict ourselves to considering sets of the form \scrX \times \scrY =
\{ \{ \Delta b,i(n)\} Ni=1 \in \BbbR N

\geq 0| 
\sum N

i=1 \Delta b,i(n) \leq \scrB b\} \times \{ \{ \Delta r,i(n)\} Ni=1 \in \BbbR N
\geq 0| 

\sum N
i=1 \Delta r,i(n) \leq 

\scrB r\} . Returning to our game over the expected network exposure, we remark that

for any given n, the sets \scrX = \{ \{ \Delta b,i(n)\} Ni=1 \in \BbbR N
\geq 0| 

\sum N
i=1 \Delta b,i(n) \leq \scrB b\} and \scrY =

\{ \{ \Delta r,i(n)\} Ni=1 \in \BbbR N
\geq 0| 

\sum N
i=1 \Delta r,i(n) \leq \scrB r\} are convex and compact. This gives rise to

the following result.

Theorem 4.2 (Nash equilibrium for network exposure). For a general network
\scrG = (V, \scrE ) equipped with the P\'olya network contagion model under arbitrary initial
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S184 HARRINGTON, ALAJAJI, AND GHARESIFARD

conditions and a given time n, consider a two-player zero-sum game where player
one tries to minimize E[ \~Sn| \scrF n - 1] over \{ \Delta b,i(n)\} Ni=1 and player two tries to maximize

E[ \~Sn| \scrF n - 1] over \{ \Delta r,i(n)\} Ni=1. Then, if we take our set of allowable policies to be

of the form \scrX \times \scrY = \{ \{ \Delta b,i(n)\} Ni=1 \in \BbbR N
\geq 0| 

\sum N
i=1 \Delta b,i(n) \leq \scrB b\} \times \{ \{ \Delta r,i(n)\} Ni=1 \in 

\BbbR N
\geq 0| 

\sum N
i=1 \Delta r,i(n) \leq \scrB r\} , the resulting game admits a Nash equilibrium. Moreover,

the equilibrium policy will satisfy
\sum N

i=1 \Delta b,i(n) = \scrB b and
\sum N

i=1 \Delta r,i(n) = \scrB r.

Proof. Since the function is convex-concave and over a compact set, the existence
follows from the classical minimax theorem; see [6]. By the definition of E[ \~Sn| \scrF n - 1],
and since the function has no saddle point in the interior of its domain, the optimal
policy will utilize the full budget.

The equilibrium policy from Theorem 4.2 can be determined numerically using
gradient descent algorithms [5], as we are optimizing a convex-concave function over
a simplex, but for large networks such algorithms can be computationally expensive,
especially when considering the complexity of E[ \~Sn| \scrF n - 1], as seen in (4.3). We next
investigate heuristic strategies that avoid this problem.

5. Heuristic strategies. Thus far in our analysis we have considered simplify-
ing assumptions that can be made in order to minimize the average infection rate,
\~In, for both the initialization and Delta-curing problems (studied in section 3 and
section 4, respectively). The complex mathematical nature of these problems makes
analytical determination of any optimal solutions difficult and makes computational
determination of such solutions impractical, even when considering simplified ver-
sions of these problems. As such, we look to our analysis, as well as previous analyses
in [20], [23], to give insight into basic heuristics that can avoid this complexity, while
still providing effective solutions. Naturally, the effectiveness of such heuristics is
measured via the original metric intended for these problems, which is the average
network infection rate.

When developing heuristics in the initialization case, we make heavy use of The-
orem 3.5, which proves that any optimal solution to Problem 3.1 would allocate no
resources to outer nodes (i.e., nodes with a nested neighborhood). For the general
Delta-curing problem, we have no such result, as it is possible to manufacture situ-
ations where the equilibrium policy as in Theorem 4.2 will assign resources to outer
nodes. Such cases arise under specific circumstances, and it is uncommon for these
nodes to receive significant resources. Thus, we introduce a similar set of resource
allocation policies for both the initialization and Delta-curing problems of sections 3
and 4, respectively. While any of these resource allocation policies can be similarly
applied to a player controlling the distribution of infection resources, we only consider
these strategies from the perspective of the player controlling the curing resources.

5.1. Interior node targeting. Given a network, we determine which nodes
are inner nodes, i.e., which nodes have a neighborhood that is not a strict subset of
another node's neighborhood. We then distribute initialization resources uniformly
among these nodes. Given curing initialization budget \scrB b and setting

V \prime = \{ i \in V | \scrN \prime 
i \not \subset \scrN \prime 

j \forall j \in V \} ,

we allocate our resources according to the following scheme:

Bi =

\Biggl\{ 
1

| V \prime | \scrB b if i \in V \prime ,

0 else.
(5.1)
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For the Delta-curing problem, a similar policy is employed as follows:

\Delta b,i(n) =

\Biggl\{ 
1

| V \prime | \scrB b if i \in V \prime ,

0 else.
(5.2)

We can also combine these schemes with the heuristic strategies in [20, 23]. Among
these strategies, the best one is based on a combination of centrality measures, node
degree, and closeness centrality, as well as the infection level of each node's super
urn. In the case of initialization policies, as they are implemented before the onset of
contagion, the allocation strategy uses only the node degree and closeness centrality.

The degree of a node is simply measured as the size of a node's neighborhood,
| \scrN i| . The closeness centrality of a node, Ci, is a measure used to determine a node's
topological position within a network, defined as

Ci =
1\sum 

j\in V d(i, j)
,(5.3)

where d(i, j) is the shortest path length from node i to node j. Thus the node with
the highest closeness centrality has the shortest average path length to every node
within the network. We can then distribute resources as follows:

Bi =

\Biggl\{ | \scrN i| Ci\sum 
j\in V \prime | \scrN j | Cj

\scrB b if i \in V \prime ,

0 else.
(5.4)

In the Delta-curing setup, we also account for the evolution of the super urn
proportion, Si,n - 1, of each node. As before, we let Ci represent the closeness centrality
of a given node i, calculated by (5.3). We then allocate resources as follows:

\Delta b,i(n) =

\Biggl\{ | \scrN i| CiSi,n - 1\sum 
j\in V \prime | \scrN j | CjSj,n - 1

\scrB b if i \in V \prime ,

0 else.
(5.5)

Alternatively, similar strategies based on ``betweenness centrality"" can be used [23].

5.2. Minimized node targeting. We can improve upon our initialization and
curing policies by minimizing the number of nodes we target at once. We introduce
a method that targets nodes in such a manner that all nodes have resources within
their immediate neighborhood \scrN \prime 

i (i.e., ensuring \=Bi > 0 \forall i \in V ), while aiming for the
fewest possible nodes. The method is described in Algorithm 2.

The algorithm starts by locating outer nodes in the network and then targets
nodes directly adjacent to these outer nodes. All nodes that are within the neighbor-
hood of the targeted nodes are then removed from the set of nodes being evaluated.
Within this new, smaller set of nodes, we once again locate outer nodes and repeat
the process. In the case that there are no outer nodes within the set of nodes being
evaluated, all remaining nodes are added to the set of targeted nodes. The purpose of
this algorithm is to effectively employ Theorem 3.5 and ensure that our curing policy
does not target outer nodes, while still requiring that \=Bi > 0 for these nodes. Once
the set of outer nodes is excluded from directly receiving resources, the algorithm
then works inwards, attempting to minimize the number of targeted nodes.

Once the set of nodes to be targeted V \prime is determined, we can once again distribute
resources in one of two manners as in the previous strategy set. We can distribute
resources to these nodes uniformly according to (5.1), or we can distribute resources
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S186 HARRINGTON, ALAJAJI, AND GHARESIFARD

Algorithm 2. Node targeting algorithm.

V \leftarrow set of all nodes
V \prime \leftarrow target set
Vtest \leftarrow nodes to test for this loop
Start with V \prime = \emptyset , Vtest = V
\bfw \bfh \bfi \bfl \bfe Vtest \not = \emptyset \bfd \bfo 

Identify outer nodes:
Set Vouter = \{ i \in Vtest| \scrN \prime 

i \subset \scrN \prime 
j , for some j \in Vtest\} 

\bfi \bff Vouter = \emptyset \bft \bfh \bfe \bfn 
V \prime = V \prime \cup Vtest

\bfb \bfr \bfe \bfa \bfk 
\bfe \bfn \bfd \bfi \bff 
Target nodes adjacent to outer nodes:
Set Vinner = Vtest\setminus Vouter

Set Vadded targets = \{ i \in Vinner| i \in \scrN \prime 
j for some j \in Vouter\} 

Set V \prime = V \prime \cup Vadded targets

Update parameters for next loop:
Set Vcoverage = \{ i \in Vtest| i \in \scrN \prime 

j for some j \in Vadded targets\} 
Set Vtest = Vtest\setminus Vcoverage

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

to more central nodes among those targeted using (5.4). Note that these heuristics
are entirely based on network structure and by design will symmetrically allocate
resources in accordance with Theorem 3.9. Also, by limiting the number of targeted
nodes, the computational complexity is reduced.

We can apply the same techniques for the Delta-curing setup, where we consider
a uniform allocation within the target set via (5.2), or use a strategy that accounts
for the centrality and super urn proportion of the targeted nodes according to (5.5).

5.3. Dense networks. We now consider a limitation of the heuristics presented
thus far. Our previous sets of solutions depend on the assumption that a network
will possess a set of nodes whose respective neighborhoods are strict subsets of some
other node's neighborhood. While this may be a useful tactic for sparse networks,
it is a stringent requirement for dense networks. To account for this, we introduce a
final node targeting strategy that does not have this limitation but works based on
similar principles. Our previous methods utilized the idea of leveraging Theorem 3.5,
in order to prevent suboptimal node targeting while still ensuring \=Bi > 0, for every
node i \in V . We introduce an alternative method for defining inner and outer nodes
when the conditions of Theorem 3.5 are not met.

This technique, presented in Algorithm 3, begins by ranking the nodes by a cen-
trality measure (closeness centrality for our purposes) from highest to lowest. Nodes
are added one by one to the set of targeted nodes, V \prime , in order of rank. Once the
set of targeted nodes provides total coverage of the network (i.e., the neighborhoods
of these nodes contain the entire network), the algorithm stops. For an additional
reduction, we go through the list of targeted nodes in reverse order and remove any
nodes not required to maintain full coverage of the network.

Once the target set has been determined, we can distribute resources either
uniformly among these nodes via (5.1) or preferentially according to centrality as
per (5.4). Likewise for the Delta-curing case, we can allocate resources uniformly
among these nodes using (5.2) or based on centrality and super urn proportion of the
targeted nodes via (5.5).
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Algorithm 3. Node targeting algorithm for dense networks.

V \leftarrow set of all nodes
V \prime \leftarrow nodes to be targeted
Ci \leftarrow centrality score of given node
Without loss of generality, assume C1 > C2 > \cdot \cdot \cdot > CN , where N is the network size
Start with V \prime = \emptyset , Vcoverage = \emptyset , n=0
\bfw \bfh \bfi \bfl \bfe Vcoverage \not = V \bfd \bfo 

Add most central node to target set:
V \prime = V \prime \cup \{ n\} 
Update loop parameters:
Set Vcoverage = \{ i \in V | i \in \scrN \prime 

j , for some j \in V \prime \} 
n++

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
Optional :
\bff \bfo \bfr n = | V \prime | : 1 \bfd \bfo 

Let Vcoverage = \{ i \in V | i \in \scrN \prime 
j , for some j \in V \prime \setminus \{ n\} \} 

\bfi \bff Vcoverage = V \bft \bfh \bfe \bfn 
Set V \prime = V \prime \setminus \{ n\} 

\bfe \bfn \bfd \bfi \bff 
\bfe \bfn \bfd \bff \bfo \bfr 

Algorithm 4. Simulation setup.

A\leftarrow adjacency matrix of the network
numTrials\leftarrow trials to run for given policy
steps\leftarrow number of time steps for each trial
initPolicy\leftarrow initialization policy (uniform in no control case)
curePolicy\leftarrow Delta-curing policy (uniform in no control case)
Assign (\bfB ,\bfR ) using initPolicy (under initialization budget)
\bff \bfo \bfr s = 1 : numTrials \bfd \bfo 

\vec{}Zs \leftarrow RunTrial(A,\bfR ,\bfB ,\scrB r,\scrB b, steps, curePolicy)
\bfe \bfn \bfd \bff \bfo \bfr 
RunTrialA,\bfR ,\bfB ,\scrB r,\scrB b, steps, curePolicy
Initialize Si,0 using Ri and Bi for all i \in V
\bff \bfo \bfr t = 1 : steps \bfd \bfo 

Assign \Delta b,i(t), \Delta r,i(t) using curePolicy (under curing budget)
Generate \vec{}Y \sim \bfU \bfn \bfi \bff \bfo \bfr \bfm ([0, 1])N

\bfi \bff Yi \leq Si,t - 1 \bft \bfh \bfe \bfn 
Zi,t = 1

\bfe \bfl \bfs \bfe 
Zi,t = 0

\bfe \bfn \bfd \bfi \bff 
Update Si,t using \Delta r,i and \Delta b,i(t) for all i \in V

\bfe \bfn \bfd \bff \bfo \bfr 

6. Simulation results. We evaluate the performance of the heuristic policies
detailed in section 5 and compare them to ``optimal"" strategies obtained through
gradient descent (note that we say ``optimal"" because the gradient descent only con-
verges to an optimal policy for the one-step proxy measures we introduced in both
the initialization and Delta-curing cases). Algorithm 4 provides the general format of
the simulations, while specifics of both the initialization and Delta-curing setups are
provided in sections 6.2 and 6.3, respectively.

In order to ensure effectiveness of different strategies, we test these policies for
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a few different networks, each of which is depicted in Figure 2. These networks
include algorithmically generated 100 node Barabasi--Albert networks, depicted in
Figures 2(a) and 2(b), with average densities of 1.98 and 18.9 connections per node,
respectively. The third network, depicted in Figure 2(c), was generated by a tool [39]
that crawled through posts in a Facebook group in order to establish connections
between users based on interactions on user posts (via either commenting or ``likes""
on the post or comments). The resulting 1,363 node graph contains an average density
of 3.56 connections per node and provides a topology for a real-world social network.

(a) Barabasi--Albert network with
100 nodes and 99 edges.

(b) Barabasi--Albert network with
100 nodes and 945 edges.

(c) Facebook network with 1,363 nodes
and 2,425 edges.

Fig. 2. Mid-to-large--scale networks used for simulation purposes. Adjacency matrices for each
of these networks is available online at https://bit.ly/2ygLEqg.

6.1. Targeting algorithms. Figure 3 depicts a comparison of the different tar-
geting algorithms for the sparse network seen in Figure 2(a). For this specific network,
the target set in Figure 3(b) is a subset of the set of inner nodes in Figure 3(a), which
itself is a subset of the target set shown in Figure 3(c). While this is not a general
rule, it is a common trend for very low-density networks. Algorithm 3 is not designed
for use over sparse networks and does not successfully leverage Theorem 3.5. Thus,
we know that distributing resources among this set of target nodes will result in in-
efficiencies. If we compare this to how Algorithm 3 applies to denser networks, as
shown in Figure 3(d), we observe a significant reduction in the size of the set of target
nodes. Algorithm 2, on the other hand, will be entirely ineffective at determining a
subset of nodes to target for this same network, due to the lack of nested nodes.

6.2. Initialization trials. We start by comparing solutions to Problem 3.1 and
evaluating their effectiveness for various network compositions. Table 1 provides an
overview of the considered initialization strategies. More detailed explanations of
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(a) Example set of inner nodes. (b) Example target set using Algo-
rithm 2.

(c) Example target set using Algo-
rithm 3 for sparse networks.

(d) Example target set using Algo-
rithm 3 for dense networks.

Fig. 3. Comparison of target sets for various node targeting algorithms. In each case, the set
of targeted nodes is enlarged and colored black. It is important to note that Figure 3(c), as depicted
here, does not apply the optional component of Algorithm 3. In fact, if we instead choose to apply
that option, we end up getting the same target set as shown in Figure 3(b).

these strategies can be found in sections 3 and 5. It is important to note that we
do not include any trials that use the optional component of Algorithm 3, simply
because we have the same target set as Algorithm 2 when applied to the networks
in Figures 2(a) and 2(c), and it does not provide any further reduction to the target
set when applied to the network in Figure 2(b). The same reasoning applies to our
curing strategies in Table 2.

We follow the same process for each of the three networks in Figure 2. We
begin with equal initialization budgets for both red and black resources (i.e., take
\scrB b = \scrB r) and let the infection initialization be uniform over the network (i.e., take
Ri =

\scrB r

N for all i \in V ). We choose our curing initialization B in accordance with the
desired strategy from Table 1. Then, we run the P\'olya network contagion process
with \Delta r,i(n) = \Delta b,i(n) = \Delta fixed for each node i \in V and each time n. We record
the draw value, Zi,n, for each node i at each time n. The draw values are averaged
over the number of trials that are run and then averaged over the set of nodes in the
network to obtain an empirical measure for the average infection rate \~In at a given
time n. The resulting output of these trials can be seen in Figure 4.

We start our comparison with a few observations. First, as expected, the solution
determined using the gradient descent algorithm results in the lowest empirical average
infection rate at time n = 1. For time n > 1, however, this is not always the
case. Figure 4(c) is of particular interest, as we clearly see that the gradient descent
strategy begins with a much lower infection rate but over time is surpassed by strategy
(vi), which targets a reduced subset of nodes in accordance with Algorithm 2, with
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S190 HARRINGTON, ALAJAJI, AND GHARESIFARD

Table 1
Initialization strategies.

(i) Constrained gradient descent on a simplex:

Find Bi using Algorithm 1 on the function \~I1
(ii) Uniformly allocate the budget to all nodes:

Bi =
\scrB b
N

(iii) Uniformly allocate the budget to inner nodes:

Bi =

\Biggl\{ 
1

| V \prime | \scrB b if i \in V \prime ,

0 else,
where V \prime = \{ k \in V | \scrN \prime 

k \not \subset \scrN \prime 
j \forall j \in V \} 

(iv) Ratio of degree and closeness centrality (inner):

Bi =

\Biggl\{ | \scrN i| Ci\sum 
j\in V \prime | \scrN j | Cj

\scrB b if i \in V \prime ,

0 else

(v) Allocate as in (iii) using V \prime from Algorithm 2
(vi) Allocate as in (iv), using V \prime from Algorithm 2
(vii) Allocate as in (iii) using V \prime from Algorithm 3 (without Optional)
(viii) Allocate as in (iv), using V \prime from Algorithm 3 (without Optional)
(ix) Ratio of degree and closeness centrality:

Bi =
| \scrN i| Ci\sum 

j\in V | \scrN j | Cj
\scrB b

resources being focused more around central nodes.
The fact that the best strategy at time n = 1 is not optimal as n increases

supports our hypothesis that the optimal solution will change for increasing values
of n and as n \rightarrow \infty . It is important to note, however, that our gradient algorithm
merely converges to the optimal solution at time n = 1, and thus the solution we have
from using this algorithm is not necessarily optimal, as the algorithm has not been
run indefinitely. Indeed, we note that had we either chosen to use a finer filter when
implementing the limit minimization rule, as described in Algorithm 1, or increased
the stopping time, or even chosen a step size that allowed for faster convergence, we
would have seen an improved performance using this strategy (at least at time n = 1).

Regardless, we consistently see that targeting a reduced subset of nodes, whether
via Algorithm 2 or 3, results in performance that is close to or better than that
obtained using gradient descent. These strategies, (vi) and (viii), always provide the
best results of all the heuristic strategies being compared. This illustrates that we
obtain near-optimal performance while only distributing resources among a greatly
reduced subset of nodes. Performance of the other heuristic strategies varies greatly
depending on the network, though we note that even just targeting the inner nodes
using strategy (iii) sees a significant improvement over the no-control case (i.e., the
results obtained using a uniform distribution of initialization resources).

We next examine whether these same results carry over to the curing case. We
should note that the curing and initialization policies are by nature not identical.
They do, however, mirror one another in such a way that we can at least provide a
surface-level comparison between the two setups.

6.3. Delta-curing trials. We consider the one-sided curing problem in (4.1).
As in the initialization case, we compare the effectiveness of the various curing policies
presented in section 5. A brief overview of these policies is found in Table 2.

We begin with a uniform initialization, where each node is allocated a fixed num-
ber of red balls, R, and black balls, B, with R = B. We then run the P\'olya network
contagion process. Before each draw is performed, we assign a number of curing
resources to each node \Delta b,i(n) in accordance with the desired policy from Table 2,
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(a) Results of initialization trials for low density Barabasi--Albert
network depicted in Figure 2(a).

(b) Results of initialization trials for high density Barabasi--Albert
network depicted in Figure 2(b).

(c) Results of initialization trials for Facebook network depicted in
Figure 2(c).

Fig. 4. Plots of empirical average infection rate, \~In, versus time, n, for various initialization
strategies across multiple networks. Lower values indicate lower levels of infection. In each case the
network was given a fixed initialization budget of \scrB r = \scrB b = 10N , with Ri = 10 \forall i \in V , and the
P\'olya network contagion process was run over 1000 trials with a fixed \Delta = 5.

while the infection resources are assigned uniformly, \Delta r,i(n) =
\scrB r

N (with a fixed bud-
get \scrB b = \scrB r for each time n). As in the initialization case, we record the draw value,
Zi,n, for each node i \in V at each time n. The draw values are averaged over the
number of trials and the set of nodes to obtain a measure for the empirical average
infection rate, \~In. The results of these simulations are depicted in Figure 5.

We first remark that unlike the initialization case, targeting a reduced subset
of nodes based on centrality does not always lead to the best performance. This is
evidenced by both Figures 5(a) and 5(c), where strategy (vi) appears to perform worst
of all the heuristics apart from the no-control case. In fact, among the three network
setups, the heuristics vary wildly in performance, with the best performing heuristic
from [20] performing extremely well in Figure 5(c), but performing significantly worse
than the other techniques in Figure 5(b). The various strategies also perform to
different degrees of success for different values of n (see strategy (vi) in Figure 5(c)).

Among the three networks, the strategies that perform the most consistently
well are strategies that target only the inner set of nodes (strategies (iii) and (iv)
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Table 2
Delta-curing strategies.

(i) Constrained gradient descent on a simplex:

Find \Delta b,i(n) using Algorithm 1 on the function E[ \~Sn| \scrF n - 1]
(ii) Uniformly allocate the budget to all nodes:

\Delta b,i(n) =
\scrB b
N

(iii) Uniformly allocate the budget to inner nodes:

\Delta b,i(n) =

\Biggl\{ 
1

| V \prime | \scrB b if i \in V \prime ,

0 else,
where V \prime = \{ k \in V | \scrN \prime 

k \not \subset \scrN \prime 
j \forall j \in V \} 

(iv) Ratio of degree, closeness centrality, and super urn proportion (inner):

\Delta b,i(n) =

\left\{   
| \scrN i| CiSi,n - 1\sum 

j\in V \prime | \scrN j | CjSj,n - 1
\scrB b if i \in V \prime ,

0 else

(v) Allocate as in (iii) using V \prime from Algorithm 2
(vi) Allocate as in (iv), using V \prime from Algorithm 2
(vii) Allocate as in (iii) using V \prime from Algorithm 3 (without Optional)
(viii) Allocate as in (iv), using V \prime from Algorithm 3 (without Optional)
(ix) Ratio of degree, closeness centrality, and super urn proportion:

Bi =
| \scrN i| CiSi,n - 1\sum 

j\in V | \scrN j | CjSj,n - 1
\scrB b

and the analogous strategies for denser networks, (vii) and (viii)). It is interesting
that these strategies would perform most consistently for the Delta-curing problem
but would perform far from optimally for the one-time initialization policy as seen
in Figure 4. The main difference between these setups is that the solutions to the
Delta-curing problem are applied continually as the infection evolves, while solutions
to the initialization problem are applied once. Obviously, some of the benefits of
targeting a greatly reduced set of nodes, as is seen in Figure 3(b), are lost when they
do not properly account for changes in the urn compositions. Interestingly, for denser
networks, targeting a greatly reduced set of nodes as in Figure 3(d) was still very
effective, most likely as a direct result of the high network density.

In Figure 5 we did not show the performance using gradient descent due to the
high computation burden for networks of such scale. We still provide a comparison
on a smaller scale in order to see how far from ``optimal"" our various heuristics are.
We provide such a comparison in Figure 6. While it is clear that the gradient descent
algorithm does marginally improve the empirical average infection rate, we see that
strategy (iv) still performs comparably, at a fraction of the computational cost.

7. Conclusion. We considered the (infinite-memory) P\'olya network contagion
model and formulated (preemptive and reactive) control policies to mitigate the spread
of infection. We framed these problems in two lights: both as a one-time initial-
ization problem and as a continual control problem that is an extension of conta-
gion curing methods in prior work. We provided simplified metrics for the one-sided
finite horizon version of these problems and proved the existence of optimal policies.
We developed effective heuristics that functioned primarily by modifying the scope
of solutions to only a limited number of nodes. We then compared these heuristics
to the one-step optimal policies that were obtained through use of gradient descent.
We established underlying results for the initialization problem proving that optimal
initialization strategies would only allocate resources to inner nodes. We showed how
network symmetry impacts the allocation of resources for optimal policies. We also
demonstrated that the proposed heuristics perform comparably to the one-step op-
timal policy in certain situations. Finally, we framed the Delta-curing problem as
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(a) Results of curing trials for low density Barabasi--Albert network
depicted in Figure 2(a).

(b) Results of curing trials for high density Barabasi--Albert net-
work depicted in Figure 2(b).

(c) Results of curing trials for Facebook network depicted in Fig-
ure 2(c).

Fig. 5. Plots of empirical average infection rate, \~In, versus time, n, for various curing strategies
across multiple networks. Lower values indicate lower levels of infection. In each case the network
was initialized with Ri = Bi = 10 \forall i \in V , and the P\'olya network contagion process was run over
500 trials with a fixed budget \scrB r = \scrB b = 10N , with \Delta r = 10 fixed.

Fig. 6. Empirical average infection rate, \~In, versus time, n, for an 8 node network. The
performance of gradient descent over the expected network exposure, E[ \~Sn| \scrF n - 1], is compared to
the two best performing heuristics from Figure 5(a). The network was initialized with Ri = Bi = 10
\forall i \in V , and the P\'olya network contagion process was run over 500 trials with budget \scrB r = \scrB b = 80
and fixed \Delta r = 10.
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a two-person zero-sum game on the expected network exposure, and we proved the
existence of a Nash equilibrium. We borrowed ideas from the initialization problems
in order to implement heuristics for the Delta-curing problem and demonstrated that
these strategies can perform near-optimally at a fraction of the computational ex-
pense. Future directions include analogous optimization problems when underlying
resource distribution is hidden from the observer, studying the initialization problem
in a game-theoretic framework, and investigating the spread of the P\'olya contagion
process in networks with unknown topologies.

Acknowledgment. The authors sincerely thank Tam\'as Linder for considerably
shortening the proof of Lemma 3.4.
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