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Optimal Binary Signaling for a Two Sensor
Gaussian MAC Network

Luca Sardellitti , Glen Takahara, Member, IEEE, and Fady Alajaji , Senior Member, IEEE

Abstract— We consider a two sensor distributed detection
system transmitting a binary non-uniform source over a Gaussian
multiple access channel (MAC). We model the network via
binary sensors whose outputs are generated by binary symmetric
channels of different noise levels. We prove an optimal one
dimensional constellation design under individual sensor power
constraints which minimizes the error probability of detecting
the source. Three distinct cases arise for this optimization based
on the parameters in the problem setup. In the most notable case
(Case III), the optimal signaling design is to not necessarily use
all of the power allocated to the more noisy sensor (with less
correlation to the source). We compare the error performance of
the optimal one dimensional constellation to orthogonal signaling.
The results show that the optimal one dimensional constellation
achieves lower error probability than using orthogonal channels.

Index Terms— Distributed detection, wireless sensor networks,
multiple access channel, constellation design, binary signaling,
power allocation, source-channel signaling, error probability.

I. INTRODUCTION

WIRELESS sensor networks are widely used for moni-
toring the state of real world phenomena. This includes

both the estimation of a real valued parameter (such as
temperature or rain fall measurements) and the detection of
an event occurring (such as the occurrence of forest fires or
a security breach). In this paper, we focus on the hypothesis
testing problem described by distributed detection of an event
occurring.

When working with generalized distributed detection prob-
lems, the error probability of the system cannot in general
be expressed analytically. As a result, previous work on
distributed detection typically uses related or proxy metrics for
system error analysis. For example, [2] uses error exponents
to evaluate the performance of various detection schemes,
[3] uses the J-divergence (i.e., the Jeffreys-divergence [4]),
while [5] and [6] use the deflection coefficient as the metric
for optimization.

Previous work in this area employs a variety of signaling
structures for the sensors. For example, [3] uses orthogonal
channels for each sensor, while [6] uses a single MAC for
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the entire network. Works such as [6], [7], [8], and [9] fix a
signaling design and analyze detection schemes at the fusion
center. Other works optimize the sensors’ signaling techniques
under certain constraints. For example, [3] optimizes power
allocation for a network that uses orthogonal signaling and
on-off keying for each sensor, under total and average power
constraints. Alternatively, [5] assumes fixed power at each
sensor, and analyzes the optimal rotation angle to send the
signals. In [10], the problem of distributed mean-squared
error estimation of a Gaussian source sent over a symmetric
Gaussian sensor network is analyzed; it is shown that uncoded
transmission (scalar coding) is optimal in the sense that it
achieves Shannon’s optimal performance theoretically achiev-
able among all source-channel block codes of sufficiently
large lengths. The distributed detection setup in this paper
can be seen as a discretization of the distributed estimation
system in [10] if we use a uniformly distributed source and
symmetric sensor channels. The source and sensor readings
can be represented as one bit quantizations of their continuous
counterparts in [10]. Further, [11] extends the distributed
estimation problem of [10] to include fading and asymmetric
sensors, providing a sufficient condition under which uncoded
transmission is optimal.

Throughout the above mentioned works, there is not
much emphasis put on generalized constellation design
for distributed detection problems. We aim to solve the
source-channel signaling problem of finding an optimized con-
stellation design to minimize error probability under a given
source and channel model. This is similar in principle to works
such as [12], [13], [14], [15], [16], [17], [18], [19], and [20],
where general constellation design is optimized for a chosen
criterion. In [12], the optimal joint binary constellation design
for two correlated sources was derived. In [13] and [14], the
authors used a minimum inter-constellation distance criterion
for optimizing constellations for multiple sources. In contrast,
[17], [18], [19], [20] optimized M -ary constellations for a
single source. In this paper, we adapt these ideas to optimize
signaling for a distributed detection system.

We simplify the distributed detection problem to a two
sensor communication network so that an analytical optimiza-
tion of the error probability can be performed. We model
hypothesis testing for an event of interest occurring as a non-
uniformly distributed binary source, and the sensor noises are
modelled as passing the source through independent memo-
ryless binary symmetric channels, introducing sensor errors.
Finally, the sensors choose binary constellations to send their
signals over a Gaussian MAC to the fusion center, which
then performs the maximum-a-posteriori (MAP) detection
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rule to recover the source. With this setup, we analytically
derive an optimal one dimensional constellation design to
minimize the system error probability under individual power
constraints for each sensor. The proof is split into three cases,
based on the parameters describing the source distribution and
sensors’ noise. The constellation design is optimized in each of
these cases using indirect analysis of the decision boundaries,
followed by algebraic and derivative analysis using an upper
bound on the error probability. In addition, we show using
numerical and simulation results that the derived optimal one
dimensional constellation achieves lower error probability than
using orthogonal channels. Our most notable result is that in
certain cases (which is dominant when the source is nearly
uniformly distributed), the noisier sensor should use some but
not all of its allocated power.

The rest of the paper is structured as follows. Section II
describes the mathematical model of the sensor network,
including the fusion center detection rule. Sections III and IV
give a summary and a detailed proof of the main opti-
mization results, respectively. Section V presents simulations
and numerical examples which reinforce and illustrate the
theoretically established results. Finally, Section VI draws
conclusions and suggests future research directions.

II. SYSTEM MODEL

A. Source and Sensors

Let X be a binary event that is to be observed by a sensor
network. Without loss of generality, it is assumed that the
source is distributed such that p1 ≜ Pr(X = 1) ≤ 0.5. We also
define p0 ≜ Pr(X = 0) = 1 − p1. There are two sensors,
X1 and X2 observing the source X , which are modelled as
passing X through two memoryless binary symmetric chan-
nels. This is expressed as Xs = X ⊕ Zs, s = 1, 2, where ⊕
denotes addition modulo-2, with Z1 and Z2 being independent
Bernoulli noise processes with means (or channel crossover
probabilities) ϵ1 and ϵ2, respectively. It is also assumed that
X is independent from (Z1, Z2). Without loss of generality,
Sensor 1 is assumed to have stronger correlation to the original
source X than Sensor 2: 0 < ϵ1 ≤ ϵ2 < 0.5. The sensors,
unable to communicate with each other, encode their data
independently using binary constellations. The constellations
for the sensors are represented as follows: Cs = {c0,s, c1,s},
s ∈ {1, 2}, where for i ∈ {0, 1}, ci,s ∈ R denotes the
constellation point for sensor s assigned to Xs = i. Let
S1 ∈ C1, S2 ∈ C2 be the random variables associated to each
sensor’s chosen constellation point. Also let P max

1 and P max
2

be the power constraints of sensors, i.e., E[S2
i ] ≤ P max

i , i ∈
{1, 2}. In this setup, each sensor has its own power allotment,
as opposed to having a common power constraint on the entire
network.

B. Channel Model

The sensors’ signals are sent through a Gaussian MAC. The
received signal R is described by the relation R = S1+S2+Z,
where Z is a Gaussian noise variable with zero mean and
variance N0

2 . For convenience, we also define σ as the standard

deviation of the noise, given by σ =
√

N0
2 . It is assumed that

TABLE I
CASE CHARACTERIZATION CONDITIONS

Z is independent of the sensor signals S1 and S2. The overall
signal S1 + S2 sent over the channel can be represented as
a point in the combined constellation of C1 and C2, given by
C = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}.

C. Maximum-a-Posteriori Detection

The event X is reconstructed at the fusion center using
(optimal) MAP detection. For a Gaussian MAC received signal
r, the detected bit is determined as follows:

x̂(r) = arg max
i∈{0,1}

Pr(X = i | R = r)

= arg max
i∈{0,1}

Pr(X = i)fR(r | X = i)

= arg max
i∈{0,1}

pi

∑
(l,m)∈{0,1}2

plm|ifR(r|S1 + S2 = alm)

= arg max
i∈{0,1}

pi

∑
(l,m)∈{0,1}2

plm|ifZ(r − alm), (1)

where fR and fZ are the probability density functions (pdfs) of
the received signal R and channel noise variable Z, respec-
tively, plm|i ≜ Pr(X1 = l,X2 = m|X = i), and alm ∈ C
denotes the superimposed constellation symbol associated with
X1 = l and X2 = m. In the case of a tie, we choose to detect
a 0. This is an arbitrary decision because the probability of
a tie is always zero since the noise is a continuous random
variable. The conditional probabilities plm|i can be expressed
as follows in terms of the sensor crossover probabilities:

p11|0 = p00|1 = ϵ1ϵ2, p00|0 = p11|1 = (1− ϵ1)(1− ϵ2),
p01|0 = p10|1 = (1− ϵ1)ϵ2, p10|0 = p01|1 = ϵ1(1− ϵ2). (2)

The real line is partitioned into two decision regions, D0 and
D1 = Dc

0, where Di = {r ∈ R | x̂(r) = i}, i = 0, 1.

III. SUMMARY OF MAIN RESULTS

We herein summarize our main results. Specifically, for
fixed parameters p1, ϵ1, ϵ2, N0, P max

1 and P max
2 , we show

that the optimal constellation designs for C1 and C2 which
achieve the minimum error probability, P ∗err, are expressed as
Ci = {c0,i, c1,i} =

{
−
√

p1
p0

P ∗i ,
√

p0
p1

P ∗i

}
, for i ∈ {1, 2},

where the optimal power allocations P ∗i are separated into
three cases. The conditions for each case are given in Table I
and the optimization results are summarized in Table II.

For Cases II and III in Table I, the decision boundary, x∗,
is the unique root of (6) corresponding to P ∗1 and P ∗2 .

In Table II, we used the quantities

P̃2 ≜
N0p1p0

2
√

P max
1

ln
(1− ϵ1 − ϵ2)2 − Λ

(ϵ2 − ϵ1)2 − Λ
, (3)
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TABLE II
OPTIMAL POWER ALLOCATION RESULTS

with

Λ ≜
(p0 − p1)2

p0p1
(1− ϵ1)(1− ϵ2)ϵ1ϵ2.

Note that the expression for P̃2 is always real valued when the
conditions of Case III are met. Also note that because of the
assumption 0 < ϵ1 ≤ ϵ2 < 0.5, the conditions for the three
cases are numerically consistent, i.e., we have that

0 <
ϵ1ϵ2

1− ϵ1 − ϵ2 + 2ϵ1ϵ2
<

ϵ1 − ϵ1ϵ2
ϵ1 + ϵ2 − 2ϵ1ϵ2

≤ 0.5,

where the last inequality holds with equality if and only if
ϵ1 = ϵ2. These results will be further analyzed and discussed in
later sections of this paper. The most interesting and counter-
intuitive result is that in Case III, the optimal power allocation
is not to necessarily use all of the available power for Sensor 2.
The remainder of this paper is dedicated to prove these results
and illustrate them via numerical examples and simulations.

IV. PROOF OF MAIN RESULTS

First, we use Theorem 1 to show that the constellation
design optimization problem can be restricted to a set of asym-
metric constellations, parameterized by each sensor’s power
allocation. Then we analyze the boundary points between
the decision regions D0 and D1 (decision boundaries) using
this optimal asymmetric design. The characterization of these
decision boundaries splits the problem into the three cases
given in Table I. For Case I, Proposition 1 shows the trivial
nature of the decision boundaries, and thus also the opti-
mization in this case. For Case II, Theorem 2 shows that
using all allocated power for both sensors is optimal. Finally,
in Case III, Theorem 3 gives the globally optimal power
allocation for Sensor 2. Combining this result with Theorems 4
and 5, which show that the error probability decreases in
both sensor powers until reaching the global minimum, yields
the overall optimal power allocation under the given power
constraints. The majority of the proof details for the main
theorems are given in the appendices, while an overview and
intuitive explanations are provided in this section.

Theorem 1: For any combination of binary constellations
C = C1 +C2, there exists a constellation pattern C∗ = C∗1 +C∗2
which has equal error probability, equal or better power con-
sumption, with the composition C∗i =

{
−
√

p1
p0

Pi,
√

p0
p1

Pi

}
,

for some Pi ∈ R, i ∈ {1, 2}.
Proof: In a Gaussian MAC using MAP detection, the

error probability is the same for constellations that are trans-
lations of each other. Hence, constellations with the same
distances between constellation points will have the same
error performance. The distances between the points in the
joint constellation C are determined by the distances between

the points in the individual constellations Ci = {c0,i, c1,i},
i ∈ {1, 2}. Let the constellation distance, di be defined as
follows:

di ≜ c1,i − c0,i, i ∈ {1, 2}. (4)

We will minimize the average power consumption for each
sensor while maintaining constellation distance di. This is
computed below substituting in the constraint from (4):

P 2
i = E[S2

i ] = p0c
2
0,i + p1c

2
1,i = c2

1,i − 2p0dic1,i + p0d
2
i .

This is a simple quadratic function of c1,i, which is minimized
at c1,i = p0di, c0,i = −p1di. Substituting this back into the
expression of P 2

i , we see that the minimum power has the
form P ∗i

2 = p1p0d
2
i . Finally, rearranging for di = 1√

p1p0
P ∗i

shows that the minimum power constellation has the form:

c0,i = −
√

p1

p0
Pi, c1,i =

√
p0

p1
Pi, i ∈ {1, 2}.

Using the result of Theorem 1, we can restrict the optimization
search to constellations which take the following asymmetric
form. Ci = {c0,i, c1,i} =

{
−
√

p1
p0

Pi,
√

p0
p1

Pi

}
, where Pi ∈

[0,
√

P max
i ] for i ∈ {1, 2}. To simplify notation, we define

the following two symbols which represent these optimal
asymmetric parameters:

α ≜
√

p0

p1
, β ≜

√
p1

p0
. (5)

The relationship α + β = 1√
p0p1

will be used often in the

remaining analysis. The problem has now been reduced to
finding the optimal power allocations, P1 and P2.

A. Decision Boundaries

To analyze the error probabilities, we first must understand
the behaviour of the decision regions D0 and D1. To charac-
terize these regions, we take the difference between the two
terms in (1) and manipulate the expressions to give

Pr(X = 1 | R = r)− Pr(X = 0 | R = r)

=
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)fZ(r − alm)

=
1

σ
√

2π

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)e
−(r−alm)2

N0 .

We are interested in the sign of this expression, so we simplify
using the following forms of the restricted constellation points:

a11 = α(P1 + P2), a01 = −βP1 + αP2,

a10 = αP1 − βP2, a00 = −β(P1 + P2),

which gives the following function of x, which has the same
sign as the original expression for any fixed P1 and P2:

w(x) = ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 + ce
2(α+β)P2x

N0 + d,
(6)
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where

a ≜ āe−
α2(P1+P2)2

N0 , b ≜ b̄e−
(αP1−βP2)2

N0 ,

c ≜ c̄e−
(βP1−αP2)2

N0 , d ≜ d̄e−
β2(P1+P2)2

N0 ,

and

ā ≜ p1p11|1 − p0p11|0, b̄ ≜ p1p10|1 − p0p10|0,

c̄ ≜ p1p01|1 − p0p01|0, d̄ ≜ p1p00|1 − p0p00|0. (7)

Using (6), we can characterize the decision regions as D0 =
{x ∈ R | w(x) ≤ 0} = Dc

1. Note that by the assumptions
on p1, ϵ1 and ϵ2, we have that d̄ < 0, which implies that
w(x) is negative as x → −∞ for any P1 and P2 (hence the
MAP rule detects a 0). Thus, we can completely determine
these regions by the boundary points between D0 and D1.
These boundary points are the same as where w(x) crosses
from negative to positive, or vice-versa. Thus, it is relevant
to analyze the set X = {x ∈ R | w(x) = 0}. Note that
applying the results of [21, Corollary 3.2], we know that the
size of this set is restricted to |X | ∈ {0, 1, 2, 3}. Unfortunately,
there is not a general way to solve for the values x ∈ X
analytically. However, the problem can be split into three
cases which can be analyzed without knowing these values
explicitly. The decision regions can be expressed as unions of
intervals using these boundary points. For example, if X =
{x}, then D0 = (−∞, x], whereas if X = {x1, x2, x3}, with
x1 < x2 < x3 then D0 = (−∞, x1] ∪ [x2, x3].

B. Case I: 0 ≤ p1 ≤ ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

To analyze the error probability, we must first understand
how the decision regions behave. Using the defining relation-
ships of Case I, we obtain the following result.

Proposition 1: In Case I, there are no real solutions to the
equation w(x) = 0, where w(x) is given in (6).

Proof: Each of the following inequalities hold due to the
condition of Case I, and p1 ≤ 0.5, 0 < ϵ1 ≤ ϵ2 < 0.5:

ā = p1p11|1 − p0p11|0

= (1− ϵ1 − ϵ2 + 2ϵ1ϵ2)
(

p1 −
ϵ1ϵ2

1− ϵ1 − ϵ2 + 2ϵ1ϵ2

)
≤ 0 =⇒ a ≤ 0,

b̄ = p1p10|1 − p0p10|0

= (ϵ1 + ϵ2 − 2ϵ1ϵ2)
(

p1 −
ϵ1 − ϵ1ϵ2

ϵ1 + ϵ2 − 2ϵ1ϵ2

)
< 0

=⇒ b < 0,

c̄ = p1p01|1 − p0p01|0

= (ϵ1 + ϵ2 − 2ϵ1ϵ2)
(

p1 −
ϵ2 − ϵ1ϵ2

ϵ1 + ϵ2 − 2ϵ1ϵ2

)
< 0

=⇒ c < 0,

d̄ = p1p00|1 − p0p00|0

= (1− ϵ1 − ϵ2 + 2ϵ1ϵ2)
(

p1 −
1− ϵ1 − ϵ2 + ϵ1ϵ2
1− ϵ1 − ϵ2 + 2ϵ1ϵ2

)
< 0 =⇒ d < 0.

Thus w(x) < 0 ∀x ∈ R and w(x) has no real roots.

Since there are no roots of (6), there are also no decision
boundaries in Case I. Thus, no matter what the received
signal is, the optimal detection will always be x̂ = 0 (i.e.,
D0 = R). Hence, the error probability is only dependent on
the source probability p1. In this case, the sensors are not able
to send any useful data, so they should not send anything
at all. We conclude that the optimal power allocation and
corresponding error performance are expressed as follows:

P ∗Case I
1 = 0, P ∗Case I

2 = 0, P ∗Case I
err = p1.

C. Case II: ϵ1ϵ2
1−ϵ1−ϵ2+2ϵ1ϵ2

< p1 ≤ ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

Using a similar approach as in the proof of Proposition 1,
we can show the following properties about the coefficients
of (6) in this case:

a > 0, b ≤ 0, c ≤ 0, d < 0.

We can now characterize the decision regions as follows.
Proposition 2: In Case II, there is exactly one real root to

w(x) in (6) for any P1, P2 > 0. Further, this root is also a
decision boundary between D0 and D1.

Proof: Let P1, P2 > 0. First we show that there exists at
least one real solution to w(x) = 0. We use the fact that w(x)
is continuous and that its asymptotic behaviours are:

lim
x→−∞

w(x) = d, lim
x→∞

w(x) = ∞.

Since d < 0 and w(x) is continuous, it must have at least
one root. Next we show that w(x) can have at most one root
by showing that once it becomes non-negative, the derivative
is always strictly positive, so it can never have another zero.
Assume w(x) ≥ 0, we then have:

dw

dx
=

2(α + β)
N0

(
(P1 + P2)ae

2(α+β)(P1+P2)x
N0

+ P1be
2(α+β)P1x

N0 + P2ce
2(α+β)P2x

N0

)
=

2(α + β)
N0

(
(P1 + P2)w(x)− P2be

2(α+β)P1x
N0

− P1ce
2(α+β)P2x

N0 − (P1 + P2)d
)

> 0.

This shows that w(x) has exactly one real root, and this root
is a boundary point between D0 and D1 as desired.

Since there is a unique decision boundary, the decision
regions will have the form D0 = (−∞, x], where x is the root
of (6) corresponding to P1 and P2. We can express the error
probability at any P1, P2 > 0 using the following expression:

Perr(P1, P2) =
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)Q

(
alm − x

σ

)
+ p0plm|0, (8)

where Q is the Gaussian tail distribution function, defined as

Q(x) =
1√
2π

∫ ∞

x

e−
u2
2 du,

alm are the constellation points and x is the root of (6)
corresponding to P1 and P2. We also give the following upper
bound on the error probability.
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Fig. 1. Graphical representation of the sequence {P2,i}∞i=0 and correspond-
ing decision boundaries {xi}∞i=0.

Proposition 3: If P1, P2 > 0 and x is the corresponding
unique decision boundary, then for any x̂ ∈ R, the following
is an upper bound on the error probability

P UB
err,x̂(P1, P2)≜

∑
(l,m)∈{0,1}2

(p1plm|1−p0plm|0)Q
(
alm − x̂

σ

)
+p0plm|0.

(9)

Proof: This expression corresponds to the error probability
associated to using a decision boundary x̂. Since the true
decision boundary, x, from the MAP detection rule is optimal,
this must be an upper bound.

This upper bound is used to show the following main result
about the error probability as a function of P1 and P2.

Theorem 2: In Case II, Perr(P1, P2) is decreasing in P1 and
P2 for P1, P2 > 0.

Proof: See Appendix A.
While the detailed proof of this theorem is provided in

Appendix A, we herein highlight its main steps. For either
of the sensors (say, Sensor 2) we first establish a lower bound
on the value of the decision boundary for any value of P2. For
some fixed P2,0, we use this lower bound to define a step-wise
increasing sequence {P2,i}∞i=0, as illustrated in Fig. 1.

Although the error expression as given in (8) cannot be
analytically minimized because of the dependence on the
decision boundary, x, the upper bound given in (9) can be
analyzed for any fixed x̂. We show by direct derivative analysis
that for any adjacent terms in the sequence, P2,i and P2,i+1,
there is an upper bound with equality at P2,i and is decreasing
until P2,i+1. This shows that the error probability decreases
from P2,i to P2,i+1, as illustrated in Fig. 2.

Using the results of Theorem 2, we conclude that the
optimal power allocation and corresponding error performance
can be expressed as follows, where plm|i are as given in (2),
x∗ is the root to (6) and a∗lm are the constellation points
corresponding to P ∗1 and P ∗2 .

P ∗Case II
1 =

√
P max

1 , P ∗Case II
2 =

√
P max

2 ,

P ∗Case II
err =

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q
(

a∗lm − x∗

σ

)
+ p0plm|0.

(10)

The corresponding optimal decision region is D0 = (−∞, x∗].

Fig. 2. A depiction of the error probability decreasing between consecutive
terms of the sequence {P2,i}∞i=0.

D. Case III: ϵ1−ϵ1ϵ2
ϵ1+ϵ2−2ϵ1ϵ2

< p1 ≤ 0.5

First note that the condition of this case implies ϵ1 ̸= ϵ2.
Also using the same reasoning as in the proof of Proposition 1,
we make the following observations about the coefficients of
w(x) in (6):

a > 0, b > 0, c < 0, d < 0.

We define the following functions of P1, where ā, b̄, c̄ and d̄
are as defined in (7):

P̃2(P1) ≜
N0

2(α + β)2P1
ln

ād̄

b̄c̄
, (11)

Kα(P1) ≜
N0

2(α + β)P1
ln

ā

−c̄
− α− β

2
P1, (12)

Kβ(P1) ≜
N0

2(α + β)P1
ln
−d̄

b̄
+

α− β

2
P1. (13)

The condition for Case III combined with the other assump-
tions on the problem’s parameters ensure that these functions
are real valued for all P1 > 0. Also note that expanding (11)
at P1 =

√
P max

1 gives the expression in (3). We begin with
the following result which is used numerous times over the
analysis of this case.

Proposition 4: For any P1, P2 > 0 the following two
statements are true:

x ⋚ αP2 −Kα(P1) =⇒ ae
2(α+β)P1x

N0 + c ⋚ 0, (14)

x ⋚ −βP2 + Kβ(P1) =⇒ be
2(α+β)P1x

N0 + d ⋚ 0, (15)

where the symbol ⋚ means that the statements hold for any
of the relations <, > or =, consistently in the each line.

Proof: These statements follow directly from rearranging
these equations and using the definitions of Kα and Kβ in (12)
and (13), respectively. The steps are the same as in the proof
of Proposition 7.

This result is used for many of the remaining proofs in this
section. For instance, a direct application of these statements
gives the following bounds on the roots of (6).

Proposition 5: In Case III, for any P1, P2 > 0, if x is a
corresponding root of (6), then it must satisfy

x ∈
(
αP2 −Kα(P1),−βP2 + Kβ(P1)

)
, P2 < P̃2(P1)

x = αP2 −Kα(P1) = −βP2 + Kβ(P1), P2 = P̃2(P1)
x ∈

(
− βP2 + Kβ(P1), αP2 −Kα(P1)

)
, P2 > P̃2(P1)

(16)
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Fig. 3. The roots of (6), x1, x2 and x3, as a function of P2 in Case III
(p1 = 0.4, ϵ1 = 0.01, ϵ2 = 0.05, N0 = 1, P1 = 1). The decision
regions can be read as: for P2 < P thr

2

△
≈ 1.6, D0 = (−∞, x3]. Otherwise,

D0 = (−∞, x1] ∪ [x2, x3].

Proof: First we note that these intervals are valid and have
non-zero length since

− βP2 + Kβ(P1)−
(
αP2 −Kα(P1)

)
= Kα(P1) + Kβ(P1)− (α + β)P2

= (α + β)
(
P̃2(P1)− P2

)
,

so

P2 ≶ P̃2(P1) =⇒ αP2 −Kα(P1) ≶ −βP2 + Kβ(P1).

If x is outside these intervals, then we apply (14) and (15)
from Proposition 4 to see that w(x) ̸= 0, so x could not be a
root of (6).

For a fixed P1 > 0, the bounds described in Proposition 5
form two lines with respect to P2 which intersect at P̃2(P1).
An illustration of these bounds can be seen in Fig. 3.

This is another useful result which is referred to multiple
times in the remaining proofs in this section. For example,
Propositions 4 and 5 are used to prove the following result
about the number of decision boundaries.

Proposition 6: In Case III, for any P1, P2 > 0, there will
be one or three boundary points between D0 and D1. Further,
if P2 ∈ (0, P̃2(P1)] there is exactly one boundary point
between D0 and D1.

Proof: Let P1, P2 > 0. We have the following asymptotic
behaviours of w(x) in (6):

lim
x→−∞

w(x) = d, lim
x→∞

w(x) = ∞.

Since d < 0, and w is continuous, we conclude that there
must be an odd number of crossing points. Combining this
fact with [21, Corollary 3.2] yields that there will be one or
three crossing points. Now let P2 ∈ (0, P̃2(P1)]. We assume
w(x) = 0, then performing the same derivative analysis as in
the proof of Proposition 2 yields:

dw

dx
=
−2(α + β)

N0

(
P2(be

2(α+β)P1x
N0 + d)

+ P1(ce
2(α+β)P2x

N0 + d)
)

> 0.

This last inequality is true since Propositions 4 and 5 imply

be
2(α+β)P1x

N0 + d ≤ 0.

Therefore w(x) is strictly increasing at any zero, and hence
must only have one root, and this root must be a boundary
point between D0 and D1 as desired.

We do not provide the exact condition for when there are
three decision boundaries because it is not necessary for the
remaining optimization, and would require explicit analysis of
the roots of (6), which is not clearly possible. The typical
behaviour is that for fixed P1, there will be one decision
boundary for all P2 less than some threshold value, and three
decision boundaries for all values larger than this threshold.
These results are also demonstrated in Fig. 3.

Using Proposition 6, we conclude that the error probability
in Case III can have two possible expressions based on the
number of decision boundaries. If there is a single decision
boundary, x, then the error expression will have the same form
as in (8). If there are three decision boundaries, x1 < x2 < x3,
then the error expression has the following form:

Perr(P1, P2)

=
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)

(
Q

(
alm − x1

σ

)

− Q

(
alm − x2

σ

)
+ Q

(
alm − x3

σ

))
+ p0plm|0. (17)

These expressions for error probability are used to show the
following theorems for optimizing error probability in Case III.

Theorem 3: In Case III, Perr(P1, P̃2(P1)) < Perr(P1, P2),
∀P1 > 0, P2 ̸= P̃2(P1).

Proof: See Appendix B.
This gives an analytic expression for the global minimizer

of the error probability with respect to P2. The main intuition
behind this result relies on splitting the error function into
two simpler parts, which are shown to be minimized along the
same linear bounds in Fig. 3. Since the two lines intersect at
P̃2(P1), both parts of the error function are minimized, hence
the entire error function is also minimized.

Although we have found a global minimum with respect to
P2, it is still necessary to determine the optimal constellation
when there is not enough power to use the global minimum,
i.e., if

√
P max

2 < P̃2(P1). The following theorem provides a
sufficient result for this situation.

Theorem 4: In Case III, if 0 < P1, 0 < P2 < P ′2 < P̃2(P1),
then Perr(P1, P2) > Perr(P1, P

′
2).

Proof: See Appendix C.
The technical details are slightly more complicated, but

the reasoning behind this proof is very similar to that of
Theorem 2. The same sequentially decreasing idea is applied,
except more care is taken to address both bounding lines in
Case III, as opposed to the single bounding line in Case II.

Combining Theorems 3 and 4 we can conclude that in
Case III, the optimal power allocation for P2 given P1 > 0 is

P ∗2 (P1) = min
(√

P max
2 , P̃2(P1)

)
.
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Now that we have the optimal P2 allocation for a fixed P1,
we can analyze the P1 optimization using this result.

Theorem 5: In Case III, Perr

(
P1, P

∗
2 (P1)

)
is decreasing in

P1, for all P1 > 0.
Proof: See Appendix D.

The proof of this result is mainly a direct derivative analysis
using the closed form expression for P̃2(P1) and the corre-
sponding decision boundary, x̃. The implication of this result
is that the less noisy sensor should use all available power.
Further, we note P̃2(P1) is decreasing in P1. This results in
the generally intuitive behaviour to allocate more power to the
more reliable sensor, and less to the worse sensor.

Combining the results of Theorems 3, 4 and 5 implies
that the optimal power allocation and corresponding error
performance can be expressed as follows, where x∗ is the root
of (6), and a∗lm are the corresponding constellation points to
P ∗1 and P ∗2 :

P ∗Case III
1 =

√
P max

1 ,

P ∗Case III
2 = min

(√
P max

2 , P̃2(
√

P max
1 )

)
,

P ∗Case III
err =

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q
(

a∗lm − x∗

σ

)
+ p0plm|0.

(18)

The corresponding optimal decision region is D0 = (−∞, x∗].
If P ∗2 = P̃2(

√
P max

1 ) = P̃2 as in (3), then the optimal decision
boundary has the explicit form x∗ = αP̃2 −Kα(

√
P max

1 ).

E. High SNR Behaviour

For this analysis it is defined that high SNR means N0 → 0.
This is a reasonable assumption since each sensor’s SNR
should be growing at similar rates, and one sensor should
not have infinitely more power than the other. In Case I,
there is nothing to consider, since the error probability is
constant. In Cases II and III, the high SNR behaviour can
be analyzed by considering a system that knows which point
in the constellation C was sent. Note this is equivalent to
knowing X1 and X2 perfectly, except if two constellation
points overlap, i.e., aij = ai′j′ for some i ̸= i′, j ̸= j′. Also
note that the high SNR behaviour of only sending Sensor i
is always ϵi, i ∈ {1, 2}. In the case that both sensor values
are used, the following is the MAP detection rule for knowing
X1 = x1 and X2 = x2:

x̂(x1, x2) = arg max
i∈{0,1}

Pr(X = i | X1 = x1, X2 = x2)

= arg max
i∈{0,1}

pipx1x2|i.

The decision conditions can be expressed in terms of the
constants defined in (6) as follows:

ā > 0 ⇐⇒ x̂(1, 1) = 1, b̄ > 0 ⇐⇒ x̂(1, 0) = 1,
c̄ > 0 ⇐⇒ x̂(0, 1) = 1, d̄ > 0 ⇐⇒ x̂(0, 0) = 1.

1) Case II: Based on the values of ā, b̄, c̄, d̄ in this case,
we have the following detection rule:

x̂(1, 1) = 1, x̂(1, 0) = 0,

x̂(0, 1) = 0, x̂(0, 0) = 0.

Since x̂(1, 0) = x̂(0, 1), it does not matter if these two constel-
lation points overlap (and these are the only two constellation
points which can possibly overlap). Finally, the high SNR
behaviour is calculated to be

lim
N0→0

P ∗err(P
∗
1 , P ∗2 ) = p1(p00|1 + p01|1 + p10|1) + p0p11|0

= ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2). (19)

2) Case III: In this case, there are two interesting cases to
consider. First, for the optimal allocation P2 = P ∗2 , we have
that P ∗2 → 0 for high SNR; so the error performance in this
case approaches the performance of only sending Sensor 1,
which is ϵ1. In the alternative case that both sensors use all
their power, the detection rule is as follows:

x̂(1, 1) = 1, x̂(1, 0) = 1,
x̂(0, 1) = 0, x̂(0, 0) = 0.

If no constellation points overlap, X̂ = X1, which implies

lim
N0→0

Perr(
√

P max
1 ,

√
P max

2 ) = ϵ1, P max
1 ̸= P max

2 .

However, if P max
1 = P max

2 = P max for some P max > 0, then
a01 = a10. Let P i

err, i ∈ {0, 1} be the error probability if we
decide to detect i for 10/01. Since p1 ≤ p0 and

P 0
err = ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2)

P 1
err = ϵ1ϵ2 + p0(ϵ1 + ϵ2 − 2ϵ1ϵ2)

=⇒ P 0
err ≤ P 1

err,

we conclude to decide 0, and the final expression for the high
SNR behaviour is

lim
N0→0

Perr

(√
P max,

√
P max

)
= ϵ1ϵ2 + p1(ϵ1 + ϵ2 − 2ϵ1ϵ2).

These results are demonstrated in Fig. 11, where the curve
for using both sensors at their max power has a larger end
behaviour than the derived optimal constellation design. Note
that in Case II, P 0

err < ϵ1, but in Case III, ϵ1 < P 0
err < ϵ2.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we illustrate the results of this paper numeri-
cally for specific parameter sets of the problem setup. We show
that the theoretical results proven in the previous section are
also supported by simulated experiments. In what follows, the
SNR is defined as the geometric average of the available power
allocations, reported in dB (i.e., SNR (dB) = 10 log10(SNR)):

SNRmax ≜

√
P max

1 P max
2

N0
. (20)

Even though Sensor 2 does not necessarily use all of its
allocated power, defining the SNR this way is sensible because
the sensors have independent power constraints. If the sensors
had a joint power constraint, it would be more appropriate to
use the true SNR.

A. Simulated Validation of Main Results

The experimental data is produced by sending 500,000
independent source bits via two simulated sensors and MAC,
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Fig. 4. Theoretical and simulated error probability in Case III
(p1 = 0.45, ϵ1 = 0.01, ϵ2 = 0.05, P1 = 1, N0 = 1).

then using the MAP detection rule given in (1), the error
probability is calculated. We will show in two ways that the
simulations overlap with the theoretical results. First we show
that the minimization problem is solved at the correct value
of P2 in Case III. Then we show that the error probability
when using the derived optimal constellation design overlaps
with the simulation results at any SNR in Case II. We always
use the optimal asymmetric constellation designs for these
simulations, Ci = {c0,i, c1,i} = {−βPi, αPi} for i ∈ {1, 2}.
To calculate the theoretical error probability, the decision
boundaries are calculated by numerically solving for the roots
of (6). Then, these values are used to calculate the appropriate
error expression, (8) or (17), based on the number of roots.

The error probability as a function of P2 and SNR are
shown in Figs. 4 and 5, respectively. These plots show that
the simulated and theoretical error performance overlaps very
well, while also noting that the simulated minimum power
allocation for P2 coincides with the theoretical results.

B. Simulated Comparison to Orthogonal Signaling

In this section, we compare the error probability of the MAC
signaling system derived in this paper to an alternative signal-
ing method of using independent (orthogonal) channels for
the sensors. To set up the orthogonal signaling, it is assumed
that the sensor network would have access to two inde-
pendent zero-mean Gaussian communication channels with
variance N0

2 . Note that we define the SNR in the orthogonal
case to be the same as in (20). Even though there is more total
noise when considering both orthogonal channels, this is a
realistic comparison. If a system has access to two orthogonal
channels with the same noise power, it can choose to only
use one of the channels, which is exactly the equivalent MAC
we are comparing to. We use two variations of orthogonal
constellations as baseline comparisons. First, we use a simple
symmetric binary phase-shift keying (BPSK) constellation
design (i.e., Ci = {c0,i, c1,i} = {−

√
P max

i ,
√

P max
i } for

i ∈ {1, 2}). We also use the results of [12] which give
an optimal orthogonal constellation design to be asymmetric
BPSK with Ci = {c0,i, c1,i} = {−β

√
P max

i , α
√

P max
i } for

i ∈ {1, 2}, with α and β as defined in (5). To detect the

Fig. 5. Error probability as a function of SNR in Case II (p1 = 0.3, ϵ1 = 0.1,
ϵ2 = 0.15, P max

1 = 1, P max
2 = 1).

Fig. 6. Error probability as a function of SNR in Case III
(p1 = 0.4, ϵ1 = 0.01, ϵ2 = 0.05, P max

1 = 1, P max
2 = 2).

source, the receiver uses the MAP detection rule which is
the two dimensional extension of (1). Since we have not
analyzed the orthogonal channels case theoretically, we rely
on simulation results to draw conclusions. In Figs. 5 and 6,
the error probabilities are compared under two parameter sets,
to show Cases II and III, respectively. Each data point is
generated from 500,000 independent simulated source bits
being sent through the channel. Fig. 6 also includes the
error probabilities associated with using the maximum power
symmetric constellation design over the MAC.

From these graphs we can see that in both Cases II and III,
the derived optimal MAC constellation has better error perfor-
mance than orthogonal signaling. However, in Case III (Fig. 6),
orthogonal signaling can perform better than the sub-optimal
multiple access symmetric constellation design. These results
demonstrate that using a MAC optimally can have increased
performance, while using less power and bandwidth. In Fig. 5,
the maximum SNR gain of the derived optimal constellation
compared to the next best option is about 2.4 dB. In Fig. 6,
the maximum SNR gain is approximately 0.97 dB, occurring
around 0.036 error probability.
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Fig. 7. Case type regions for different values of p1.

C. Analysis of Cases Based on Parameters p1, ϵ1 and ϵ2

We analyze the behaviour of Cases I-III as a function of the
parameters ϵ1, ϵ2 and p1. By fixing p1, we illustrate the case
type regions as a colour map of ϵ1 and ϵ2. Examples of these
graphs are shown in Fig. 7.

We make the following observations from these diagrams.
Case I occurs at large ϵ1 and ϵ2 values, while Case III is char-
acterized by small ϵ1 and large ϵ2. The boundaries between
these regions are given exactly by the threshold equations
given in Table I. As p1 increases, the Case I region becomes
smaller, while Case III becomes larger. Finally, at p1 = 0.5,
Case I disappears entirely, and Case II is equivalent to ϵ1 = ϵ2.
This can intuitively be explained by noting that for any p1 <
0.5, as ϵ1, ϵ2 → 0.5, X1 and X2 become uniformly distributed
and independent from the source X . This effectively removes
the source information, making it useless to send over the
channel (Case I). However, if p1 = 0.5, X1 and X2 are
uniformly distributed for any ϵ1 and ϵ2, so there is no statistical
redundancy in the source (as it is unbiased) that can be lost
when observed by the sensors. Hence it is always beneficial
to send the signals, which explains why Case I disappears at
p1 = 0.5.

D. Error Performance Vs. (P1, P2) and (ϵ1,ϵ2)

For the following examples, the constellations are parame-
terized by the optimal asymmetric design, Ci = {c0,i, c1,i} =
{−βPi, αPi}, i ∈ 1, 2. Figs. 8 and 9 show the error
probability as a function of P1 and P2 in Cases II and III,
respectively.

In Fig. 8, increasing P1 and P2 always decreases the
error probability, which reinforces the dervied optimal power
allocation to use all available power. Fig. 9 illustrates the
following properties of Case III. First, we can see that for
any fixed P1 (vertical slice of the graph), the minimum occurs
at P2 = P̃2(P1), the red curve. Further, moving upward from
P2 = 0 to P2 = P̃2(P1), we also see that the error probability
decreases in P2. Finally, we can see that moving rightward
along the optimal power allocation curve, P̃2(P1), the optimal

Fig. 8. Error probability as a function of P1 and P2 in Case II (p1 = 0.3,
ϵ1 = 0.1, ϵ2 = 0.15, N0 = 1).

Fig. 9. Error probability as a function of P1 and P2 in Case III (p1 = 0.4,
ϵ1 = 0.01, ϵ2 = 0.05, N0 = 1).

error probability decreases with P1, which reinforces exactly
the same optimal power allocation as proven. For example,
if P max

1 = P max
2 = 1, then reading Fig. 9 shows the optimal

power allocations are P ∗1 = 1 and P ∗2 = P̃2(1) ≈ 0.76.
Next, we show how the optimal error probability changes

with respect to the sensor noise parameters, ϵ1 and ϵ2. We fix
the other parameters, p1, N0, P max

1 and P max
2 , then for each

pair (ϵ1, ϵ2), choose the constellation power allocations P ∗1
and P ∗2 . Fig. 10 shows the error probability as function of
ϵ1 and ϵ2.

When analyzing Fig. 10, note that referencing Fig. 7b,
we can identify the regions of the three cases separated by
the same line boundaries. We observe that in the Case I region
(upper right corner) the error probability takes a constant value
of 0.2, which is also the largest error probability across all
regions. In the remaining regions (Cases II and III), it is
intuitive that the error probability decreases for smaller values
of ϵ1 and ϵ2. A more insightful observation is that the error
probability is more sensitive to ϵ1 than ϵ2. Especially in the
Case III region, we see that varying ϵ1 has a much larger
impact on the error probability than ϵ2. Thus, having one very
reliable sensor and one very poor sensor can perform better
than two moderately accurate sensors.
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Fig. 10. Error probability as a function of ϵ1 and ϵ2 (p1 = 0.2, P max
1 = 1,

P max
2 = 1, N0 = 1). The region and boundary curves for each case are the

same as in Fig. 7b.

Fig. 11. Error probability as a function of SNR in Case III
(p1 = 0.4, ϵ1 = 0.01, ϵ2 = 0.05, P max

1 = 1, P max
2 = 1).

E. Error Probability Vs. Signal to Noise Ratio

To demonstrate this system’s SNR response, we vary N0 to
produce various SNR values as defined in (20). We also
compare the derived optimal constellation design to other
common power allocations. For the following example, the
constellations are parameterized by the optimal asymmetric
design, Ci = {c0,i, c1,i} = {−βPi, αPi}, i ∈ 1, 2. Fig. 11
shows the error probability of various constellation designs in
Case III as a function of N0, expressed in terms of the SNR.

We make the following observations from this plot. First,
at low SNR, the optimal and both max curves are identical.
This is because for large enough values of N0,

√
P max

2 < P̃2 as
defined in (3), so P ∗2 (

√
P max

1 ) =
√

P max
2 . Next, at high SNR,

the optimal and P1 max curves become asymptotically equal.
This is because as N0 → 0, P ∗2 (

√
P max

1 ) → 0. At intermediate
SNR (around 0-7 dB in this case), the optimal power allocation
performs better than any of the alternatives. The largest SNR
gain of using the derived optimal constellation is about 2.7 dB,
occurring around 0.026 error probability.

VI. CONCLUSION AND FUTURE WORK

In this paper, the optimal one dimensional constellation
design for a two sensor binary network was established. After

reducing the problem to a power allocation optimization prob-
lem (with the appropriate asymmetric constellation designs
from Theorem 1), it was proved that there are distinct cases
that arise based on the fixed parameters of the problem, which
are p1, ϵ1 and ϵ2. In some cases (Cases I and II), the results are
intuitive and not unexpected, as the optimal power allocations
are to use none or all of the available power. However,
in Case III, the most interesting and counter-intuitive result
is that the optimal power allocation can be for Sensor 2 (with
less correlation to the true data source) to use a portion, but
not all of its available power. This is a significant result since
Case III is prevalent for many parameter sets of the problem
setup. As shown in Fig. 7, Case III becomes the dominant
case as the binary source approaches a uniform distribution.

Although this result is theoretically significant, it is also
important to consider the following details for any practical
implications of this optimization. First, we note that in general,
the decision boundaries may not be analytically solvable as
they require solving for the roots of (6). This means that it is
most feasible to perform the calculations for a specific model
of this problem ahead of time, and it would require complex
computations to update the model while in use. Further, the
optimal power allocation is sensitive to the parameters in the
problem, so estimation errors for the parameters of a model
could lead to worse performance than using a more robust
design, such as using all available power. For this reason,
the most practical implementation would be in a case where
the optimal error has a large separation from the simpler
constellation designs (around 0-5 dB in Fig. 11).

We herein relate our results to more practical problems.
First, if there were a sum power constraint instead of individual
power constraints (i.e., P max = P1 + P2), which applies
to systems where sensors are co-located (such as connected
motion sensors or powered exoskeleton suits), then we readily
obtain that the optimal constellation will be of the form given
in this paper, with power allocations P1 ≤ P max and P2 =
P ∗2 (P1). There is no analytic solution to this optimization,
so a numerical computation can be carried to determine the
optimal values. Also, even without perfect information about
the system parameters, such as p1, ϵ1, ϵ2 and N0, our results
can still be applied with some form of estimates. As seen in
Fig. 10, the error probability can have different sensitivities
to the ϵ-parameters. The robustness of our optimal signaling
scheme can be analyzed when the parameters have estimation
errors. Next, if an N > 2 sensor network is implemented,
our results can be applied iteratively to estimate a good con-
stellation design. Finally, our results show that for distributed
detection problems, the typical practice of using all available
power is not necessarily optimal, and better error performance
can be achieved with less power. This leads to the hypothesis
that for problems of this nature, a careful analysis, even just
numerically, of the power allocation can yield an improved
error performance, while saving power consumption.

To expand further upon our results, the following future
directions can be considered. First, a natural extension is to
generalize the problem to N sensors (N ≥ 2), each with
their own correlation and power allotments. The analysis
becomes increasingly complex for more than two sensors,
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so an approximation or bound on error performance could
be investigated in some form of pairwise fashion using the
results of this paper. Also, sensor network clustering problems
such as those found in [22], [23], [24], and [25] could be
considered. The performance of a cluster could be approxi-
mated using the pairwise expressions derived in this paper.
The balance between error probability and energy efficiency
could be investigated as a function of cluster organization.
Finally, we could consider a sensor network with N sensors,
but only two sensors send their data at any given time. The
results of this paper could be used to decide which pairs of
sensors should be selected, to stay within some power or error
constraints.

APPENDIX A
PROOF OF THEOREM 2

To prove this theorem, we require multiple intermediate
results, which will first be shown. To simplify the notation,
we define the following functions of P1 and P2, where ā, b̄
and c̄ are as defined in (7).

K(P1) ≜
N0

2(α + β)P1
ln

ā

−c̄
− α− β

2
P1, (21)

L(P2) ≜
N0

2(α + β)P2
ln

ā

−b̄
− α− β

2
P2. (22)

Note that these are well defined if c̄ ̸= 0 and b̄ ̸= 0,
respectively. First, we establish the following relationships
which will be applied in various parts of this proof.

Proposition 7: For any P1, P2 > 0 the following two
statements are true if b̄ ̸= 0 and c̄ ̸= 0, respectively:

x ⋚ αP1 − L(P2) =⇒ ae
2(α+β)P2x

N0 + b ⋚ 0, (23)

x ⋚ αP2 −K(P1) =⇒ ae
2(α+β)P1x

N0 + c ⋚ 0, (24)

where the symbol ⋚ means that the statements hold for any
of the relations <, > or =, consistently in the each line.

Proof: We prove (23) using the definition of L from (22).
Assume P1, P2 > 0, b̄ ̸= 0, then if x satisfies

x ⋚ αP1 − L(P2)

=⇒ ae
2(α+β)P2x

N0 + b ⋚ ae
2(α+β)P2(αP1−L(P2))

N0 + b,

where

ae
2(α+β)P2(αP1−L(P2))

N0 + b

= ae
2α(α+β)P1P2−2(α+β)P2L(P2)

N0 + b

= ae
2α(α+β)P1P2+(α2−β2)P2

2
N0

−ln ā
−b̄ + b

= − b̄e
−(αP1−βP2)2

N0︸ ︷︷ ︸
=b

a

ā
e

α2(P1+P2)2

N0︸ ︷︷ ︸
=1

+b

= −b + b = 0.

The proof of (24) is omitted as it follows the same steps as
above, using the definition of K from (21).

This result is used to determine the properties of the decision
boundaries by its influence on the expression in (6), as seen
in the following proposition.

Proposition 8: In Case II, for P1, P2 > 0, if x is the
corresponding root of (6), b̄ ̸= 0 and c̄ ̸= 0, then the following

two inequalities hold:

x > αP1 − L(P2), (25)
x > αP2 −K(P1). (26)

Proof: Using Proposition 7, we have

x ≤ αP1 − L(P2) =⇒ ae
2(α+β)P2x

N0 + b ≤ 0 =⇒ w(x) < 0,

x ≤ αP2 −K(P1) =⇒ ae
2(α+β)P1x

N0 + c ≤ 0 =⇒ w(x) < 0.

Hence, x could not be a zero of (6) in either of these cases,
showing the desired result.

As seen in the above proof, a direct consequence of applying
Proposition 7 gives a lower bound on the values of the decision
boundary. We also require the following additional result about
these lower bounds.

Proposition 9: In Case II, let P̄1, P ′1, P̄2 and P ′2 be arbitrary
real numbers such that 0 < P̄1 < P ′1, 0 < P̄2 < P ′2. Then the
root of (6), x, satisfies the following two inequalities as a
function of P2 and P1, respectively:

inf
P1∈[P̄1,P ′1]

x− αP1 + L(P2) > 0, for b̄ ̸= 0, P2 > 0, (27)

inf
P2∈[P̄2,P ′2]

x− αP2 + K(P1) > 0, for c̄ ̸= 0, P1 > 0. (28)

Proof: To prove (27), let P̄1 and P ′1 be arbitrary real
numbers such that 0 < P̄1 < P ′1. For any P1 ∈ [P̄1, P

′
1] and

P2 > 0, the root of (6), x, satisfies x − αP1 + L(P2) >
0 from (25) of Proposition 8; therefore

inf
P1∈[P̄1,P ′1]

x− αP1 + L(P2) ≥ 0. (29)

Next, we define the function

wL(x, P1) ≜ ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 ,

which is uniformly continuous in both P1 over [P̄1, P
′
1] and x

over [αP̄1−L(P2), αP ′1−L(P2)]. By (23), wL(x, P1) = 0 at
all points (x, P1) on the line x = αP1−L(P2). Thus, for any
d′ > 0, there exists δ > 0 such that for any P1 ∈ [P̄1, P

′
1] and

x that satisfies

αP1 − L(P2) < x < αP1 − L(P2) + δ, (30)

we have

wL(x, P1) < d′.

If (29) holds with equality, then there exists P1 ∈ [P̄1, P
′
1]

with corresponding root of (6), x, that satisfies (30). In par-

ticular, for d′ = −d̄e−
β2(P ′1+P2)2

N0 , which is a positive constant
with respect to P1 and x, we obtain

ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 < −d̄e−
β2(P ′1+P2)2

N0 < −d

=⇒ ae
2(α+β)(P1+P2)x

N0 + be
2(α+β)P1x

N0 + d < 0
=⇒ w(x) < 0,

where the last inequality holds because c < 0 in the expression
of w(x) in (6) for Case II. This contradicts x being the root
of (6), completing the proof. The proof of (28) is omitted as
it follows the same steps as above.
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This result shows that the decision boundary is bounded
away from the lower bound over any finite interval of power
allocation. This is a small, but essential result for the main
proof as it guarantees that the sequence of powers we use will
grow large enough to reach the necessary value.

Using Propositions 7, 8 and 9, we will prove Theorem 2 by
showing the following two statements:

1) If 0 < P1 < P ′1, 0 < P2, then Perr(P1, P2) > Perr(P ′1, P2)
2) If 0 < P1, 0 < P2 < P ′2, then Perr(P1, P2) > Perr(P1, P

′
2)

To show Statement 1, fix 0 < P1 < P ′1, 0 < P2. Let x
and x′ be the roots of (6) corresponding to the pairs (P1, P2)
and (P ′1, P2), respectively. We define the following sequence
{P1,i}∞i=0 recursively.

P1,0 = P1, P1,i+1 =

P ′1, b̄ = 0
1
α

(
xi + L(P2)

)
, b̄ ̸= 0

where xi is the root to (6) corresponding to P1,i, b̄ is from (7)
and L is as defined in (22). Note that if b̄ ̸= 0 and P1,i < P ′1,
applying (27) from Proposition 9 gives

P1,i+1 − P1,i =
1
α

(
xi + L(P2)

)
− P1,i

≥ 1
α

inf
P̄1∈[P1,P ′1]

x̄− αP̄1 + L(P2)
(27)
> 0,

where x̄ denotes the root of (6) for (P̄1, P2). This shows that
the sequence {P1,i}∞i=0 increases by at least this constant if
P1,i < P ′1. Therefore there exists i′ large enough such that
P1,i′ ≥ P ′1. Hence, it is sufficient to show that for all i

Perr(P1,i, P2)− Perr(P1,i+1, P2) > 0.

Using the upper bound in Proposition 3, it is sufficient to show

Perr(P1,i, P2)− P UB
err,xi

(P1,i+1, P2) > 0
⇐⇒ P UB

err,xi
(P1,i, P2)− P UB

err,xi
(P1,i+1, P2) > 0,

since Perr(P1,i, P2) = P UB
err,xi

(P1,i, P2) by its definition.
It is now sufficient to show P UB

err,xi
is decreasing in P1 over

(P1,i, P1,i+1). The derivative of this expression is:

dP UB
err,xi

dP1
=

−1
σ
√

2π
e
−x2

i
N0

(
α

(
ae

2α(P1+P2)xi
N0 + be

2(αP1−βP2)xi
N0

)

− β

(
ce

2(−βP1+αP2)xi
N0 + de

−2β(P1+P2)xi
N0

))
.

(31)

If b̄ = 0, this derivative is negative for any P1 (since this
is equivalent to b = 0). If b̄ ̸= 0, then we apply (23) from
Proposition 7 and conclude that

P1 < P1,i+1 =
1
α

(
xi + L(P2)

)
⇐⇒ xi > αP1 − L(P2)

=⇒ ae
2(α+β)P2xi

N0 + b > 0

=⇒ ae
2α(P1+P2)xi

N0 + be
2(αP1−βP2)xi

N0 > 0

=⇒
dP UB

err,xi

dP1
< 0.

The proof of Statement 2 is omitted as it follows the exact
same steps as above, replacing the roles of L(P2) with
K(P1), b̄ with c̄, and applying (24) and (28) instead of (23)
and (27). ■

APPENDIX B
PROOF OF THEOREM 3

First, we define the following two functions of x, for any
fixed P1 and P2:

g(x) ≜ (p1p11|1 − p0p11|0)Q
(

αP1 + αP2 − x

σ

)
+ (p1p01|1 − p0p01|0)Q

(
−βP1 + αP2 − x

σ

)
,

h(x) ≜ (p1p10|1 − p0p10|0)Q
(

αP1 − βP2 − x

σ

)
+ (p1p00|1 − p0p00|0)Q

(
−βP1 − βP2 − x

σ

)
.

These functions are significant because they decompose the
error expression. For example, if P1 and P2 are fixed with a
unique corresponding root of (6), x, the error probability can
be written as

Perr(P1, P2) = g(x) + h(x) +
∑

(l,m)∈{0,1}2
p0plm|0.

Further, they have the following unique minimizers with
analytic expressions corresponding to the bounds given in
Proposition 5.

Proposition 10: In Case III, for any P1, P2 > 0, g(x) is
minimized at x = αP2 − Kα(P1) and h(x) is minimized at
x = −βP2 + Kβ(P1).

Proof: Let P1, P2 > 0. The following are expressions for
the derivatives:

dg

dx
=

1
σ
√

2π
e
−x2
N0

(
ae

2α(P1+P2)x
N0 + ce

2(−βP1+αP2)x
N0

)
dh

dx
=

1
σ
√

2π
e
−x2
N0

(
be

2(αP1−βP2)x
N0 + de

−2β(P1+P2)x
N0

)
.

Next, we apply the results of Proposition 4 to show

x ≶ αP2 −Kα(P1) =⇒ 0 ≶ae
2(α+β)P1x

N0 + c

=⇒ 0 ≶ae
2α(P1+P2)x

N0 + ce
2(−βP1+αP2)x

N0

=⇒ 0 ≶
dg

dx
,

and

x ≶ −βP2 + Kβ(P1) =⇒ 0 ≶be
2(α+β)P1x

N0 + d

=⇒ 0 ≶be
2(αP1−βP2)x

N0 + de
−2β(P1+P2)x

N0

=⇒ 0 ≶
dh

dx
.

Now fix P1 > 0. Let ãlm be the constellation points and
x̃ be the root of (6) corresponding to P1 and P̃2(P1). Let
P2 ̸= P̃2(P1). Let alm be the constellation points and X
denote the set of roots of (6) corresponding to P1 and P2.
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First we analyze the case where |X | = 1. Let X = {x}.
In this case, the error expression, Perr(P1, P2), will have the
same form as given in (8). Also, since there is a unique root,
x̃, at P̃2(P1), Perr(P1, P̃2(P1)) takes the form of (8) as well.
Therefore, we must show∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)Q

(
ãlm − x̃

σ

)
<

∑
(l,m)∈{0,1}2

(p1plm|1 − p0plm|0)Q
(

alm − x

σ

)
⇐⇒ g

(
αP2 −Kα(P1)

)
+ h
(
− βP2 + Kβ(P1)

)
<

g(x) + h(x).

This result follows immediately by applying Proposition 10,
since x ̸= αP2 − Kα(P1) and x ̸= −βP2 + Kβ(P1) for
P2 ̸= P̃2(P1) from Proposition 5.

For the case that |X | = 3, we represent this as X =
{x1, x2, x3} such that x1 < x2 < x3. In this case, the
error probability takes the form of (17), noting that it can
be expressed in terms of g and h:

Perr(P1, P2)

=
∑

(l,m)∈{0,1}2
(p1plm|1 − p0plm|0)

(
Q

(
alm − x1

σ

)

− Q

(
alm − x2

σ

)
+ Q

(
alm − x3

σ

))
+ p0plm|0,

= g(x1)− g(x2) + g(x3)

+ h(x1)− h(x2) + h(x3) +
∑

(l,m)∈{0,1}2
p0plm|0.

Hence we must show

g
(
αP2 −Kα(P1)

)
+ h
(
− βP2 + Kβ(P1)

)
< g(x1)− g(x2) + g(x3) + h(x1)− h(x2) + h(x3).

(32)

First note that by applying Proposition 10, we have

g
(
αP2 −Kα(P1)

)
+h
(
− βP2 + Kβ(P1)

)
< g(x3) + h(x1).

(33)

Now we will show

g(x1)− g(x2) + h(x3)− h(x2) ≥ 0. (34)

Since |X | = 3 we can infer that P2 > P̃2(P1) by taking the
contra-positive of Proposition 6. Then we can apply Proposi-
tion 5 which implies x2 ∈ (−βP2 +Kβ(P1), αP2−Kα(P1)).
Finally, applying the same derivative analysis as in Proposi-
tion 10 shows that g(x) is decreasing on [x1, x2] and h(x)
is increasing on [x2, x3]. This implies (34). Combining (33)
with (34) implies (32). ■

APPENDIX C
PROOF OF THEOREM 4

We follow similar steps to the proof of Theorem 2, with
more complex steps because there are two bounding lines to
account for in Case III. First, we must use the following inter-
mediate result about the bounds on the decision boundaries.

Proposition 11: In Case III, for any P1 > 0, let P̄2 and P ′2
be arbitrary real numbers such that 0 < P̄2 < P ′2 < P̃2(P1),
where P̃2(P1) is as defined in (11). Then the root of (6), x,
satisfies the following two inequalities:

inf
P2∈[P̄2,P ′2]

x− αP2 + Kα(P1) > 0, (35)

inf
P2∈[P̄2,P ′2]

Kβ(P1)− βP2−x > 0. (36)

Proof: The details are omitted as it follows the same steps
as the proof of Proposition 9.

Now, fix 0 < P1, 0 < P2 < P ′2 < P̃2. Let x and x′

be the roots of (6) corresponding to P2 and P ′2, respectively.
We define the following sequence {P2,i}∞i=0 recursively.

P2,0 = P2,

P2,i+1 = min
(

1
α

(
xi + Kα(P1)

)
,
1
β

(
Kβ(P1)− xi

))
,

where xi is the root of (6) corresponding to P2,i. Note that (16)
implies P2,i ≤ P̃2 for any i ≥ 0, so there is always a unique
xi. If P2,i < P ′2, applying (35) and (36) means one of the
following two statements must be true:

P2,i+1 − P2,i =
1
α

(
xi + Kα(P1)

)
− P2,i

≥ 1
α

inf
P̄2∈[P2,P ′2]

x̄− αP̄2 + Kα(P1)︸ ︷︷ ︸
≜K′α

(35)
> 0,

or

P2,i+1 − P2,i =
1
β

(
Kβ(P1)− x1

)
− P2,i

≥ 1
β

inf
P̄2∈[P2,P ′2]

Kβ(P1)− βP̄2 − x̄︸ ︷︷ ︸
≜K′β

(36)
> 0,

so

P2,i+1 − P2,i ≥ min(K ′
α, K ′

β) > 0.

where x̄ denotes the root of (6) for (P1, P̄2). This means that
the sequence {P2,i}∞i=0 increases by at least this fixed constant
if P2,i < P ′2. Therefore, there exists i′ large enough such that
P2,i′ ≥ P ′2. Hence, it is sufficient to show that for all i

Perr(P1, P2,i)− Perr(P1, P2,i+1) > 0.

Using the upper bound in Proposition 3 (which is valid for
exactly the same reasons as before), it is sufficient to show

Perr(P1, P2,i)− P UB
err,xi

(P1, P2,i+1) > 0
⇐⇒ P UB

err,xi
(P1, P2,i)− P UB

err,xi
(P1, P2,i+1) > 0,

since Perr(P1, P2,i) = P UB
err,xi

(P1, P2,i) by definition in (9).
It is now sufficient to show P UB

err,xi
is decreasing in P2 over

(P2,i, P2,i+1). We have

dP UB
err,xi

dP2
=

−1
σ
√

2π
e
−x2

i
N0

(
α

(
ae

2α(P1+P2)xi
N0 + ce

2(−βP1+αP2)xi
N0

)

− β

(
be

2(αP1−βP2)xi
N0 + de

−2β(P1+P2)xi
N0

))
,
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where applying Proposition 4 gives

P2 < P2,i+1 ≤
1
α

(
xi + Kα(P1)

)
=⇒ xi > αP2 −Kα(P1)

=⇒ 0 < ae
2(α+β)P1xi

N0 + c

=⇒ 0 < ae
2α(P1+P2)xi

N0 + ce
2(−βP1+αP2)xi

N0 ,

and

P2 < P2,i+1 ≤
1
β

(
Kβ(P1)− xi

)
=⇒ xi < −βP2 + Kβ(P1)

=⇒ 0 > be
2(α+β)P1xi

N0 + d

=⇒ 0 > be
2(αP1−βP2)xi

N0 + de
−2β(P1+P2)xi

N0 ,

so

=⇒
dP UB

err,xi

dP2
< 0.

■

APPENDIX D
PROOF OF THEOREM 5

Let P1 > 0. We can express the optimal power allocation
for P2 as the following function of P1:

P ∗2 (P1) =

{√
P max

2 P1 < P thresh
1

P̃2(P1) P1 ≥ P thresh
1

where

P thresh
1 ≜

N0

2(α + β)2
√

P max
2

ln
ād̄

b̄c̄
.

We analyze this in two cases. First, assume P1 < P thresh
1 .

Since P ∗2 (P1) =
√

P max
2 < P̃2(P1), Proposition 6 implies that

there is a unique root, x, to (6) corresponding to P1 and P2.
Hence, by the same reasoning as in Theorem 2 it is sufficient
to show P UB

err,x is decreasing in P1. Unlike the previous proof,
we can see immediately from the expression given in (31) that
this derivative is negative for all P1 because b̄ > 0 in Case III.
Next, for P1 ≥ P thresh

1 we have

P ∗2 (P1) =
N0

2(α + β)2P1
ln

ād̄

b̄c̄
.

Let x∗ be the root to (6) for P1 and P ∗2 (P1). (16) implies x∗ =
αP ∗2 (P1) − Kα(P1) = −βP ∗2 (P1) + Kβ(P1). Substituting
these relationships into the expression for the error probability
given in (8) yields

Perr

(
P1, P

∗
2 (P1)

)
= āQ

(
1
σ

(
αP1 + Pa −

α− β

2
P1

))

+ c̄Q

(
1
σ

(
− βP1 + Pa −

α− β

2
P1

))

+ b̄Q

(
1
σ

(
αP1 − Pb −

α− β

2
P1

))

+ d̄Q

(
1
σ

(
− βP1 − Pb −

α− β

2
P1

))
+

∑
(l,m)∈{0,1}2

p0plm|0,

where we define

Pa ≜
N0

2(α + β)P1
ln

ā

−c̄
, Pb ≜

N0

2(α + β)P1
ln
−d̄

b̄
,

noting that

dPa

dP1
= −Pa

P1
,

dPb

dP1
= −Pb

P1
.

Then derivative analysis on the error probability yields

dPerr

dP1
= − 1

σ
√

2π

((
α + β

2
− Pa

P1

)
āe

−( α+β
2 P1+Pa)2

N0

+
(
− α + β

2
− Pa

P1

)
c̄e
−(−α+β

2 P1+Pa)2

N0

+
(

α + β

2
+

Pb

P1

)
b̄e
−( α+β

2 P1−Pb)2

N0

+
(
− α + β

2
+

Pb

P1

)
d̄e

−( α+β
2 P1+Pb)2

N0

)

= −e
−( α+β

2 P1)2

N0

σ
√

2π

(
e
−P2

a
N0

((α + β

2
− Pa

P1

)
āe

−(α+β)P1Pa
N0

+
(
− α + β

2
− Pa

P1

)
c̄e

(α+β)P1Pa
N0

)
+ e

−P2
b

N0

((α + β

2
+

Pb

P1

)
b̄e

(α+β)P1Pb
N0

+
(
− α + β

2
+

Pb

P1

)
d̄e

−(α+β)P1Pb
N0

))

= −e
−( α+β

2 P1)2

N0

σ
√

2π

(
e
−P2

a
N0

((α + β

2
− Pa

P1

)√
−āc̄

−
(
− α + β

2
− Pa

P1

)√
−āc̄

)
+ e

−P2
b

N0

((α + β

2
+

Pb

P1

)√
−b̄d̄

−
(
− α + β
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