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Compressed Sensing with Non-Gaussian Noise
and Partial Support Information

Ahmad Abou Saleh, Fady Alajaji, and Wai-Yip Chan

Abstract—We study the problem of recovering sparse and com-
pressible signals using a weighted minimization with
from noisy compressed sensing measurements when part of the

support is known a priori. To better model different types of non-
Gaussian (bounded) noise, the minimization program is subject to
a data-fidelity constraint expressed as the norm
of the residual error.We show theoretically that the reconstruction
error of this optimization is bounded (stable) if the sensing ma-
trix satisfies an extended restricted isometry property. Numerical
results show that the proposed method, which extends the range
of and comparing with previous works, outperforms other
noise-aware basis pursuit programs. For , since the opti-
mization is not convex, we use a variant of an iterative reweighted

algorithm for computing a local minimum.
Index Terms—Compressed sensing, denoising, nonconvex opti-

mization, sparsity, weighted minimization.

I. INTRODUCTION

T HE theory of compressed sensing (CS) is to reliably re-
cover high dimensional sparse or compressible signals

from a significantly fewer number of linear measurements than
the signal space dimension [1], [2]. Consider a signal of di-
mension to be sparse in some orthonormal basis ;
in other words, , where is a sparse vector,
i.e., there are only nonzero elements in . In
CS, the encoder records linear measurements given
by , where is a measurement matrix
that satisfies the restricted isometry property (RIP); satisfies
the RIP of order if there exists such that, for
any sparse , ,
where is the RIP constant of order and denotes the

norm. Roughly speaking, the RIP condition states that any
(sufficient) small subset of the columns of the sensing matrix
“nearly” forms an orthogonal basis. The condition is satisfied
when the elements of thematrix are samples from an indepen-
dent and identically distributed (i.i.d.) Gaussian process where

is of the order of . In this case, recovery of

Manuscript received January 22, 2015; accepted April 20, 2015. Date of pub-
lication April 27, 2015; date of current version May 01, 2015. This work was
supported in part by the NSERC of Canada. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Alex
Dimakis.
A. Abou Saleh and W-Y. Chan are with the Department of Electrical and

Computer Engineering, Queen’s University, Kingston, ON K7L 3N6 Canada
(e-mail: ahmad.abou.saleh@queensu.ca; chan@queensu.ca).
F. Alajaji is with the Department of Mathematics and Statistics and the

Department of Electrical and Computer Engineering, Queen’s University,
Kingston, ON K7L 3N6 Canada (e-mail: fady@mast.queensu.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2426654

from works by solving the convex basis pursuit (BP) program:
, where denotes the

norm ( ) and is the transpose operator [3].
In practice, the collected measurements are disturbed by noise
(i.e., ). Using a noise-aware version of BP, the

signal is decoded by solving the convex basis pursuit denoising
(BPDN) program: ,
where bounds the total amount of noise in the measurements.
In many applications, it is possible to obtain some estimate

about the support of the signal. To incorporate such prior in-
formation, several modified versions of the BPDN were studied
in [4]–[6] based on a weighted minimization approach with
zero weights on the known support. In [7], the author extends
the work of [5] to the case of compressible signals and noisy
measurements. In [8], an RIP-based condition for recovering
compressively sampled signals using partial support informa-
tion is derived. On the other hand, several works have attempted
to close the gap in performance from using instead of
(combinatorial problem) minimization by solving a nonconvex

( ) minimization. In [9]–[11], the authors pro-
vide sufficient conditions for recoverability of sparse/compress-
ible signals from noisy measurements via such minimization.
In [12], the authors study weighted minimization with zero
weights on the known support.
In most previous works, the CS recovery program uses an
norm fidelity constraint. From a Bayesian standpoint, the
norm used in the fidelity term (of the BPDN) corresponds

to the conditional log-likelihood associated with additive white
Gaussian noise. However, the noise in the disturbed measure-
ment might not be Gaussian. As an example, quantization dis-
tortion is highly non-Gaussian and is essentially bounded by
the quantization bin widths. This motivates the need for a new
CS decoder that better models different types of noise. The au-
thors in [13] adapt BPDN to integrate the quantization distortion
constraint. In [14], the authors study a new class of optimiza-
tion problems coined basis pursuit dequantizing (BPDQ) that
models more faithfully different types of noise than BPDN; this
new class of optimization proceeds by minimizing the sparsity
of the signal subject to a data-fidelity constraint expressed in
the norm of the residual error instead of the

norm as in BPDN; the case of is studied in [15]. The
BPDQ of moment , , is

(1)

where and bounds themeasurement noise.
The authors in [14] study the problem in (1) and show that this
approach gives some gain over BPDN. However, no prior infor-
mation on the unknown signal is assumed in [14]. Motivated by
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the fact that the CS algorithm may have prior knowledge about
the signal and that disturbance in the measurements might come
from quantization distortion, we study weighted
minimization subject to an norm fidelity con-
straint for compressively sampled signals with (not fully accu-
rate) partial support information; we develop RIP-based guar-
antee conditions for stable recovery. This generalizes the prob-
lems in [8], [14] and [16] to a wider range of and . We also
discuss the implementation aspect for the algorithm for .
In this case, the problem is no longer convex; we resort to the
use of an iterative reweighted convex problem to solve the orig-
inal nonconvex optimization.

II. WEIGHTED BASIS PURSUIT DEQUANTIZING

In this section, we present a CS recovery method that incor-
porates partial knowledge about the sparsity support and models
more faithfully different types of measurement noise. Next we
assume a canonical basis ( is the identity matrix).
Definition 1: satisfies the extended of order if

, for
all sparse signals , a and an constant

[14]. Note that is equal to 1 for .
Consider a compressible signal . Let be

sparse where the nonzero coefficients of are equal to the
largest-in-magnitude coefficients of ; we refer to as the

best term approximation of . Let be the
support of (the locations of the nonzero coefficients), where

. Let the support estimate be a subset of
with cardinality , where

for some , and be a sub-vector of with coefficient
. The generalized recovery

process, coined the weighted ( ), is given
by

(2)

where , ,
, , , and bounds the

total amount of noise in the measurements. Next, we show that
is stable if satisfies an .

Theorem 1: Define and so that ,
and . Suppose that there exists an

, and that satisfies with

(3)

where and
with given by of

(4)

and . Then the solution to (2) satisfies

(5)

where

(6)

and . The first
term in the right hand side of (5) depends on the measurement
matrix and the measurement noise; the second term, which also
depends on the measurement matrix, comes from the compress-
ibility of the signal.
The proof of Theorem 1 is presented in the Appendix; the

proof uses a combination of techniques used to prove [2, The-
orem 2], [14, Theorem 2] and [8, Theorem 3].
Remark 1: For , and , Theorem 1 reduces

to Theorem 2 in [14]. For , and , the
sufficient condition and the bound on the reconstruction error
given by Theorem 1 is identical to that of Theorem 2 in [14]; this
means that choosing in (2) gives the best performance
for .
Next, we discuss some implementation aspects of the opti-

mization problem given by (2). For the case of , the
program is convex and can be solved using the

toolbox in [17]. For , however, the optimization is
no longer convex. Algorithms that have been used to solve such
optimization include the projected gradient method [9], [16], the
iterative reweighed method [18] and the iterative reweighted
least squares method [19], [20]. We herein use a variant of the it-
eratively reweighted algorithm to compute a local minimum.
The approach is to replace the weighted objective function in
(2) by a weighted norm as follows

(7)

where ; the weight is up-
dated at each iteration and is a regularization factor.
This process is repeated with decreasing value of until con-
vergence. Since , allowing to be zero, the weights
in (7) are undefined whenever the value of the signal is zero
( ). To overcome this, we use the approach of regular-
izing the optimization problem by incorporating a small .
Algorithm 1 is stated as follows
1) Set , and start with an initial solution .
2) Set ; solve for using (7).
3) Decrease as follow: .
4) Evaluate the convergence function . If

is less than some positive threshold or
stop iterating. Else go to step 2.

In our simulation, we solve (7) using the toolbox in [17]; we
set , , and to be the solution
of the problem for .
Remark 2: We also implemented a variant of the itera-

tive reweighted method in [18] to solve the nonconvex
problem; we replace the objective function in (7) in Algo-
rithm 1 with a weighted function , where

. Simulation results show that this
method gives similar performance as the reweighted norm
method.

III. NUMERICAL RESULTS
We consider to be sparse in the canonical basis where

the nonzero elements in are chosen to be i.i.d. zero-mean
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Fig. 1. Performance of with uniform noise for and
; the support knowledge has with 80% accuracy rate. The noise

is uniform on .

Gaussian with unit variance and the signal support is uniformly
distributed. The support knowledge is uniformly chosen
with accuracy rate . Fig. 1 shows the
performance versus the number of measurements for an
accuracy rate of 80% (i.e., ). We assume that the noise
is uniform on the interval and choose a weight

parameter of in (2). We notice that the
( ), solved using Algorithm 1, gives the best
performance. Comparing to (i.e.,
WBPDN), we notice that the SDR gap increases with . This
is from the fact that when is low, we operate in the region
where the constraint on the constant (3) in Theorem 1 is
barely met and hence the benefit of using the norm constraint
over the is not as high as larger . Although Fig. 1 aims
to show the performance of different recovery algorithms over
, it is worth mentioning that the value of used is not the

optimal one.
Fig. 2 shows the SDR performance of (
) versus for different accuracy rates and uniform

noise on . We remark that for low accuracy , it is
beneficial to increase ; for high accuracy, however, using a
lower gives a better performance. Comparing the gap between

and over several accuracy rates, we no-
tice that this gap gets wider for higher accuracy. This can be
explained from the fact that for higher accuracy, the cardinality
of the unknown sparsity pattern is lower and hence less mea-
surements are needed to satisfy the constraint of The-
orem 1; as a result, the benefit of using norm is more visible.
Note that for the extreme case of , the SDR gap between

and is small; this is from the fact that no
side information is used at the decoder and since is relatively
small compared to . Fig. 3 shows the SDR performance as a
function of for different values of accuracy and weight .
We can notice that using a larger support estimate favours better
performance for most cases. The only case where increasing
decreases the SDR performance is when choosing (very
small) for low accuracy rate . This can be explained from the
fact that for low accuracy , increasing leads to a relatively
more increase in the amount of wrong indices than true ones; as
a result, choosing (i.e., favouring the indices in ) leads
to a decrease in the performance. Moreover, the drastic increase

Fig. 2. Performance of the (for ) versus for ,
and . The support knowledge has with 80% accuracy

rate and the noise is uniform on .

Fig. 3. SDR Performance versus for uniform noise distribution .
The solid curves correspond to , while the dashed ones are for
WBPDN. The signal has and . The number of measurements
is ; Fig. 3 (a) is for while (b) for .

in the performance for and in Fig. 3(a) is from
the fact that in this case contains all indices of the true support
. Fig. 4 shows the SDR performance of ( )

as a function of for different measurement noise models; our
aim is to show the importance of with respect to the noise
model. As expected, for Gaussian noise, the best performance
is shown for . For uniform noise, we notice that the best
is 3. We also study the performance of for the

Beta distribution (which subsumes the uniform distribution as
a special case), with domain [0,1] and a probability distribution
function (pdf) given by ,
where is a normalization constant, and denote the dis-
tribution parameters. We experiment with different parameters
for the Beta distribution, and we notice that choosing higher
gives better performance than choosing for several cases.
More precisely, when the pdf is symmetric and behaves more
like a uniform distribution for most of its range (
and ), the best is greater than 2. For
and , the distribution has a similar shape as a limited
one sided-Gaussian; this makes to be the best choice.
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Fig. 4. Performance of the versus for zero-mean Beta and uni-
form noise distribution. The signal has and ; the support
knowledge has with 80% accuracy rate and . Note that every
curve corresponds to a different noise level.

Moreover, choosing leads to similar conclusions; re-
ducing , in principle, gives a better performance. It is worth
mentioning that in Fig. 4, the curves do not have the same noise
levels; changing the noise level does not affect the curve trend
(the curve simply shifts vertically). For future work, we will
investigate different penalty functions to increase the recovery
tolerance against large (unbounded) noise [21], [22].

APPENDIX

Proof of Theorem 1: Let be a minimizer of
the weighted minimization problem subject to an norm as
given in (2). As a result, we have . By the
choice of weights in (2) and using the forward and the reverse
triangle inequalities on , we obtain after
some manipulations (similar to [8])

(8)

Similar to [2], we next sort the coefficients of and par-
tition into finite disjoint subsets ,

each of size , where . This means that
indexes the largest in magnitude coefficients of ,

indexes the second largest in magnitude coefficients of
and so on. As a result . Moreover,
by denoting we can write

(9)

Combining (8) and (9), we obtain the following

(10)

Lemma 1: [14] Let , be sparse and
sparse, respectively, with disjoint supports. If is of
order with constant and of orders and
with constants and , respectively, then

(11)

where and is
as defined in (4).
From the definition of , similar to [14], we can write

(12)

Taking the th power and using the fact that for any
and , , we obtain

(13)

Using the fact that and are feasible solutions, we have
; applying Holder’s

inequality with parameters and , we get

(14)

where the last inequality follows from the definition of
and by noting that is an sparse vector. Using
Lemma 1 and the fact that is sparse and is

sparse for , we can write the following

(15)

where . Combining (13), (14) and
(15), can be upper bounded. By lower bounding

using and applying it to the upper bound
found on , we obtain after some manipulations

(16)
Using (10) in (16), the fact that ,

,
and , we derive

the following after some manipulations

(17)
Using (17) and (10), we bound

; this completes the proof provided that the denominator
in (17) is positive which reduces to (3).
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