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Abstract

Motivated by the structure of basic sensor networks, we study an optimal joint decoding problem

in which the real valued outputs of two correlated Gaussian sources are scalar quantized, bit assigned,

and transmitted, without applying any channel coding or interleaving, over a multiple access channel

(MAC) which consists of two orthogonal point-to-point time-correlated Rayleigh fading sub-channels

used with soft-decision demodulation. Each fading sub-channel is modeled by a non-binary Markov

noise discrete channel which was recently shown to effectively represent it. The correlated sources have

memory captured by a time-varying correlation coefficient governed by a two-state first-order Markov

process. At the receiver side, we design a joint sequence maximum a posteriori (MAP) decoder to

exploit the correlation between the two sources, their temporal memory, as well as the redundancy left

in the quantizers’ indices, the channels’ soft-decision outputs, and noise memory. Under the simple

practical case of using two-level source quantization, we propose a Markov model to estimate the joint

behavior of the quantized sources. We then establish necessary and a sufficient conditions under which

the delay-prone joint sequence MAP decoder can be reduced to a simple instantaneous symbol-by-

symbol decoder. We illustrate our analytical results by system simulation and demonstrate that joint

MAP decoding can appropriately harness the source and channel characteristics to achieve improved

signal-to-distortion ratio performance for a wide range of system conditions.

Index Terms: Sensor networks, joint source-channel MAP decoding, correlated Gaussian sources,

Markov models, multiple access channels with memory, time-correlated fading, quantization.
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I. INTRODUCTION

In recent years, wireless sensor networks (WSN) have found many applications ranging from

surveying physical or environmental conditions to industrial process monitoring and control [2].

In a WSN, spatially distributed autonomous sensors share and convey the observed data to a

main base station which acts as a gateway between the sensor nodes and the end user. Given

that sensors have very limited resources in energy, storage memory, computational speed, and

communications bandwidth, it is not practical for them to form large queues of data or perform

complex processing and source and channel coding operations. On the other hand, base stations

have significantly more resources and can hence carry the brunt of the processing tasks needed

to reliably recover the transmitted data captured by the sensors [3], [4].

In this work, we study a basic WSN modeled via a two-user multiple access channel (MAC)

system where each sensor independently samples a real-valued parameter, such as humidity

and temperature, and the samples in general exhibit temporal memory and are correlated to

each other. The observed correlated data are governed by a bivariate Gaussian process whose

correlation coefficient varies over time according to a two-state first-order Markov chain. We

adopt a joint source-channel (JSC) coding approach, which has proven to be a considerably better

alternative to traditional tandem separate source and channel coding under stringent complexity

and delay constraints, e.g., see [5]–[15] and the references therein. These works illustrate the

benefits of JSC coding from a theoretical (asymptotic analysis) perspective or investigate designs

that employ source or channel codes (or a combination thereof), which may in practice demand

substantial resources at the transmitter. In contrast, we focus in this work on a design which shifts

the system’s complexity and delay to the receiver side (which possesses more resources in a

typical WSN) and makes the transmitter significantly simpler with zero transmission delay. More

specifically, we investigate the optimal joint sequence maximum a posteriori (MAP) decoding

problem when the correlated Gaussian sources are, at each node, scalar quantized and sent

without the use of error-correcting codes and channel interleaving over an orthogonal MAC.

The MAC is composed of two orthogonal sub-channels, where each sub-channel is a point-

to-point time-correlated Rayleigh discrete fading channel (DFC) used with antipodal signaling
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and soft-decision (non-binary) output quantization. However, as the Rayleigh DFC is hard to

treat analytically [16], we instead use the recently introduced non-binary noise discrete channel

with queue based noise (NBNDC-QB) which has been shown to efficiently model such DFC

[17]. The NBNDC-QB aptly incorporates the benefits of channel memory and soft-decision

information of the underlying DFC, yielding an analytically tractable model whose capacity can

be measurably larger than the memoryless counterpart channel (realized via ideal infinite-depth

block interleaving) or a channel with hard-decision outputs.1

This problem belongs to the area of JSC decoding such as [16], [21]–[29], which study JSC de-

coding for various single-user systems (using a point-to-point channel). In particular, the problem

we study here significantly generalizes the point-to-point MAP decoding problem examined in

[16] as it involves the joint detection of a quantized two-dimensional Gaussian hidden Markovian

source at the receiver, while in [16] only a single Markov source is considered. The paper’s main

contributions include modeling the behavior of the correlated sources via a hidden Markov model,

verifying the system parameters via simulations, designing a joint sequence MAP decoder (which

is optimal in terms of sequence error probability), and implementing it using an appropriately

modified version of Viterbi algorithm so that the decoder can take full advantage of the sources’

correlation and temporal memory as well as the channels’ soft-decision information and temporal

memory (due to the fading process in each MAC sub-channel) to achieve improved and robust

signal-to-distortion ratio (SDR) performance for the overall system. A central contribution is

the derivation of easy-to-check closed-form necessary and sufficient conditions in terms of the

sources and channel parameters, under which the costly delay-prone joint sequence MAP decoder

can be replaced by a straightforward instantaneous (symbol-by-symbol) decoder of identical

performance.

The rest of this paper is organized as follows. In Section II, we introduce the source and

MAC models. In Section III, we formulate the problem and summarize the paper’s contribu-

tions. In Section IV, we design the joint sequence MAP decoder and specify its algorithmic

1This is in line with the well-known facts that memory increases capacity for a large class of ergodically behaving channels
[18], [19] and that the use of soft-decision output information can improve channel capacity vis-a-vis hard-decision [20].
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implementation. In Section V, we consider using two-level source quantizers and estimate the

quantized sources with a Markov process model. We then establish necessary and sufficient

conditions under which the expensive joint MAP decoder reduces to a simple instantaneous

decoder without any loss in optimality. In Section VI, we numerically illustrate and validate the

derived theoretical results and present the SDR performance of the joint sequence MAP and

instantaneous decoders for a variety of system conditions. We show that the MAP JSC decoding

scheme can successfully employ the source and channel characteristics and temporal memories

in recovering the observed data. Finally, we conclude the paper in Section VII.

II. SOURCE AND CHANNEL MODELS

A. Source Model

We consider two correlated zero-mean and unit-variance Gaussian sources V and V ′ whose

correlation coefficient is temporally driven by a Markov chain. Such a source model is motivated

by the practical WSN scenario where the correlation between two environmental parameters

observed by sensors changes over time according to weather conditions. More specifically, we

consider a correlation coefficient process generated via a stationary two-state first-order Markov

chain {Φi}∞i=1 with alphabet {φ0, φ1} where −1 ≤ φ0, φ1 ≤ 1. Conditioned on the correlation

n-tuple Φn = (Φ1,Φ2, · · · ,Φn) for n ≥ 1, the two-dimensional source process {(Vi, V ′i)}∞i=1

generates a sequence of independent and identically distributed (i.i.d.) sample pairs (V n, V ′n) =

((V1, V
′

1), (V2, V
′

2), · · · , (Vn, V ′n)) under the following joint conditional density

fV n,V ′n|Φn(vn, v′n|φn) =
n∏
i=1

fV,V ′|Φ(vi, v
′
i|φi), vn, v′n ∈ Rn, φn ∈ {φ0, φ1}n

where fV,V ′|Φ(·, ·|φ) is the standard bivariate Gaussian density with correlation coefficient φ

fVi,V ′i |Φi(v, v
′|φ) =

1

2π
√

1− φ2
exp

(
−v

2 + v′2 − 2φvv′

2(1− φ2)

)
. (1)

March 14, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

The Markov process {Φi}∞i=1 is governed by the following two-state transition matrix

Tφ =

 tφ0φ0 1− tφ0φ0
1− tφ1φ1 tφ1φ1

 , (2)

where tφ0φ0 , Pr{Φi = φ0|Φi−1 = φ0} and tφ1φ1 , Pr{Φi = φ1|Φi−1 = φ1} are the probabilities

of the correlation coefficient staying in the same state at the current time slot given that the

previous time slot state is φ0 and φ1, respectively. Note that the individual processes {Vi}∞i=1 and

{V ′i }∞i=1 are each i.i.d. Gaussian. However, the two-dimensional source process {(Vi, V ′i)}∞i=1,

which is a Gaussian mixture process, exhibits temporal memory in the form of a hidden Markov

model (HMM) by virtue of the Markov property of the correlation coefficient process.

Special case: If we collapse the alphabet of the correlation coefficient to a single unit-mass

point by setting φ0 = φ1, then the coefficient process becomes deterministic and hence constant

over time. This renders the process {(Vi, V ′i)}∞i=1 memoryless (i.e., i.i.d.) and Gaussian.

B. Channel Model

Before introducing the orthogonal MAC model, we briefly review two point-to-point channel

models studied in [17]: the Rayleigh DFC and the NBNDC-QB. As the NBNDC-QB is more

amenable to system analysis and was shown to effectively represent the statistical behavior of

the Rayleigh DFC under various uncoded modulation [17], [30], lossy JSC coding [16] and

low-density parity-check channel coding [31] settings, the orthogonal MAC considered in this

paper will we be composed of two point-to-point NBNDC-QB sub-channels.

1) Point-to-Point Rayleigh DFC: The single-user Rayleigh DFC, which is a well-known model

for point-to-point wireless channels, is a binary-input 2q-ary output channel as shown in Fig. 1.

BPSK
Modulator × + q-bit Uniform

Soft-quantizer

√
EsAk Nk

Xk Sk Rk Yk

Fig. 1: Rayleigh discrete fading channel (DFC).
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First, a binary phase-shift keying (BPSK) modulator takes the DFC’s binary input process

{Xk}∞k=1, Xk ∈ X = {0, 1}, and generates Sk = 2Xk − 1 ∈ {−1, 1} for k = 1, 2, . . . . Then, the

modulated signal is transmitted over a time-correlated flat Rayleigh fading channel with additive

white Gaussian noise which produces the output Rk =
√
EsAkSk + Nk, k = 1, 2, . . . , where

Es is the energy of the signal sent over the channel, and {Nk} is a sequence of i.i.d. Gaussian

random variables of variance N0/2. Here, {Ak} is the channel’s fading process (assumed to be

independent of {Nk} and the input process) with Ak = |Gk|, where {Gk} is a time-correlated

complex wide-sense stationary Gaussian process with Clarkes autocorrelation function given

as a Bessel function of the normalized maximum Doppler frequency fDT [17], [32]. As a

result, each fading random variable Ak, which causes an attenuation in the signal, is Rayleigh

distributed with unit second moment. Correlation in the fading coefficients {Ak} models the

channel’s temporal memory. The DFC’s signal-to-noise ratio (SNR) is given by SNR = Es/N0.

Finally, a soft-decision demodulator processes the output Rk and produces the DFC’s output

Yk ∈ Y = {0, 1, . . . 2q − 1} using a q-bit uniform quantizer with step size ∆ defined as Yk = j,

if Rk ∈ (T ′j−1, T
′
j ], where T ′−1 = −∞, T ′j = (j + 1 − 2q−1)∆ for j = 0, 1, . . . , 2q − 2, and

T ′2q−1 =∞.

For the DFC, the probabilities Pr{Yk = j|Xk = i, Ak = ã}, i ∈ {0, 1}, j ∈ Y , ã ≥ 0, and the

n-fold transition probabilities P (n)
DFC(yn1 |xn1 ) , Pr{Y n

1 = yn1 |Xn
1 = xn1} can be calculated via [17,

eqs. (1), (2)] where yn1 = (y1, y2, . . . , yn) and xn1 = (x1, x2, . . . , xn). However, P (n)
DFC(yn1 |xn1 ) can

only be expressed in closed form for n ≤ 3 [33], [34]; for n > 3, it must be found numerically.

Thus, the NBNDC-QB is introduced as a more tractable model for the DFC.

2) NBNDC-QB: The NBNDC-QB [17] is a binary-input 2q-ary-output channel described by

Yk = (2q − 1)Xk + (−1)XkZk, k = 1, 2, . . . , (3)

where q ≥ 1 is an integer, Xk ∈ {0, 1} is the input data bit, Yk ∈ Y = {0, 1, . . . 2q − 1} is

the channel output, and Zk ∈ Y is the corresponding noise symbol which is assumed to be

independent of the input. Here, the noise process is a generalization of the binary queue-based

(QB) noise studied in [19]; it is a 2q-ary stationary ergodic M th-order Markov process which

March 14, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

can be described using only 2q + 2 parameters (typically, q = 2 or 3 for most systems; hence,

the complexity in q is not a concern): the memory order M , the marginal probability distribution

(ρ0, ρ1, . . . , ρ2q−1), and correlation parameters 0 ≤ ε < 1 and α ≥ 0. In the special case of ε = 0

and q = 1, the NBNDC-QB reduces to the familiar memoryless binary symmetric channel. More

details on the channel model, including its n-fold transition distribution, are given in [17], [19].

The NBNDC-QB can be fitted, via the modeling procedure explained in [17, Sec. V], to

mimic the statistical behavior2 of a given Rayleigh DFC with fixed parameters (SNR, q, δ, fDT ).

The QB memory and correlation parameters M , ε and α are coupled with fDT , while the QB

noise one-dimensional probability distributions ρj for j ∈ Y can be determined using the DFC’s

parameters q, δ and SNR as given in [16, Table I] (see also [36, Section 2.1.2]). Consequently,

both models will have the same channel noise correlation coefficient, Cor, given in [17, eq. (22)].

Note that the NBNDC-QB model (and its simpler binary-noise version) has been validated as

an effective approximation of the Rayleigh DFC in terms of codeword error rate or SDR fidelity

for various coded point-to-point systems [16], [31], [35].

3) Orthogonal MAC: In many practical communication systems where the available channel

bandwidth must be efficiently shared among several users, various orthogonal multiple access

schemes such as frequency division multiple access, time division multiple access, and code

division multiple access are employed to avoid unrecoverable collision of messages from different

users. This motivates us to consider an orthogonal MAC consisting of two independent single-

user Rayleigh DFC sub-channels which are modeled via NBNDC-QB channels.

III. PROBLEM FORMULATION AND SUMMARY OF CONTRIBUTIONS

In Fig. 2, we depict our two-user communication system, referred to as SQ-MAC-MAP system,

which generalizes the single-user system studied in [16].

The output samples v of the first source are encoded using a rate-n scalar quantizer (SQ).

Although, having a simple SQ instead of a more powerful vector quantizer is dictated by

2It is shown in [17, Sec. II.B] that the DFC can be mathematically expressed via the NBNDC with an ergodic noise process.
Given that this noise process has infinite memory, it is then approximated via the M th-order QB Markov noise process [17,
Sec. IV] (where the approximation is validated in terms of noise autocorrelation function and channel capacity), resulting in the
NBNDC-QB model for the DFC.

March 14, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7
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x̂′ ∈ X ′n

x̂ ∈ X n

Fig. 2: Two-user system with scalar quantization and joint MAP decoding over an orthogonal MAC with memory.

the limitation of the sensors, this coding method will preserve more redundancy in the index

codewords at the quantizer output, which can be later used, in conjunction with channel’s

characteristics, by the joint MAP decoder for the purpose of robust error correction. The SQ is

designed utilizing the Lloyd-Max algorithm [37], with the initial codebook selection obtained

via the splitting algorithm [38] and it produces an index i ∈ {0, 1, . . . , 2n − 1}. As explained

in [16], because of its simplicity and good performance, the folded binary code (FBC) [9]

is chosen as the one-to-one index assignment method to map the index i to a binary vector

x ∈ {0, 1}n. The same encoding process is separately done for the second source which

results in the codeword x′ ∈ {0, 1}n. Then, the vector pair (x,x′) is transmitted through the

orthogonal Rayleigh DFC MAC (with its NBNDC-QB sub-channels) and the corresponding

vectors y ∈ Yn = {0, 1, . . . , 2q − 1}n and y′ ∈ Y ′n = {0, 1, . . . , 2q′ − 1}n are received. This

communication is modeled as bit-by-bit sending of the n-tuple codeword x over the first NBNDC-

QB sub-channel with 2q-ary noise symbols z ∈ Y = {0, 1, . . . , 2q − 1} and noise memory M

which will result in the output sequence y. Similarly, x′ and y′ are the input and output vectors

of the second NBNDC-QB sub-channel with 2q
′-ary noise symbols z′ ∈ Y ′ = {0, 1, . . . , 2q′ − 1}

and noise memory M ′. At the receiver side, the MAC’s output (y,y′) is fed to a joint MAP

decoder. Finally, two SQ decoders map the decoder outputs (x̂, x̂′) into the source estimates
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(v, v̂). Note that in this system, the receiver carries most of the complexity load; hence it is

specially suitable to WSN applications.

The main contributions of this work are summarized as follows.

• Approximate the paired sequence of the quantized sources via a Markov process, design

a joint sequence MAP decoder which is optimal in terms of the joint sequence error

probability, and implement it via a properly modified version of the Viterbi algorithm [39].

• Analyze the case when the sources are binary-quantized and derive the statistical properties

of the Markov process representing the paired sequence of the quantized sources (Lemma 1).

• Establish for the above binary quantization case necessary and sufficient conditions (Theo-

rem 1) under which the delay-prone joint sequence MAP decoder can be replaced without

sacrificing optimality with a delayless symbol-by-symbol decoder (analyzed in Lemma 2).

• Validate the analytical results numerically and show via simulations the benefits of MAP

decoding in the SQ-MAC-MAP system as it judiciously harnesses the sources’ residual

redundancy as well as the sub-channels’ noise correlation and soft-decision information.

IV. JOINT SEQUENCE MAP DECODING FOR THE TWO-USER MAC SYSTEM

The residual redundancy of the sources (post quantization) and the channel statistics can be ex-

ploited by a MAP decoder which is designed to minimize the sequence error probability. Suppose

that each source produces N symbols. The sequence (x,x′)N =
(
(x1,x

′
1), . . . , (xN ,x

′
N)
)
∈(

{0, 1}×{0, 1}
)nN at the output of the SQ encoders is transmitted over the MAC in nN channel

uses. The independent NBNDC-QB sub-channels contaminate the bit streams related to the first

and second source with noise sequences znN1 ∈ YnN and z′nN1 ∈ Y ′nN , respectively. In other

words, the input n-tuples xi+1 and x′i+1, i = 0, 1, . . . , N − 1, are bit-by-bit transmitted over the

first and second sub-channels with the corresponding noise symbols (zni+1, zni+2, . . . , zn(i+1))

and (z′ni+1, z
′
ni+2, . . . , z

′
n(i+1)) which will result in the output n-tuples yi+1 and y′i+1.

Given that the source {(Vi, V ′i )}∞i=1 is an HMM, the resulting process produced by the quantiz-

ers does not admit a closed-form expression for its block distribution; this makes implementing

the sequence MAP decoder based on the Viterbi algorithm quite complicated and computa-
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tionally expensive. Hence, we model this process via a stationary first-order Markov process

{(Xi, X
′
i)}∞i=1. For (x1,x

′
1) ∈

(
{0, 1} × {0, 1}

)n, let π(x1,x
′
1) , Pr{(X1,X

′
1) = (x1,x

′
1)}

be the stationary joint distribution corresponding to the approximated first-order Markov model

and let P ((xi+1,x
′
i+1) | (xi,x′i)) , Pr{(Xi+1,X

′
i+1) = (xi+1,x

′
i+1) | (Xi,X

′
i) = (xi,x

′
i)}

denote the transition probabilities.3

Assuming nN ≥ max{M,M ′}, where M and M ′ are the noise memory orders of the

corresponding sub-channels, the sequence MAP decoder receives the channel output (y,y′)N =(
(y1,y

′
1), . . . , (yN ,y

′
N)
)
∈ (Y×Y ′)nN , and estimates (x,x′)N ∈

(
{0, 1}×{0, 1}

)nN by (x̂, x̂′)N

given by

(x̂, x̂′)
N

= arg max
x,x′N

Pr{(X,X′)N = (x,x′)N | (Y,Y′)N = (y,y′)N} =

arg max
(x,x′)N

{
log
[
P

(n)
QB(zn1 )P ′

(n)
QB(z′

n
1 )π(x1,x

′
1)
]
+

(4)

N−1∑
i=1

log
[
Q(z

(i+1)n
in+1 | zinin−(M−1))×Q′(z′

(i+1)n
in+1 | z′

in
in−(M ′−1))×P ((xi+1,x

′
i+1) | (xi,x′i))

]}
,

For i = 1, 2, . . . , nN , the noise symbols zi and z′i can be found by separately substituting each

sub-channel input and output into (3). For the first sub-channel, the n-fold channel transition

probabilities are Pr{Zn
1 = zn1 } = Pr{Y n

1 = yn1 |Xn
1 = xn1} , P

(n)
QB(zn1 ), as given by [17, eqs.

(20), (21)], where yn1 is the output sequence, xn1 the input sequence, and zn1 = (z1, . . . , zn) is

the sequence of corresponding noise symbols related to xn1 and yn1 according to (3). For n = 1,

P
(1)
QB(z1) = ρz1 for all z1 ∈ Y .

The noise transition probabilities Q(z
(i+1)n
in+1 | zinin−(M−1)) are defined based on Q(zi+ji+1|zii−k) ,

Pr{Zi+j
i+1 = zi+ji+1|Zi

i−k = zii−k}, where i, j, k ∈ {1, 2, . . . , nN − 1}, i + j ≤ nN, i− k ≥ 1. Note

that zi , 0 if i < 1, zji , (zi, zi+1, . . . , zj), j ≥ i. They can be computed via [17]. For the second

sub-channel, Q′(z′(i+1)n
in+1 | z′

in
in−(M ′−1)) and P ′(n)

QB(z′n1 ) are defined and calculated similarly using

the parameters associated with this channel. The step-by-step details of how (4) is derived, by

3Note that in all simulations, the actual HMM source is generated while the decoder uses the statistics of the approximating
Markov source which are empirically estimated for n > 1 (for n = 1, they can be exactly determined as shown in Lemma 1).
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using the Bayes rule and the orthogonality of the sub-channels, can be found in [36, Sec. 3.2].

To implement the MAP decoder, we employ a modified version of the Viterbi algorithm by

properly extending the one used in [40] to our two-user system. The corresponding trellis consists

of 4(kn) states, the set of all possible pairs of kn-tuple codewords, where k is the smallest integer

which satisfies kn ≥ max{M,M ′}. In the trellis, each state has 2(kn−M+1)×2(kn−M ′+1) incoming

and 4n outgoing branches and the path metric at step i is as follows:

log
[
Q(z

(i+1)n
in+1 |zinin−(M−1))Q

′(z′
(i+1)n
in+1 |z′

in
in−(M ′−1))

]
+ log

[
P ((xi+1,x

′
i+1) | (xi,x′i))

]
.

Applying the Viterbi algorithm, the MAP decoder needs to observe the entire received sequence

before deciding on the most likely message words, which results in significant decoding delay as

well as storage complexity of order O(nN4(kn)) that increases with the length of the sequence.

Thus it is interesting to investigate situations where MAP decoding can be replaced by a simple

and fast instantaneous (symbol-by-symbol) decoding rule which exhibits the same performance

in terms of symbol error rate (SER).

V. CASE STUDY: JOINT MAP DETECTION OF BINARY MARKOV CORRELATED SOURCES

In this section, we mathematically study the joint sequence MAP detection problem when the

sources are binary-quantized. We first approximate the stream of pairs of bits after quantization,

which forms an HMM process, via a Markov process (having the same second-order statistics

as the underlying HMM), study its properties, and derive its statistics. We then introduce the

instantaneous joint symbol-by-symbol decoder and analyze it. Finally, we establish necessary and

sufficient conditions for the equivalence between the delay-prone joint sequence MAP decoder

and the instantaneous (zero delay) symbol-by-symbol decoder that causes no loss in optimality

in terms of minimizing the joint sequence error probability.

A. Markov Modeling of the Binary-Quantized Sources

Under two-level quantization (with n = 1 and a quantization threshold set at zero), the

resulting joint process {(Xn, X
′
n)}∞n=1 having alphabet {0, 1}2 = {00, 01, 10, 11} is hidden
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Markov, governed by the Markov process {Φn} described by (2). To facilitate the analysis, as

described in Section IV, we model {(Xn, X
′
n)}∞n=1 as a stationary first-order Markov process by

matching its second-order distribution to that of the underlying HMM source whose probability

measure is denoted by PHMM.

Lemma 1. The transition matrix of the Markov source {(Xn, X
′
n)} is given by

T =


P00−00 P00−01 P00−10 P00−11

P01−00 P01−01 P01−10 P01−11

P10−00 P10−01 P10−10 P10−11

P11−00 P11−01 P11−10 P11−11


=


a b b a

c d d c

c d d c

a b b a


, (5)

where Pjk−lm , Pr{(Xi, X
′
i) = (l,m)|(Xi−1, X

′
i−1) = (j, k)} for j, k, l,m ∈ {0, 1}, and the

probabilities a, b, c and d are given in terms of the statistics of the underlying HMM source

{(Vi, V ′i )} as follows:

a =
a′[a′tφ0φ0Pφ0 + c′(1− tφ1φ1)(1− Pφ0)] + c′[a′(1− tφ0φ0)Pφ0 + c′tφ1φ1(1− Pφ0)]

a′Pφ0 + c′(1− Pφ0)
,

b =
b′[a′tφ0φ0Pφ0 + c′(1− tφ1φ1)(1− Pφ0)] + d′[a′(1− tφ0φ0)Pφ0 + c′tφ1φ1(1− Pφ0)]

a′Pφ0 + c′(1− Pφ0)
,

c =
a′[b′tφ0φ0Pφ0 + d′(1− tφ1φ1)(1− Pφ0)] + c′[b′(1− tφ0φ0)Pφ0 + d′tφ1φ1(1− Pφ0)]

b′Pφ0 + d′(1− Pφ0)
,

d =
b′[b′tφ0φ0Pφ0 + d′(1− tφ1φ1)(1− Pφ0)] + d′[b′(1− tφ0φ0)Pφ0 + d′tφ1φ1(1− Pφ0)]

b′Pφ0 + d′(1− Pφ0)
,

where Pφ0 , Pr{Φi = φ0} = 1−Pr{Φi = φ1} =
1− tφ1φ1

2− (tφ0φ0 + tφ1φ1)
is the stationary distribution

of the Markov process {Φi}∞i=1, and

a′ , PHMM{(Xi, X
′
i) = (0, 0)|Φi = φ0} = Pr{V < 0, V ′ < 0|Φ = φ0}

b′ , PHMM{(Xi, X
′
i) = (0, 1)|Φi = φ0} = Pr{V < 0, V ′ ≥ 0|Φ = φ0}

c′ , PHMM{(Xi, X
′
i) = (0, 0)|Φi = φ1} = Pr{V < 0, V ′ < 0|Φ = φ1}

d′ , PHMM{(Xi, X
′
i) = (0, 1)|Φi = φ1} = Pr{V < 0, V ′ ≥ 0|Φ = φ1} (6)
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which can be calculated using the bivariate Gaussian distribution (1).

Proof of Lemma 1. The proof is given in Appendix A. �

Note that since T is a stochastic matrix, we get that a + b = c + d = 1/2. The Markov

source’s stationary distribution vector, denoted by π = [P (0, 0), P (0, 1), P (1, 0), P (1, 1)], where

P (x, x′) , Pr{(X,X ′) = (x, x′)}, has the following components

P (0, 0) = P (1, 1) =
c

1 + 2(c− a)
; P (1, 0) = P (0, 1) =

1

2
− P (0, 0) =

1− 2a

2(1 + 2(c− a))
. (7)

B. Instantaneous Symbol-by-Symbol Decoder

We next present a simple instantaneous symbol-by-symbol decoder. Specifically, by making use

of (7), the orthogonality of the MAC, and an ordering assumption on the marginal probabilities of

each NBNDC-QB sub-channel, we shown in Lemma 2 that among all mappings θ : Y 7→ {0, 1},

the following mapping θ∗ minimizes the bit error probability for each source:

θ∗(y) = ỹ =

 0, if y < 2q−1

1, otherwise.
(8)

Note that we independently apply the same function (8) to y and y′, the outputs of the orthogonal

MAC, and acquire binary symbols ỹ and ỹ′, respectively. Since the parameters of the NBNDC-

QB’s can be different, we denote the first instantaneous decoder by θ∗ and the second by θ′∗

with the q in (8) changed to q′. Hence, when the sent pair (x, x′) is received as (y, y′) at the

MAC output, the decoder pair (θ∗, θ′∗) jointly decodes correctly if (ỹ, ỹ′) = (x, x′).

Lemma 2. Let N -sequences of the above Markov source {(Xn, X
′
n)} described by (5) and (7)

be sent over the orthogonal MAC consisting of two independent NBNDC-QB sub-channels as

described in Section II-B and assume that the output sequences are instantaneously decoded

as (ỹ, ỹ′)N = (θ∗(y), θ′∗(y′))N , where the mapping pair (θ∗, θ′∗) described above is applied

component-wise to each output pair (yi, y
′
i), i = 1, · · · , N .

If the first NBNDC-QB sub-channel has noise parameters satisfying ρ0 ≥ ρ1 ≥ · · · ≥ ρ2q−1,

then among all mappings θ : Y 7→ {0, 1}, where Y = {0, 1, . . . 2q− 1}, the mapping θ? as given
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by (8) yields the lowest bit error probability defined as Pr{Ỹ 6= X}. The same result also holds

for the the second NBNDC-QB sub-channel and source {X ′n}, with the optimal function θ′∗

given as in (8) with q′ replacing q.

Proof of Lemma 2. The proof of this lemma which extends [16, Lemma 1] from the single

to the two user setting can be found in [36, Lemma 3.1]. �

Remark: Observe that while θ∗ and θ′∗ separately minimize the bit error probability of the

individual sources {Xn} and {X ′n}, respectively, they do not necessarily minimize the joint

symbol error probability of {(Xn, X
′
n)}. Note also that when q = q′ = 1, the binary output

sequences can be accepted without any further processing by the decoder; this is known in the

literature as “decode-what-you-see” or “singlet decoding” (e.g., see [23], [28]).

C. Equivalence Between Joint Sequence MAP Decoding and Instantaneous Decoding

The following main result presents a necessary and sufficient condition for the mapping pair

(θ∗, θ′∗) to form an optimal sequence detection rule in the sense of minimizing the sequence

error probability. In this case, the MAP decoder is unnecessary and can be replaced by the

instantaneous decoders (θ∗, θ′∗), without increasing the error probability.

Theorem 1. Consider the first-order Markov source {(Xi, X
′
i)}∞i=1 described by (5) and (7).

Consider also the orthogonal MAC with two independent NBNDC-QB sub-channels: one sub-

channel with correlation parameters ε ≥ 0 and α = 1, memory order M = 1, q ≥ 1, and

noise one-dimensional probability distribution satisfying ρ0 ≥ ρ1 ≥ · · · ≥ ρ2q−1, and the other

sub-channel with parameters ε′ ≥ 0, q′ ≥ 1,M ′ = α′ = 1, and ρ′0 ≥ ρ′1 ≥ · · · ≥ ρ′
2q′−1

. Let

(x, x′)N be a source sequence of length N ≥ 2, let (y, y′)N be the channel output sequence, and

let (ỹ, ỹ′)N = (θ∗(y), θ′∗(y′))N be the sequence obtained by applying the instantaneous decoders

(θ∗, θ′∗) component-wise to (y, y′)N .

Sufficient Condition: Assuming (x1, x
′
1) = (ỹ1, ỹ

′
1), we have that (x̂, x̂′)N = (ỹ, ỹ′)N is an optimal
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sequence MAP detection rule for all possible received sequences if

A×
(

min

{
a

b
,
b

a
,
c

d
,
d

c

}
×min

{
a

c
,
b

d
,
d

b
,
c

a

})
≥ 1, (9)

where

A = min

{
ε′ + (1− ε′)ρ′

2q′−1−1

ε′ + (1− ε′)ρ′
2q′−1

,
ε+ (1− ε)ρ2q−1−1

ε+ (1− ε)ρ2q−1

}
, (10)

and a, b, c, and d are the source transition probabilities defined in (5).

Necessary Conditions: Conversely, a necessary condition for the joint MAP decoder to be

unnecessary is given by

min

{
ρ2q−1−1

ρ2q−1

,
ρ′

2q′−1−1

ρ′
2q′−1

}
×min

{
a

b
,
b

a
,
c

d
,
d

c

}
≥ 1. (11)

In other words, if (11) does not hold, then there is at least one pair of input and output sequences

of length N ≥ 2 for which (x̂, x̂′)N = (ỹ, ỹ′)N is not an optimal sequence MAP detection rule

(this condition has no dependence on the sub-channels noise correlations ε and ε′).

Furthermore for a large enough N , a necessary condition that is tighter than (11) is given by

min

{
Amin

{
a

d
,
d

a

}
,min

{
ρ2q−1−1

ρ2q−1

,
ρ′

2q′−1−1

ρ′
2q′−1

}
×min

{
a2

bc
,
bc

a2
,
bc

d2
,
d2

bc

}}
≥ 1. (12)

Proof. See Appendix B.

Remark: It is worth pointing out that the main result of [1] is a special case of Theorem 1

above: when the source {(Xi, X
′
i)}∞i=1 is memoryless in time (which can be realized by setting

φ0 = φ1 in the source statistics, see Section II-A), then the necessary and sufficient conditions

of Theorem 1 directly reduce to the ones in [1, Theorem 1], see [36, Sec. 4.3.1] for details.

VI. SIMULATION RESULTS

A. Validation of Theorem 1

We illustrate and validate Theorem 1 in Figs. 4-5 and Tables I-II under various source and

MAC sub-channels conditions. The system was simulated using two correlated binary input

sequences of length N = 105, which are jointly generated according to the first-order Markov
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process {(Xi, X
′
i)} with transition matrix (5). As explained in Section V, this Markov process

is an approximation (with matching second-order statistics) of the process resulting from the

binary-quantization (with n = 1) of the bivariate Gaussian HMM {(Vi, V ′i )} driven by the

Markov correlation coefficient process {Φi}∞i=1 with transition matrix (2). The MAC’s NBNDC-

QB sub-channels are simulated under similar conditions as in [16]. Each simulation is repeated

10 times and the average joint symbol error rate is computed to ensure the results are consistent.

It is important to mention that the assumption on (x1, x
′
1) in Theorem 1 was not enforced in the

simulations; yet the simulations indicate that the theorem’s result holds without this assumption.

Furthermore, we define an average correlation coefficient for the {(Vi, V ′i )} source as

φav = Pφ0 × φ0 + (1− Pφ0)× φ1, (13)

where Pφ0 =
1− tφ1φ1

2− (tφ1φ1 + tφ1φ1)
is the stationary distribution of the Markov process {Φi}. The

numerical results show that φav can be a good measure for evaluating the combined effect of

the correlation between Vi and V ′i and the temporal memory in {(Vi, V ′i )}. Hence, we use φav

to address different source conditions in the simulations.

We consider several scenarios in generating {(Xi, X
′
i)}. In Table I and Figs. 4-5, we choose

the parameters in the matrix (5) as a = 0.28, b = 0.22, c = 0.33, d = 0.17, which represent

an underlying HMM with parameters φ0 = −0.31, φ1 = 0.81, tφ0φ0 = tφ1φ1 = 0.2; for this

case, φav = 0.25. We also use the parameters a = 0.36, b = 0.14, c = 0.37, d = 0.13, yielding an

underlying HMM with φ0 = −0.31, φ1 = 0.81, (tφ0φ0 , tφ1φ1) = (0.1, 0.8); in this case, φav = 0.61.

Finally, in Table II, we use a = d = 0.23, b = c = 0.27 in order to further illustrate Theorem 1.

In this case, the underlying HMM has φ0 = −0.5, φ1 = 0.5, (tφ0φ0 , tφ1φ1) = (0.2, 0.2), resulting

in φav = 0.0.

Denoting the left hand term of (9) and (11) by C and C ′, respectively, it can be observed from

Figs. 4-5 and Tables I-II that when C ≥ 1 and consequently C ′ ≥ 1, the performance of the

instantaneous joint decoder (θ∗, θ′∗) and the joint MAP decoder are identical, while for C ′ < 1,

implying C < 1, the joint MAP decoder can outperform the instantaneous decoder. There is

another possible situation where C < 1 and C ′ ≥ 1; for this case, the instantaneous decoder can
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still achieve the same performance as the joint MAP decoder.

The numerical results presented here are only a subset of [36, Tables 3.1- 3.3] where Theo-

rem 1 is illustrated under various source and sub-channels conditions. By scrutinizing all the

results, the following observations can be made.

• The joint SER of the instantaneous decoder (θ∗, θ′∗), while increasing for noisier channels,

does not change significantly with (q, q′), (Cor, Cor′), and φav. This behavior can be inferred

by examining the SER definition, using (8) and noting that ρ0 + · · · + ρ2q−1−1 = ρ2q−1 +

· · ·+ ρ2q for the marginal distributions given in [16, Table I].

• In general, the joint SER of the MAP decoder improves when the parameters (q, q′),

(Cor, Cor′), (SNR, SNR′), and φav are increased. Indeed, the results show that (q, q′),

(Cor, Cor′), and φav constructively contribute in helping the joint MAP decoder to combat

channel errors; i.e., each individual parameter is more effective in the presence of the

other parameters having high values. Furthermore, increasing these parameters causes more

significant improvements for the sub-channels with low SNR. On the other hand, the SER

improvement with increasing (SNR, SNR′) is more visible when the parameters (q, q′),

(Cor, Cor′), and φav are small.

• When SNR ≤ SNR’, it is usually more beneficial, in terms of the joint MAP SER improve-

ment, to increase q instead of q′. However, when the sources are not highly correlated and

the sub-channels have Cor < Cor′, increasing q′ results in slightly better results.

• Having sub-channels with Cor < Cor′, increasing SNR rather than SNR′ has more sig-

nificant effect on improving the joint SER. When Cor = Cor′, improving the SNR of

the sub-channel with less resolution leads to better results. Furthermore, the joint SER

improvement is more visible when two sources are highly correlated.

• Under the same sub-channels conditions, i.i.d. correlated sources with correlation parameter

φav = 0 result in a better performance, in the terms of SER and SDR, compared to when

the correlated Markov sources with φav < φ0 are sent over the channel. For example,

comparing Tables 3.5 and 4.5 in [36], it can be observed that the SDR results for i.i.d.

correlated sources with φ0 = 0.81 are always better than the case of correlated Markov
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sources with φav = 0.61. This verifies that φav efficiently represents the total redundancy

(in terms of memory and non-uniform distribution) in the sources and provides a means for

comparison between different source models.

B. SQ-MAC-MAP System Simulation

We next simulate the SQ-MAC-MAP system for hidden Markov correlated Gaussian sources

{(Vi, V ′i )}. First, the SQ is designed and the distributions P (x, x′) and Pjk−lm are calculated

for n > 1 using a training set of 106 paired source symbols (for n = 1, they can be directly

determined as shown in Section V-A). Then, 105 source symbols are transmitted for simulation

and the average SDR with the mean square error (MSE) distortion is measured after repeating

each simulation 10 times (for getting consistent results). It is important to point out that the

SQ-MAC-MAP scheme is designed to minimize the joint sequence error probability between

the SQ encoder output sequences and the SQ decoder input sequences, while we evaluate the

system’s end-to-end performance in terms of SDR with the MSE distortion measure. Hence, the

SQ-MAC-MAP is not necessarily optimal in terms of achieving minimum MSE.4 However, we

note from the simulations that our system improves SDR performance by exploiting residual

source redundancy as well as noise correlation and soft-decision information of the NBNDC

sub-channels. Typical simulation results in terms of SDR (in dB) under MAP and instantaneous

decoding are shown in Tables III and IV, respectively, where SDR is defined as

SDR ,
E[(V )2] + E[(V ′)2]

E[(V − V̂ )2] + E[(V ′ − V̂ ′)2]
. (14)

Additional results, including the case when the source {Vi, V ′i } is i.i.d. (i.e., when setting φ0 =

φ1), can be found in [1], [36]. We can observe that the joint MAP decoder successfully takes

advantage of the redundancies and statistics of the sources with φav < φ0, of the sub-channels’

noise memory and soft-decision resolution. In general, the system performs better when these

factors take higher values. However, there are some cases where increasing φav or the sub-

4MSE optimal and suboptimal sequential decoders are studied, among others, in [24], [25]. However, to implement MSE
optimal decoding in our system would significantly increase the system complexity.
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channels’ noise correlation does not improve the system SDR (sometimes even worsening it).

This phenomenon for n = 1 can be explained by rewriting the sufficient condition (9) as

max{Cor, Cor′} ≤ min

{
ρ2q−1 −Bρ2q−1−1

B(1− ρ2q−1−1) + ρ2q−1 − 1
,

ρ′
2q′−1 −Bρ′2q′−1−1

B(1− ρ′
2q′−1−1

) + ρ′
2q′−1 − 1

}
, (15)

where

B = min

{
a

b
,
b

a
,
c

d
,
d

c

}
×min

{
a

c
,
b

d
,
d

b
,
c

a

}
. (16)

In fact, when the sufficient condition (9) holds for two sets of source-channel parameters with

the same fixed SNR (where the parameters Cor, φav, and q might vary), the SDR performance

of the joint MAP decoder is identical to the SDR performance of the instantaneous decoder

which does not change under these two sets of parameters. As shown in Fig. 6, these results

also verify that modeling the quantized sources with the first-order Markov source {(Xn, X
′
n)} is

a good approximation, since the input sequences for the simulations illustrating the theorem are

generated by the Markov source while the system simulation results are based on the quantizing

the original real-valued sources.

Overall, the MAP decoder can realize significant SDR gains by exploiting the source and

channel characteristics. From Table III, we note that when φav = 0.61, SNR= 2 dB and q = n =

3, more than 5 dB SDR gain is achieved when the MAP decoder fully exploits the channels’

memory with high noise correlation (Cor = Cor′ = 0, 9) over the case of ignoring it by

fully interleaving the NBNDC-QB channels (Cor = Cor′ = 0). Furthermore, we note that

incorporating more channel soft-decision information has a positive effect on the performance;

e.g., using a 3-bit soft-decision quantizer rather a hard-decision quantizer (q = 1) results in a

3.5 dB gain (at n = 3, SNR= 2 dB, Cor = Cor′ = 0.9 and φave = 0.61). Similar gains can be

obtained when {Vi, V ′i } is memoryless, see [1], [36].

From Table IV, we note that increasing the sub-channels’ soft-decision resolution and also

the correlation between the sources do not have any significant effect on the performance of the

instantaneous decoder. These results are predictable because according to (8), for 0 ≤ i ≤ N ,

the outputs of the instantaneous symbol-by-symbol decoder (θ∗(yi), θ
′∗(y′i)) can be written as
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functions of Ri and R′i, the unquantized outputs of the Rayleigh fading underlying sub-channels,

as follows

ỹi =

 0, if Ri ≤ 0

1, otherwise
, ỹ′i =

 0, if R′i ≤ 0

1, otherwise
, (17)

which shows no dependence on q, q′, and P (x, x′).

The joint SDR (for both the joint MAP decoder and the joint symbol-by-symbol decoder) of

a system with 2-level quantizers (n = 1) shows the same behavior as its joint SER which we

examined in the previous sub-section. It is observed in [36] that all the arguments regarding the

joint MAP SER of the binary input system also hold for the join MAP SDR of a system with

more quantizer levels (e.g., n = 2). Unlike the system with binary sources, the SDR results of the

instantaneous decoder improve when the noise correlations are increased. Intuitively, this is due

to having symbols which consist of n bits (n > 1) and have higher probability of being received

correctly because of the correlation between the bits. It is also observed that increasing the noise

correlation in the sub-channel with lower SNR results in a more significant SDR improvement.

Finally in Fig. 7, we compare the SDR performance of the SQ-MAC-MAP system under joint

MAP decoding with that of the system using independently designed individual MAP decoders

for each user. We note that significant performance improvements of up to 3.5 dB can be achieved

by using the joint MAP decoder.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied a sensor network with two sensors measuring and transmitting

information (modeled as two correlated Gaussian sources which are scalar quantized) through

an orthogonal Rayleigh DFC MAC (modeled with two independent NBNDC-QB sub-channels)

to a base station, where a joint sequence MAP decoder was implemented via a modified

Viterbi algorithm. The sources were generated according to a bivariate Gaussian distribution

with a correlation coefficient modeled via a two-state Markov process causing change in the

joint distribution over time and creating temporal memory in the joint source symbols. Under

two-level scalar quantization, we established necessary and sufficient conditions under which
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a simple instantaneous symbol-by-symbol joint decoder can replace the joint sequence MAP

decoder without loss of optimality. Finally, numerical results validated our theoretical results

and demonstrated that the proposed system can judiciously make use of the sources’ correlation,

temporal memory and statistics, as well as of the channel’s temporal memory and soft-decision

information to provide a robust SDR performance.

Future work includes investigating how to efficiently reduce the Viterbi MAP decoder’s

complexity, which grows exponentially with the NBNDC-QB noise memory M ; this can be

pursued by a possible extension of the approach in [29]. Finding necessary and sufficient

conditions under which the joint sequence MAP decoder becomes unnecessary is still an open

problem for systems with channel noise memory order or scalar quantization rates greater than

one. Systematically evaluating the system’s modeling effectiveness under a joint sequence MAP

decoder by fitting the MAC’s NBNDC-QB sub-channels to the underlying MAC fading channel

is also an interesting research direction.5 Studying this system for the regular (non-orthogonal)

MAC with correlated fading, possibly using interference mitigation techniques such as in [41],

is another worthwhile objective. Furthermore, generalizing this work from two to multiple users

is of interest. Many emerging topics such as data survivability in distributed data storage can

benefit from harnessing the correlation (or any other shared information) between users to jointly

decode data transmitted to a common node. Moreover, identifying general conditions under which

a simple instantaneous joint decoder is enough to optimally decode the messages, can help give

guidelines on how to distribute the data and optimize the system.

APPENDIX A

PROOF OF LEMMA 1

When the underlying source {(Vi, V ′i )} described in Section II-A is binary-quantized (n = 1),

where each SQ sets its quantization threshold to zero, then due to the symmetry of the bivariate

Gaussian density (1), the conditional distribution vectors πφ ,
[
PHMM{(Xi, X

′
i) = (0, 0) | Φi =

φ}, PHMM{(Xi, X
′
i) = (0, 1) | Φi = φ}, PHMM{(Xi, X

′
i) = (1, 0) | Φi = φ}, PHMM{(Xi, X

′
i) =

5Some preliminary modeling results are available in [36, Section 3.4.2].
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(1, 1) | Φi = φ}
]
, φ ∈ {φ0, φ1}, have identical first and last components and identical second

and third components and admit the following form

πφ0 = [a′, b′, b′, a′] and πφ1 = [c′, d′, d′, c′] (18)

where a′, b′, c′ and d′ are as given in (6). The hidden Markov model for {(Xi, X
′
i)} is depicted

in Fig. 3. We approximate it with a first-order Markov source of identical second-order statistics.

φ0

tφ0φ0

φ1

1− tφ0φ0

1− tφ1φ1

tφ1φ1

(0, 0)

a′

c′

(0, 1)

b′ d′

(1, 0)

b′ d′

(1, 1)

a′

c′

Fig. 3: HMM diagram: the hidden transition probabilities and emission probabilities are given by the corresponding edges.

Let

Ωjk ,
[
Pjk−00, Pjk−01, Pjk−10, Pjk−11

]
denote the rows of the Markov source’s transition matrix T , j, k ∈ {0, 1}. Due to the underlying

HMM, each component of Ωjk satisfies

Pjk−lm = PHMM {(Xi, X
′
i) = (l,m)|Φi = φ0}PHMM

{
Φi = φ0|(Xi−1, X

′
i−1) = (j, k)

}
+PHMM {(Xi, X

′
i) = (l,m)|Φi = φ1}PHMM

{
Φi = φ1|(Xi−1, X

′
i−1) = (j, k)

}
(19)
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where l,m ∈ {0, 1}. Now we can express PHMM

{
Φi = φ0|(Xi−1, X

′
i−1) = (0, 0)

}
as follows

PHMM{Φi = φ0 | (Xi−1, X
′
i−1) = (0, 0)}

= PHMM

{
Φi = φ0 | Φi−1 = φ0

}
PHMM

{
Φi−1 = φ0 | (Xi−1, X

′
i−1) = (0, 0)

}
+PHMM

{
Φi = φ0 | Φi−1 = φ1

}
PHMM

{
Φi−1 = φ1 | (Xi−1, X

′
i−1) = (0, 0)

}
= tφ0φ0 ×

PHMM{(Xi−1, X
′
i−1) = (0, 0) | Φi−1 = φ0}Pr{Φi−1 = φ0}
PHMM{(Xi−1, X ′i−1) = (0, 0)}

+(1− tφ1φ1)×
PHMM{(Xi−1, X

′
i−1) = (0, 0) | Φi−1 = φ1}Pr{Φi−1 = φ1}
PHMM{(Xi−1, X ′i−1) = (0, 0)}

=
tφ0φ0 × a′ × Pφ0 + (1− tφ1φ1)× c′ × (1− Pφ0)

a′ × Pφ0 + c′ × (1− Pφ0)
, (20)

where Pφ0 , Pr{Φi = φ0} = 1−Pr{Φi = φ1} =
1− tφ1φ1

2− (tφ0φ0 + tφ1φ1)
is the stationary distribution

of the Markov process {Φi}∞i=1. Similarly, it can be shown that

PHMM{Φi = φ1 | (Xi−1, X
′
i−1) = (0, 0)} =

(1− tφ0φ0)a′Pφ0 + tφ1φ1c
′(1− Pφ0)

a′Pφ0 + c′(1− Pφ0)
. (21)

Finally, using (18)-(21), we obtain the following expressions for the rows of T

Ω00 = Ω11 =
πφ0 [a

′tφ0φ0Pφ0 + c′(1− tφ1φ1)(1− Pφ0)] + πφ1 [a
′(1− tφ0φ0)Pφ0 + c′tφ1φ1(1− Pφ0)]

a′Pφ0 + c′(1− Pφ0)

Ω01 = Ω10 =
πφ0 [b

′tφ0φ0Pφ0 + d′(1− tφ1φ1)(1− Pφ0)] + πφ1 [b
′(1− tφ0φ0)Pφ0 + d′tφ1φ1(1− Pφ0)]

b′Pφ0 + d′(1− Pφ0)

where the above is written in scalar (component-wise) multiplication form; this completes the

proof of Lemma 1.

APPENDIX B

PROOF6 OF THEOREM 1

For the pair of instantaneous mappings (θ∗, θ′∗) to be an optimal joint MAP sequence decoder

in the sense of minimizing the joint sequence error probability (i.e., to be equivalent to the joint

6Given its length, we herein present an abridged proof; see [36, Appendix B] for the fully detailed proof.
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sequence MAP decoder), it is necessary and sufficient that for all input sequences (x, x′)N ∈

(X × X ′)N and output sequences (y, y′)N ∈ (Y × Y ′)N , where X = X ′ = {0, 1} and Y =

{0, 1, . . . , 2q − 1} and Y ′ =
{

0, 1, . . . , 2q
′ − 1

}
, the following holds

γ ,
Pr
{

(X,X ′)N = (ỹ, ỹ′)N |(Y, Y ′)N = (y, y′)N
}

Pr {(X,X ′)N = (x, x′)N |(Y, Y ′)N = (y, y′)N}
≥ 1 (22)

where (ỹ, ỹ′)N , (θ∗(y), θ′∗(y′))N represents the sequence of simultaneously decoded pairs (i.e.,

ỹi = θ∗(yi) and ỹ′i = θ′∗(y′i), i = 1, 2, . . . , N ).

A. Preliminaries

Note that γ can be written as

γ =
Pr
{

(Y, Y ′)N = (y, y′)N |(X,X ′)N = (ỹ, ỹ′)N
}

Pr
{

(X,X ′)N = (ỹ, ỹ′)N
}

Pr {(Y, Y ′)N = (y, y′)N |(X,X ′)N = (x, x′)N}Pr {(X,X ′)N = (x, x′)N}
. (23)

Since the two sub-channels of the MAC are orthogonal and the input sequences are independent

of the noise processes, we have

γ =
Pr
{
Y N

1 = yN1 |XN
1 = ỹN1

}
Pr
{
Y ′N1 = y′N1 |X ′

N
1 = ỹ′N1

}
Pr
{

(X,X ′)N = (ỹ, ỹ′)N
}

Pr {Y N
1 = yN1 |XN

1 = xN1 }Pr
{
Y ′N1 = y′N1 |X ′N1 = xN1

}
Pr {(X,X ′)N = (x, x′)N}

=
Pr
{
ZN

1 = aN1
}

Pr
{
Z ′N1 = a′N1

}
Pr
{

(X,X ′)N = (ỹ, ỹ′)N
}

Pr {ZN
1 = zN1 }Pr {Z ′N1 = z′N1 }Pr {(X,X ′)N = (x, x′)N}

=
Pr {Z1 = a1}Pr {Z ′1 = a′1}P (ỹ1, ỹ

′
1)

Pr {Z1 = z1}Pr {Z ′1 = z′1}P (x1, x′1)

N∏
k=2

Q(ak|ak−1)Q′(a′k|a′k−1)P ((ỹk, ỹ
′
k)|(ỹk−1, ỹ

′
k−1))

Q(zk|zk−1)Q′(z′k|z′k−1)P ((xk, x′k)|(xk−1, x′k−1))

=
N∏
k=2

Q(ak|ak−1)Q′(a′k|a′k−1)P ((ỹk, ỹ
′
k)|(ỹk−1, ỹ

′
k−1))

Q(zk|zk−1)Q′(z′k|z′k−1)P ((xk, x′k)|(xk−1, x′k−1))
, (24)

where, for i = 1, 2, . . . N , zi ,
yi−(2q−1)xi

(−1)xi
and ai ,

yi−(2q−1)ỹi
(−1)ỹi

; and z′i ,
y′i−(2q

′−1)x′i

(−1)x
′
i

and

a′i ,
y′i−(2q

′−1)ỹ′i

(−1)ỹ
′
i

. Since θ and θ∗ are in the form of (8), we have ai ≤ 2q−1−1 and a′i ≤ 2q
′−1−1,

for any i ∈ {1, 2, . . . , N}. The last two equations in (24) follow from the assumptions that

x1 = ỹ1 and x′1 = ỹ′1 in Theorem 1 which result in z1 = a1 and z′1 = a′1, respectively, and

the fact that for an NBNDC-QB sub-channel with M = 1, the noise process is a homogeneous

first-order Markov process with Pr{Zk = zk} = ρzk , and Q(zk|zk−1) = [εδzk,zk−1
+ (1− ε)ρzk ],
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zk, zk−1 ∈ Y; δzk,zk−1
= 1 if zk = zk−1 and δzk,zk−1

= 0 otherwise.

Next, we review some properties regarding the NBNDC-QB sub-channels. Considering the

first sub-channel, the following hold [16, Appendix C]. For any k ∈ {2, . . . , N},

• We have

zk =

 ak, if zk ≤ 2q−1 − 1

2q − 1− ak, if otherwise.
(25)

• If xk = ỹk and xk−1 = ỹk−1,

Q(ak|ak−1)

Q(zk|zk−1)

Q(ak|ak−1)

Q(ak|ak−1)
= 1. (26)

• If xk = ỹk and xk−1 6= ỹk−1,

min
Q(ak|ak−1)

Q(zk|zk−1)
= min

Q(ak|ak−1)

Q(ak|2q − 1− ak−1)
= 1 (27)

where equality holds if and only if ak 6= ak−1.

• If xk 6= ỹk and xk−1 = ỹk−1,

min
Q(ak|ak−1)

Q(zk|zk−1)
= min

Q(ak|ak−1)

Q(2q − 1− ak|ak−1)
=
ρ2q−1−1

ρ2q−1

(28)

where equality holds if zk = 2q−1 and ak 6= ak−1.

• If xk 6= ỹk and xk−1 6= ỹk−1,

min
Q(ak|ak−1)

Q(zk|zk−1)
= min

Q(ak|ak−1)

Q(2q − 1− ak|2q − 1− ak−1)
=
ε+ (1− ε)ρ2q−1−1

ε+ (1− ε)ρ2q−1

(29)

where equality holds if zk = zk−1 = 2q−1.

The above results also apply for the second sub-channel using its corresponding parameters.

We next partition the index set K = {2, 3, . . . , N} as K =
⋃15
i=0Ai, where

Ai ,
{
k ∈ K : xk ⊕ ỹk = i3, x

′
k ⊕ ỹ′k = i2, xk−1 ⊕ ỹk−1 = i1, x

′
k−1 ⊕ ỹ′k−1 = i0

}
, (30)

the binary 4-tuple (i3i2i1i0) is the binary representation of i and ⊕ denotes addition in modulo-2.
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Using the Ai sets, we can rewrite γ as

γ =
15∏
i=0

γi =
15∏
i=0

∏
k∈Ai

γAi , (31)

where γi =
∏

k∈Ai γAi and

γAi ,
Q(ak|ak−1)Q′(a′k|a′k−1)P ((ỹk, ỹ

′
k)|(ỹk−1, ỹ

′
k−1))

Q(zk|zk−1)Q′(z′k|z′k−1)P ((xk, x′k)|(xk−1, x′k−1))
. (32)

In order to achieve a sufficient/necessary condition for optimal detection, we need to find a

lower bound for γ using the Markov source transition matrix T and the results in (26)-(29). So

a comparison between the γi’s, i = 0, . . . , 15 is required. For the cases A0,A3,A12, and A15,

we will have that each of γ0, γ3, γ12, and γ15 are greater than or equal to one; so we evaluate

the other cases by comparing their γAi’s. It can be shown that [36, Appendix B.1]

γA1 ≤ γA13 and γA7 < γA5 ≤ γA6 and γA7 ≤ γA4 < γA6

γA2 ≤ γA14 and γA11 ≤ γA8 < γA9 and γA11 < γA10 ≤ γA9.

(33)

Further comparison requires more knowledge about sub-channel parameters (SNR, q, ε) and

(SNR′, q′, ε′).

For any pair of input and output sequences {(Xi, Yi)}∞i=1, we define a sequence of states

{Si}∞i=2, where Si = Aj, j ∈ {0, . . . , 15}, if i ∈ Aj by definition of the partitions. Since each

state Si depends on the (xi, yi) and (x′i, y
′
i) as well as (xi−1, yi−1) and (x′i−1, y

′
i−1), any state can

only be followed by certain states which are specified in [36, Table B.1].

B. Necessary Conditions

Considering the results in the previous section and writing the necessary condition in (11) as

min {γA4 , γA8} = min

{
ρ2q−1−1

ρ2q−1

,
ρ′

2q′−1−1

ρ′
2q′−1

}
×min

{
a

b
,
b

a
,
c

d
,
d

c

}
< 1, (34)

it can be shown that if the condition does not hold, a pair of input and output sequences which

results in γ < 1 can be found, meaning that the pair of mappings (θ, θ′) given in (8) is not

optimal joint sequence MAP detector [36, Appendix B.2]. As an illustration of the method used,
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we herein present the proof for the case when N is large enough: if the necessary condition

(12) does not hold, then

min

{
Amin

{
a

d
,
d

a

}
,min

{
ρ2q−1−1

ρ2q−1

,
ρ′

2q′−1−1

ρ′
2q′−1

}
×min

{
a2

bc
,
bc

a2
,
bc

d2
,
d2

bc

}}
< 1, (35)

where

A = min

{
ε′ + (1− ε′)ρ′

2q′−1−1

ε′ + (1− ε′)ρ′
2q′−1

,
ε+ (1− ε)ρ2q−1−1

ε+ (1− ε)ρ2q−1

}
.

There are two possible cases:

1) Assume that A×min
{
a
d
, d
a

}
< 1. Without loss of generality, set A =

ε+(1−ε)ρ2q−1−1

ε+(1−ε)ρ2q−1
.

If min
{
a
d
, d
a

}
= a

d
, the input and output sequences (x, x′)N = ( (0, 1), (0, 1), . . . , (0, 1) ) and

(y, y′)N = ( (0, 1), (2q−1, 1), (2q−1, 1), . . . , (2q−1, 1) ) result in

γ =
ρ2q−1−1

ρ2q−1

× a

d
×
(
ε+ (1− ε)ρ2q−1−1

ε+ (1− ε)ρ2q−1

× a

d

)N−1

which tends to zero as N →∞.

If min
{
a
d
, d
a

}
= d

a
, the input and output sequences (x, x′)N = ( (0, 0), (0, 0), . . . , (0, 0) )

and (y, y′)N = ( (0, 0), (2q−1, 0), (2q−1, 0), . . . , (2q−1, 0) ) result in

γ =
ρ2q−1−1

ρ2q−1

× d

a
×
(
ε+ (1− ε)ρ2q−1−1

ε+ (1− ε)ρ2q−1

× d

a

)N−1

which tends to zero as N →∞.

Similarly, if A =
ε′+(1−ε′)ρ′

2q
′−1−1

ε′+(1−ε′)ρ′
2q
′−1

, switching x with x′ and y with y′ in the above input and

output sequence examples will result in γ becoming arbitrarily small for a large enough N .

2) Assume that min

{
ρ2q−1−1

ρ2q−1
,
ρ′
2q
′−1−1

ρ′
2q
′−1

}
×min

{
a2

bc
, bc
a2
, bc
d2
, d

2

bc

}
< 1.

It can be verified that the input and output sequences given as examples in the proof of the

necessary condition (11) for general N will result in the γ < 1 for a large enough N .

As an example, if min

{
ρ2q−1−1

ρ2q−1
,
ρ′
2q
′−1−1

ρ′
2q
′−1

}
×min

{
a2

bc
, bc
a2
, bc
d2
, d

2

bc

}
=

ρ′
2q
′−1−1

ρ′
2q
′−1

bc
d2

, the input and

output sequences (x, x′)N = ( (0, 1), (0, 1), . . . , (0, 1) ) and (y, y′)N = ( (0, 1), (0, 2q−1 −
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1), (0, 1), (0, 2q−1 − 1), . . . ) result in

γ =
ρ′

2q′−1−1

ρ′
2q′−1

c

d
× b

d
×
ρ′

2q′−1−1

ρ′
2q′−1

c

d
× b

d
× . . . ≤

ρ′
2q′−1−1

ρ′
2q′−1

{
ρ′

2q′−1−1

ρ′
2q′−1

bc

d2

}bN−1
2
c

which tends to zero as N →∞. Thus, there exists N large enough for which γ < 1.

C. Sufficient Condition

We show that γ computed via (24) for any input and output sequences {(xi, x′i)}
N
i=1 and

{(yi, y′i)}
N
i=1 with N ≥ 2 is greater than or equal to one under the condition (9).

First, if (9) holds, we will have

min {γA7 , γA11} × γA1 ≥ 1. (36)

This inequality along with those in (33) results in γAi ≥ 1 for all i ∈ {0, 3, 4, . . . , 15}, which

implies that only γA1 and γA2 are less than one.

Now, assume that {Si}Ni=2 is the state sequence assigned to an arbitrary input and output

sequences {(xi, x′i)}
N
i=1 and {(yi, y′i)}

N
i=1. We can write the following lower bound for γ

γ ≥
N∏
i=1

γSi , (37)

where γSi ∈ {γA1 , . . . γA15} , i = 2, 3, . . . , N . In fact,

Q(ai|ai−1)Q′(a′i|a′i−1)P ((ỹi, ỹ
′
i)|(ỹi−1, ỹ

′
i−1))

Q(zi|zi−1)Q′(z′i|z′i−1)P ((xi, x′i)|(xi−1, x′i−1))
≥ γSi .

Note that the proposed lower bound only depends on the corresponding state sequence and not

on the exact values of input and output sequences.

Finally, the proof is completed via strong induction and using (36) and the previous facts; see

[36, Appendix B.3]. �
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Fig. 4: Joint symbol error rate (in %) of joint MAP decoding and instantaneous joint decoding (θ∗, θ′∗) for two binary-quantized
correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with two orthogonal NBNDC-
QB, with M = α = 1, Cor = Cor′ = 0 and identical parameters (SNR,q); q = 1, 2, 3. Source parameters are φav = 0.61,
φ0 = −0.31, φ1 = 0.81 and (tφ0φ0 , tφ1φ1) = (0.1, 0.8)

Fig. 5: Joint symbol error rate (in %) of joint MAP decoding and instantaneous joint decoding (θ∗, θ′∗) for two binary-quantized
correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with two orthogonal NBNDC-
QB, with M = α = 1, Cor = Cor′ = 0, q = 1, 2, 3 and identical parameter SNR. Source parameters are φav = 0.25,
φ0 = −0.31, φ1 = 0.81 and tφ0φ0 = tφ1φ1 = 0.2
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TABLE I: Joint symbol error rate (in % shown in bold font) of joint MAP decoding and instantaneous joint decoding (θ∗, θ′∗)
for two binary-quantized correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with
two orthogonal NBNDC-QB, with M = α = 1, Cor = Cor′ = 0 and q = 1, 2, 3. Source parameters: for φav = 0.25,
φ0 = −0.31, φ1 = 0.81 and tφ0φ0 = tφ1φ1 = 0.2; for φav = 0.61, φ0 = −0.31, φ1 = 0.81 and (tφ0φ0 , tφ1φ1) = (0.1, 0.8).

Table I.(a): Two sub-channels with identical parameter SNR.

φav (q, q′)
(SNR, SNR′) (dB)

(15,15) (10,10) (5,5) (2,2)
MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗)

0.25

(1,1)
C = 51.00 > 1 C = 16.69 > 1 C = 5.80 > 1 C = 3.27 > 1
C ′ = 66.14 > 1 C ′ = 21.61 > 1 C ′ = 7.51 > 1 C ′ = 4.23 > 1
1.52 1.52 4.56 4.56 12.49 12.49 20.59 20.59

(2,2)
C = 1.24 > 1 C = 1.12 > 1 C = 1.13 > 1 C = 0.92 < 1
C ′ = 1.61 > 1 C ′ = 1.45 > 1 C ′ = 1.47 > 1 C ′ = 1.19 > 1
1.54 1.54 4.62 4.62 12.36 12.36 20.57 20.57

(3,3)
C = 0.71 < 1 C = 0.71 < 1 C = 0.65 < 1 C = 0.61 < 1
C ′ = 0.92 < 1 C ′ = 0.92 < 1 C ′ = 0.84 < 1 C ′ = 0.79 < 1
1.51 1.54 4.54 4.61 12.23 12.44 20.34 20.58

0.61

(1,2)
C = 1.07 > 1 C = 0.96 < 1 C = 0.97 < 1 C = 0.79 < 1
C ′ = 1.12 > 1 C ′ = 1.01 > 1 C ′ = 1.02 > 1 C ′ = 0.82 < 1
1.55 1.55 4.60 4.60 12.41 12.41 19.72 20.55

(1,3)
C = 0.61 < 1 C = 0.61 < 1 C = 0.56 < 1 C = 0.53 < 1
C ′ = 0.64 < 1 C ′ = 0.64 < 1 C ′ = 0.58 < 1 C ′ = 0.55 < 1
1.44 1.55 4.32 4.63 11.49 12.35 19.06 20.57

(2,3)
C = 0.61 < 1 C = 0.61 < 1 C = 0.56 < 1 C = 0.53 < 1
C ′ = 0.64 < 1 C ′ = 0.64 < 1 C ′ = 0.58 < 1 C ′ = 0.55 < 1
1.44 1.56 4.33 4.61 11.59 12.44 18.37 20.53

Table I.(b): Two sub-channels with identical parameter q.

φav (q, q′)
(SNR, SNR′) (dB)

(15,10) (15,5) (15,2) (10,5)
MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗)

0.25

(1,1)
C = 16.70 > 1 C = 5.80 > 1 C = 3.27 > 1 C = 5.79 > 1
C ′ = 21.61 > 1 C ′ = 7.51 > 1 C ′ = 4.23 > 1 C ′ = 7.51 > 1
3.10 3.10 7.16 7.16 11.45 11.45 8.59 8.59

(2,2)
C = 1.12 > 1 C = 1.13 > 1 C = 0.92 < 1 C = 1.12 > 1
C ′ = 1.45 > 1 C ′ = 1.47 > 1 C ′ = 1.19 > 1 C ′ = 1.45 > 1
3.06 3.06 7.10 7.10 11.46 11.53 8.60 8.60

0.61

(1,1)
C = 14.34 > 1 C = 4.98 > 1 C = 2.81 > 1 C = 4.98 > 1
C ′ = 15.00 > 1 C ′ = 5.21 > 1 C ′ = 2.94 > 1 C ′ = 5.21 > 1
3.08 3.08 7.14 7.14 11.51 11.51 8.63 8.63

(2,2)
C = 0.96 < 1 C = 0.97 < 1 C = 0.79 < 1 C = 0.96 < 1
C ′ = 1.01 > 1 C ′ = 1.02 > 1 C ′ = 0.83 < 1 C ′ = 1.01 > 1
3.11 3.11 7.10 7.12 10.76 11.59 8.62 8.62
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TABLE II: Joint symbol error rate (in % shown in bold font) of joint MAP decoding and instantaneous joint decoding (θ∗, θ′∗)
for two binary-quantized correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with
two orthogonal NBNDC-QB, with M = α = 1, Cor = 5 × 10−3, Cor′ = 0.5 and q = 1, 2, 3. Source parameters: φav = 0
with φ0 = −0.5, φ1 = 0.5 and tφ0φ0 = tφ1φ1 = 0.2.

Table II.(a): Two sub-channels with identical parameters (SNR, q).

φav (q, q′)
(SNR, SNR′) (dB)

(15,15) (10,10) (5,5) (2,2)
MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗)

0.0

(1,1)
C = 1.51 > 1 C = 1.48 > 1 C = 1.39 > 1 C = 1.31 > 1
C ′ = 112.39 > 1 C ′ = 36.72 > 1 C ′ = 12.75 > 1 C ′ = 7.19 > 1
1.52 1.52 4.57 4.57 12.40 12.40 20.53 20.53

(2,2)
C = 0.78 < 1 C = 0.79 < 1 C = 0.84 < 1 C = 0.84 < 1
C ′ = 2.73 > 1 C ′ = 2.46 > 1 C ′ = 2.50 > 1 C ′ = 2.02 > 1

1.54 1.54 4.64 4.64 12.46 12.46 20.42 20.42

(3,3)
C = 0.77 < 1 C = 0.77 < 1 C = 0.78 < 1 C = 0.79 < 1
C ′ = 1.57 > 1 C ′ = 1.57 > 1 C ′ = 1.43 > 1 C ′ = 1.35 > 1

1.53 1.53 4.60 4.60 12.39 12.39 20.52 20.52

Table II.(b): Two sub-channels with identical parameter SNR.

φav (q, q′)
(SNR, SNR′) (dB)

(15,15) (10,10) (5,5) (2,2)
MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗)

0.0

(1,2)
C = 0.78 < 1 C = 0.79 < 1 C = 0.84 < 1 C = 0.85 < 1
C ′ = 2.74 > 1 C ′ = 2.47 > 1 C ′ = 2.50 > 1 C ′ = 2.02 > 1
1.53 1.53 4.57 4.57 12.44 12.44 20.50 20.50

(1,3)
C = 0.77 < 1 C = 0.77 < 1 C = 0.78 < 1 C = 0.79 < 1
C ′ = 1.57 > 1 C ′ = 1.57 > 1 C ′ = 1.43 > 1 C ′ = 1.35 > 1
1.52 1.52 4.57 4.57 12.52 12.52 20.48 20.48

(2,3)
C = 0.77 < 1 C = 0.77 < 1 C = 0.78 < 1 C = 0.79 < 1
C ′ = 1.57 > 1 C ′ = 1.57 > 1 C ′ = 1.43 > 1 C ′ = 1.35 > 1
1.50 1.50 4.57 4.57 12.39 12.39 20.54 20.54

(3,2)
C = 0.78 < 1 C = 0.79 < 1 C = 0.84 < 1 C = 0.85 < 1
C ′ = 1.57 > 1 C ′ = 1.57 > 1 C ′ = 1.43 > 1 C ′ = 1.35 > 1
1.58 1.58 4.62 4.62 12.46 12.46 20.52 20.52

(3,1)
C = 1.52 > 1 C = 1.48 > 1 C = 1.39 > 1 C = 1.31 > 1
C ′ = 2.74 > 1 C ′ = 2.47 > 1 C ′ = 2.50 > 1 C ′ = 2.02 > 1
1.55 1.55 4.71 4.71 12.35 12.35 20.73 20.73

(2,1)
C = 1.52 > 1 C = 1.48 > 1 C = 1.39 > 1 C = 1.31 > 1
C ′ = 2.74 > 1 C ′ = 2.47 > 1 C ′ = 2.50 > 1 C ′ = 2.02 > 1
1.55 1.55 4.71 4.71 12.35 12.35 20.73 20.73
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Fig. 6: Simulation SDR results (in dB) of joint MAP decoding and instantaneous joint decoding (θ∗, θ′∗) for two binary-
quantized correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with two orthogonal
NBNDC-QB, with M = α = 1 and identical parameters (Cor, SNR,q); q = 1, 3 and Cor = 0, 0.9. Source parameters are
φav = 0.61, φ0 = −0.31, φ1 = 0.81 and (tφ0φ0 , tφ1φ1) = (0.1, 0.8). SQs with n = 1 are used.

Fig. 7: Simulation SDR results (in dB) of joint MAP decoding and having two independently designed MAP decoders for two
binary-quantized correlated Gaussian sources with Markovian correlation parameter. The channel model is a MAC with two
orthogonal NBNDC-QB, with M = α = 1, Cor = Cor′ = 0.9 and identical parameters (SNR,q); q = 1, 3. Source parameters
are φav = 0.61, φ0 = −0.31, φ1 = 0.81 and (tφ0φ0 , tφ1φ1) = (0.1, 0.8). SQs with n = 1, 3 are used.
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