Sample Adaptive Product Quantization

for Memoryless Noisy Channels
by

Zahir Raza

A thesis submitted to the
Department of Mathematics and Statistics
in conformity with the requirements

for the degree of Master of Science (Engineering)

Queen’s University
Kingston, Ontario, Canada

November, 2002

Copyright (©) Zahir Raza, 2002

Abstract

Channel optimized vector quantization (COVQ), as a joint source-channel coding
scheme, has proven to perform well in compressing a source and making the resulting
quantizer codebook robust to channel noise. Unfortunately like its counterpart in the
noiseless channel case, the vector quantizer (VQ), the COVQ encoding complexity
is inherently high. Sample adaptive product quantization was recently introduced
by Kim and Shroff to reduce the complexity of the V(Q while achieving comparable
distortions, even for moderate quantization dimensions. In this thesis, we investigate
the SAPQ for the case of noisy memoryless channels and employ the joint source-
channel approach of optimizing the quantizer design by taking into account both
source and channel statistics. It is shown that, like its counterpart in the noiseless
case, the channel optimized SAPQ achieves comparable performance results to the
COVQ (within 0.2-0.8 dB), while maintaining considerably lower encoding complexity
(half of that of COVQ) and storage requirements.

Acknowledgments

I would foremost like to thank God for everything that He has granted me with
His mercy. I would like to thank Dr. Fady Alajaji and Dr. Tamés Linder for all
their patience, guidance and valuable help without which I would not have been
able to complete this thesis. I would like to thank all my fellow colleagues from the
Queen’s University Math & Stats Communications Lab namely: Firouz Behnamfar,
Ziad Rached, Andras Gyorgy, Guangchong Zhu and all the others. I would also like
to thank my family and friends. To all that were mentioned, implicitly or directly, I

couldn’t have done it without you. Thanks !

i

Contents

1 Introduction 1
1.1 Joint Source-Channel Coding 1
1.2 Contributions 3
1.3 Thesis Outline L 3

2 Channel Optimized Quantization 5
2.1 Vector Quantizers (VQ) 5

21.1 VQModel)
2.1.2 VQ Necessary Conditions for Optimality 7
2.1.3 LBGVQ Design Algorithm 9
2.2 Channel Optimized Vector Quantizer (COVQ) 11
221 COVQModel 11
2.2.2 COVQ Necessary Conditions for Optimality 13
2.2.3 COVQ Encoding Simplifications 15
2.2.4 COVQ Initial Codebook Design 16
2.2.5 Design Algorithm of a (k,N) COVQ 19

il

v

2.3 Product Quantizer (PQ) 20
2.3.1 PQModel 21
2.3.2 PQ Necessary Conditions for Optimality 22
2.3.3 Design Algorithm of (k,m,N) PQ 25

2.4 Channel Optimized Product Quantizer (COPQ) 27
241 COPQ Model 27
2.4.2 COPQ Necessary Conditions for Optimality 29
2.4.3 COPQ Encoding Simplifications 31
2.4.4 Design Algorithm of a (k,m,N) COPQ 32

3 Sample Adaptive Product Quantizer 33

3.1 m-SAPQ Model 34

3.2 m-SAPQ Necessary Conditions for Optimality 36
3.2.1 m-SAPQ Distortiono 36
3.2.2 m-SAPQ Optimal Encoding 38
3.2.3 m-SAPQ Optimal Decoding 39

3.3 Example of a (k,;m,N,n) m-SAPQ 41

3.4 1-SAPQ 43

3.5 Encoding Complexity and Storage Requirements 45
3.5.1 (ki,N1) VQ o o o 46
3.5.2 (koymo,No) PQ Lo 46

3.5.4 (kgymg,Nyymy) 1-SAPQ 48

3.6 Design Algorithm for SAPQs 48
3.7 Numerical Results. oo 50
3.7.1 Comparing the VQ, m-SAPQ, and 1-SAPQ 52
3.7.2 Comparing PQ, m-SAPQ and 1-SAPQ 53
3.7.3 Comparing m-SAPQ and 1-SAPQ 54
3.74 TheEffectof f=m/N L. 54

4 Channel Optimized Sample Adaptive Product Quantizer 62
4.1 COm-SAPQ Model 62
4.2 COm-SAPQ Necessary Conditions for Optimality 67
4.2.1 COm-SAPQ Distortion 67
4.2.2 COm-SAPQ Optimal Encoding 68
4.2.3 COm-SAPQ Optimal Decoding 69

4.3 COI-SAPQ e 71
4.4 Encoding Simplifications Lo oo 73
4.4.1 COm-SAPQ Encoding Simplifications 74
4.4.2 CO1-SAPQ Encoding Simplifications 76

4.5 Encoding Complexity and Storage Requirements 76
451 (k1,N7) COVQ . . oo oo 7
4.5.2 (koymg,No) COPQ 78

4.5.3 (kg,mg,,Ng,T]g) COH]—SAPQ 79

Al

4.5.4 (k4,m4,N4,774) CO]_—SAPQ 80

4.6 Design Algorithm for CO-SAPQs 81
4.7 Numerical Results. oo o 83
4.7.1 Comparing COVQ, COPQ, COm-SAPQ and CO1-SAPQ . .. 86

4.7.2 Comparing 'noisy’ and 'noiseless’ quantizers 87

4.7.3 Comparing COSQ and COSAPQ 88

4.7.4 Mismatch Conditions 88

4.7.5 Summary of Numerical Results 89

5 Conclusion 113
5.1 Summary of Work 113
5.2 Future Worko 114

A Distortion of COm-SAPQ 115
Bibliography 117
Vita 122

List of Tables

2.1

3.1

3.2

3.3

3.4

3.5

Suggested parameters for Simulated Annealing Algorithm. 19

Table of Encoding Complexity and Storage Requirements for Quantiz-

ers designed under noiseless conditions. oL 48
SDR (dB) performances comparison of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ, and the (k,m,N,n) m-SAPQ, at rates R, designed using
200,000 memoryless Gaussian training samples. 25
SDR (dB) performances comparison of the (k,m,N) PQ, the (k,m,N,n)
1-SAPQ, and the (k,m,N,n) m-SAPQ, at rates R, designed using
200,000 Gauss-Markov training samples. 56
SDR (dB) performances testing designs of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N 1) m-SAPQ), at rates R, using 200,000 mem-
oryless Gaussian testing samples. 57
SDR (dB) performances testing designs of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N,n) m-SAPQ), at rates R, using 200,000 Gauss-

Markov testing samples. oo o7

Vil

Viil

3.6

3.7

3.8

3.9

4.1

4.2

4.3

SDR (dB) performances comparing the (k,N) VQ, the (k,m,N,n) 1-
SAPQ, and the (k,m,N,n) m-SAPQ), at rates R, designed using 200,000
memoryless Gaussian training samples.
SDR (dB) performances comparing the (k,N) VQ, the (k,m,N,n) 1-
SAPQ, and the (k,m,N,n) m-SAPQ), at rates R, designed using 200,000

Gauss-Markov training samples.o

SDR (dB) performances testing designs of the (k,N) VQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N,n) m-SAPQ, at rates R using 200,000 mem-

oryless Gaussian testing samples.

SDR (dB) performances testing designs of the (k,N) VQ, the (k,m,N,n)
1-SAPQ), and the (k,m,N,n) m-SAPQ), at rates R, using 200,000 Gauss-

Markov testing samples.

Table of Encoding Complexity and Storage Requirements for Quantiz-

ers designed with noisy memoryless channels (BSC).

SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (k,N) COVQ), the (k,m,N) COPQ, the (k,m,Nn)
COm-SAPQ, and the (k,m,N,n) CO1-SAPQ), at rates R and dimension
km, designed using 200,000 memoryless Gaussian training samples and

BSC cross over probability €5.

SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (k,N) COVQ), the (k,m,N) COPQ, the (k,m,Nn)
COm-SAPQ, and the (k,m,N,n) CO1-SAPQ), at rates R and dimension
km, designed using 200,000 Gauss-Markov training samples and BSC

cross over probability 4.o L L L

28

91

92

1X

4.4

4.5

4.6

4.7

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N)
COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ,
to the (k,N) LBGVQ, with simmulated annealing, the (k,m,N) PQ),
the (k,m,N,n) m-SAPQ, and the (k,m,Nn) 1-SAPQ), at rate R = 3.0,
using 200,000 memoryless Gaussian testing samples and a simmulated

BSC cross over probability €..o

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N)
COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ,
to the (k,N) LBGVQ, with simmulated annealing, the (k,m,N) PQ),
the (k,m,N,n) m-SAPQ, and the (k,m,Nn) 1-SAPQ), at rate R = 2.0,
using 200,000 memoryless Gaussian testing samples and a simmulated

BSC cross over probability €..o

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N)
COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ,
to the (k,N) LBGVQ, with simmulated annealing, the (k,m,N) PQ),
the (k,m,N,n) m-SAPQ, and the (k,m,Nn) 1-SAPQ), at rate R = 1.0,
using 200,000 memoryless Gaussian testing samples and a simmulated

BSC cross over probability €..o

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N)
COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ,
to the (k,N) LBGVQ, with simmulated annealing, the (k,m,N) PQ,
the (k,m,N,n) m-SAPQ, and the (k,m,Nn) 1-SAPQ), at rate R = 3.0,
using 200,000 Gauss-Markov testing samples and a simmulated BSC

cross over probability e..o L oL

93

94

95

4.8

4.9

4.10

411

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N)
COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ,
to the (k,N) LBGVQ, with simmulated annealing, the (k,m,N) PQ),
the (k,m,N,n) m-SAPQ, and the (k,m,Nn) 1-SAPQ), at rate R = 2.0,
using 200,000 Gauss-Markov testing samples and a simmulated BSC

cross over probabilityo

SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N,n)
COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ,
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,n) m-SAPQ),
and the (k,m,N,n) 1-SAPQ, at rate R = 1.0, using 200,000 Gauss-
Markov testing samples and a simmulated BSC cross over probability

€ee o e e e e e e e

SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (1,N) COSQ, the (k,m,N,n) COm-SAPQ, and the
(k,m,N,n) CO1-SAPQ, at rates R = 2.0, 3.0, designed using 200,000
memoryless Gaussian training samples and BSC cross over probability
€de o e e e e
SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (1,N) COSQ, the (k,m,N,n) COm-SAPQ), and the
(k,m,N,n) CO1-SAPQ), at rates R and dimension km, designed using
200,000 Gauss-Markov training samples and BSC cross over probability

€de v e

97

98

99

List of Figures

2.1

2.2

2.3

24

3.1

3.2

3.3

3.4

4.1

4.2

Model of a (k,N) COVQ.
Model of a general quantizer and a noisy channel.
Model of a (k;m,N) PQ.

Model of a (k;m,N) COPQ.

Figure of a (k,m,N,n) m-SAPQ and the j** Product Encoder PE,,

where, 7 =1,...,2" x=(x1,...,X%,) € R and I=(iy,...,i,) € J. .
Example of a (1,2,2,1) m-SAPQ.

Figure of a (k,m,N,n) 1-SAPQ and the j** Repeated Encoder RE;,

where, j € Jon, x=(x1,...,%n) € R¥ and I=(i},..., i) € J¥

Block Diagram illustrating the validation of quantizers.

Figure of a (k,m,N,n) COm-SAPQ and the j** Product Encoder PE;
Where)] =]-7 SRR 2"7 XZ(ED s 7§m) € ka; l:(ila S Zm) € JT]G;

L:(]_l, .. 7lm) € JT]G, and]* S Jgn

Figure of the transmission of binary codewords over the BSC.

pal

17

21

28

44

52

X1l

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Figure of a (k,m,N,n) CO1-SAPQ and the j** Repeated Encoder RE;
where, j = 1,...,27 x=(x1,....xn) € R I=(iy,...,in) € J%,
L=(ly,...,ln) €y, and j* € Jon. o .o Lo
Block Diagram illustrating the validation of channel optimized quan-

CIZEIS.,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,Nn) CO1-
SAPQ at rate R = 1.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,Nn) CO1-
SAPQ at rate R = 2.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,N,n) CO1-
SAPQ at rate R = 3.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,N,n) CO1-
SAPQ at rate R = 1.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,
Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,N,n) CO1-
SAPQ at rate R = 2.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,

73

84

101

102

103

104

x1il

4.10

411

4.12

4.13

4.14

4.15

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-
SAPQ at rate R = 3.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,Nn) CO1-
SAPQ at rate R = 1.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,Nn) CO1-
SAPQ at rate R = 2.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,Nn) CO1-
SAPQ at rate R = 3.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,

Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,N,n) CO1-
SAPQ at rate R = 1.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,
Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ), and the (k,m,N,n) CO1-
SAPQ at rate R = 2.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,

X1V

4.16 Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-
SAPQ at rate R = 3.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e,

Chapter 1

Introduction

1.1 Joint Source-Channel Coding

Recently, Kim and Shroff introduced in [11, 12] a constrained vector quantizer struc-
ture called the sample adaptive product quantizer (SAPQ) that achieves compa-
rable performances to the vector quantizer (VQ) [25, 1, 2, 3, 4] while maintaining a

lower encoding complexity (refer also to [13, 14, 23, 24, 29| for previous related work).

Yet, as with most data compression schemes that solely remove source redun-
dancy, the compressed source tends to be more sensitive to channel noise. Tradi-
tionally, tandem source-channel coding was used to achieve reliable transmission
of information by separately designing the source and channel codes. Independently
designing the source and channel encoder is justified by Shannon’s Separation
principles, [35, 36]. Shannon’s separation principles state that with a noisy channel
of capacity C it is possible to obtain a reconstruction signal with fidelity, or dis-
tortion, D, provided that the capacity C is greater than R(D), i.e C > R(D); where

R(D) is the rate-distortion function.

However the above result assumes the availability of unlimited coding/decoding
delay and complexity. It is known that when there are delay and complexity con-
straints, it is more advantageous to employ joint source-channel coding where
the source and channel codes are designed in cohesion (e.g., [5], [15]-][17],[20, 22],
(30, 31, 37]). There are three main approaches to joint source-channel coding: the
unequal error protection approach, the zero-redundancy channel coding ap-

proach, and the combined source-channel coding approach.

In the unequal error protection approach, the output of the source encoder is given
unequal protection based on the effect of their error in the reconstructed sequence.
Work related to this method includes that of [28], where Modestino and Daut use 2D-
PCM as the source encoder and provide selective error control protection on those
bits which contribute most significantly to the image reconstruction. Unequal error
protection is also used in digital wireless communication systems such as the Global

System for Mobile (GSM) communications [32].

In zero-redundancy channel coding, channel coding is removed and instead residual
redundancy of the source encoder output is used to combat noise. In [33] residual
redundancy in DPCM systems was studied and used to propose a zero-redundancy
channel coding system that significantly improved gains over other tandem systems

with the expense of higher complexity at the decoder.

In this thesis, we focus on the third approach, where both channel noise and source
statistics are included in the design of the source coders. VQ’s designed in such a
way are labeled channel optimized vector quantizers (COVQ’s). COVQ has
received a considerable amount of attention due to its improvement in performance
over V@ in the presence of channel noise (e.g., [16, 30]). However, COVQ still incurs

high encoding complexity. In this thesis, we study the design of SAPQ for noisy

memoryless channels, or channel optimized SAPQ (CO-SAPQ), in order to find a

less complex alternative to COVQ.

1.2 Contributions

The contributions of this thesis are as follows:

1. The sample adaptive product quantizer (SAPQ) design of Kim and Shroff [11]
is generalized to include channel statistics. In this way, this thesis is intended
to channel optimize the design of the SAPQ resulting in the so called channel
optimized sample adaptive product quantizer (COSAPQ). Countering [11] we
will design and implement two channel optimized SAPQs, namely the COm-
SAPQ and the CO1-SAPQ.

2. This thesis includes numerical results produced in order to compare the perfor-
mances of the COSAPQ against the COV(Q and the channel optimized product
quantizer (COPQ). Through the numerical results we illustrate the advantages
of using a COm-SAPQ for memoryless Gaussian sources, and a CO1-SAPQ for

Gauss-Markov (correlated) sources.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2, we study traditional quantizers such as vector quantizer (VQ) and
product quantizer (PQ). Furthermore we study their channel optimized extensions,

namely channel optimized vector quantizer (COVQ) and channel optimized product

quantizer (COPQ). Necessary conditions for optimality, and design algorithms are

derived for each of the quantizers.

In Chapter 3, we introduce the sample adaptive product quantizer (SAPQ). We
study the model of SAPQ and derive its necessary conditions for optimality. The
encoding complexity and storage requirements are then studied for SAPQ, VQ, and
PQ. These encoding complexities and storage requirements of SAPQ, VQ and PQ
are then compared. The advantages of SAPQ are highlighted in the numerical results

section.

In Chapter 4, we introduce the channel optimized sample adaptive product quan-
tizer (COSAPQ), and study its model and necessary conditions for optimality in de-
tail. We investigate techniques to further reduce the encoding complexity of COSAPQ
using encoding simplifications illustrated in [16]. Then the encoding complexities and
storage requirements of COSAPQ, COVQ, and COPQ are studied and compared too,

with their performances under various channel conditions.

Finally we conclude the thesis in Chapter 5 with a summary of the work done and

discussion on future related work.

Chapter 2

Channel Optimized Quantization

2.1 Vector Quantizers (VQ)

A vector quantizer (VQ) is a lossy data compression system based on the principle
of block coding. In 1980, Linde, Buzo, and Gray (LBG) [25] proposed a VQ design
algorithm based on two necessary conditions for quantizer optimality. In this section
we will review the basic concepts of vector quantization and the LBG algorithm. Note
that, throughout this thesis we will use the following notation: given any natural

number n € N then J,, is defined as the set

Jo={1,...,n}.

2.1.1 VQ Model

A (k,N) vector quantizer (VQ) is a mapping from the Euclidean space RF to a finite

set C = {¢;}Y |, of N elements. The set C is referred to as the codebook and its

elements ¢, are called codevectors, hence
VQ:R¥ - C where C={¢}¥, CR". (2.1)

A source sample vector x € RF is quantized, or approximated, by a (k,N) vector
quantizer by mapping the source sample vector x into one of the elements in the
codebook C. The mapping of source sample vectors x € R¥ into codevectors is done
using the N partition regions of R¥ formed by the (k,N) VQ. A partition region S;
of the (k,N) VQ is defined as

Si={x¢€ R* : VQ(x) =g}

fori =1,..., N. These partition regions {S;} are also referred to as encoding regions

since we can define an encoding function (E) as
E(x) =7 ifand onlyif x€S;
for i =1,..., N. Then a corresponding decoding function (G) needs to be defined as

G(i) = ¢

)

for ieJy={1,...,N}

Hence the VQ mapping of sample vectors x € RF into codevectors can be broken
down into a composite of functions: the encoding function (E) and decoding function

(G) as
VQ(x) = G (E(x)) .

The encoding is governed by the fidelity criteria or distortion measure used. A dis-
tortion measure is a function that assigns a non-negative number to any two elements
x and X of R¥

d(x,%) >0 where x,%x¢ R

In this thesis we will only concentrate on the square-error distortion measure

d(x,%) = [|x — £||* where x %€ R".

With a (k,N) VQ, each sample vector x € R* can be represented by one of the N

codevectors in codebook C, hence the rate or the resolution of a (k,N) VQ is

o log, N

bits/source sample. (2.2)

2.1.2 VQ Necessary Conditions for Optimality

An optimal VQ is one that minimizes the expected distortion subject to a rate con-

straint.

Distortion: For a source X with a probability density function p(x), the expected
squared-error distortion incurred by a (k,N) VQ with codebook C = {¢}¥, and

partition regions {S;}Y, is

Dy, = E{d(X,c)} (2.3)
= Y BldX.¢)X e SIP(X €Sy (2.4)

= > [- alPpoas 25)

From the expected squared-error distortion (2.5) of the VQ, the optimal codevectors
of the codebook C = {¢;}¥, and the optimal encoding regions {S;}¥; need to be
determined. Unfortunately optimality conditions for a VQ are not known. The
necessary conditions for optimality are, on the other hand, known. The necessary
conditions are divided into the optimal encoding condition and the optimal decoding

condition.

Optimal Encoding: To find the optimal encoding condition one has to consider
the following: Given the optimal codebook C = {¢;}Y,, how can we determine the
optimal encoding regions {S;}Y ,, of a (k,N) VQ, so as to minimize the expected

square-error distortion (2.5)7

Consider a (k,N) VQ with codebook C and a source sample x € R* and
VQ(x) =y €C.
Then

dxy) = lx—yl”

> min [|lx - y||*.
yeC -

In other words the VQQ mapping that minimizes (2.5) is
VQ(x) = arg min [Ix — y|*
yeC -

Hence the optimal encoding regions can be derived to be

Si={x€R": x—gll* < lx—gl* VjeIn} (2.6)
for:=1,..., N, and thus the optimal encoding function is
E(x) = arg min [lx — ¢,|. (2.7)
1€y

Optimal Decoding: Now assuming the set of encoding regions {S;}Y, of a (k,N)
VQ are given, then the set of optimal codevectors of the codebook C can be derived
from the distortion (2.5). This is done by separating the I codevector ¢, of the
codebook C, from the expected squared-error distortion of the (k,N) VQ

N
Di = 3 [= alplods
=1 i
= /S ||§—Qz||2p(§)d§+2/s Ix — ¢il*p(x)dx.
l i

il

Taking the partial derivatives with respect to ¢, and setting the result to zero, we get

0= /Sl{—z + ¢ }p(x)dx.

Solving for ¢; we get the optimal decoding condition

L Js, xp(x)dx
(&) 7.]‘8, b (E) o

The optimal codevectors {¢ }i\., defined by (2.8) are referred to as centroids since

(2.8)

¢, =arg min B{||X —y|*|IX €S} fori=1,...,N.
YERk -

2.1.3 LBGVQ Design Algorithm

The obvious approach to designing a suboptimal (k,N) VQ is to iterate through
the necessary conditions of optimality until the distortion of the resulting (k,N) VQ
converges to a value within a prescribed threshold. Almost all quantizers are designed
using such an iterative algorithm. Their difference lies in their starting points, or
initializations. In [25] Linde, Buzo, and Gray (LBG) studied the VQ and proposed
an algorithm to design a (k,N) VQ, with a particular starting point. This LBG

algorithm will be used throughout this thesis.

(k,N) LBG-VQ algorithm

1. Set parameters k, N, the stopping threshold ¢§, the splitting constant €, the
maximum number of iterations Maxiter, and M the total number of training

vectors {x,}7L,. Start off with 7 =1, p = 0, and

10

as the initial codevector and

as the initial mean squared-error distortion.

. If 7 > N stop otherwise split each codevector using

=" 1+e¢) and) =cd"(1-¢)

fori=1,...,7, then double 7 = 7% 2 and set p = 0. Note that p is a counter for

the iterations and 7 is a counter for the number of codevectors. At this point

we have 7 codevectors C?) = {gﬁ-p)}le-

. For each f, encode x; into an index using (2.7) as

E®)(x;) = argmin [|x — ¢”)||?

1€J

where J, ={1,...,7}.

. Once x; has been encoded, put x; into the appropriate partition cell (2.6). So

if x; was encoded into E®) (x;) =" € J,, then

and the resulting distortion is then

D [Kfﬂ'] — ||§f _ Q(p)

2
7% .

. Repeat steps 3 and 4 for all f = 1..., M. Once all the partitions have been

made, update the codebook C”) using

Z) S(p)zf
40— Z’;f-xfe’ , forl=1,...,N.

)
x;x,€5,”

11

Finally calculate the overall distortion using
| M
Ol — E (p)
DVr| = 5T lep [gf,T].

6. Check %ﬁ@m < § or p > Mauxiter, if so then go to step 2; otherwise

p=p+1and go to step 3.

2.2 Channel Optimized Vector Quantizer (COVQ)

A channel optimized vector quantizer (COVQ) is a quantizer that also uses block
coding and is designed under the assumption of a noisy channel. A COVQ is modeled
and structured in similar ways to the vector quantizer, with the exception of including

a noisy channel into the design, instead of assuming a noiseless channel. In this section

we study the (k,N) COVQ.

2.2.1 COVQ Model

Codebook: A (k,N) channel optimized vector quantizer (COVQ) produces a set of
N codevectors ¢; called the codebook C

C={¢}Y, where ¢, eRfori=1,..., N. (2.9)

Structure: Figure 2.1 depicts how a source sample vector x € RF is quantized
by a (k,IN) COVQ into a codevector ¢;. The COVQ is broken down into an encoder
function (E), index assignment function (b) and the decoder function (G). The COVQ
encoder E encodes a source sample vector x into an index [, that is then transmitted
over a noisy channel using the index assignment function b(). At the decoder G the

received index j is decoded into ¢;.

12

Channel

E
=
=

Figure 2.1: Model of a (k,N) COVQ.

Encoder: The encoder function E of the COV(Q encodes the source x into an index
leJy ={1,...,N}. This encoding is done using the encoding regions, or partition

cells, S; for [=1,..., N of the COVQ), such that
E(x) =1 ifandonlyif xe€§

where ¥, S, = RF.

Channel: After encoding the source sample x into an index [, the index [is transmit-
ted over the noisy channel using the index assignment function b, where b : Jy — Ju.
The index assignment function rearranges the indices associated with the encoding
regions. After applying the index assignment function on the encoder output of the
source sample x, b(l) is transmitted over the channel. The channel considered in
this thesis is the simplest form of a discrete memoryless channel, that is the binary
symmetric channel (BSC). Using a BSC with a cross over probability ¢, the transition

probabilities of the channel are, [7],

P(jIb(D)) = (1 — " GO ()t D) (2.10)
where dy(j,b(l)) is the Hamming distance between the log, N-bit binary codewords
of j and b(l) and n = log, N.

Decoder: The decoder function G simply decodes the received index j into the

appropriate index vector ¢;

13

Note that the decoder function inverts the combined encoder function and the index

assignment function

E : RF 5 Jy
b : JN—>JN

G : Jy—CCR:.

Rate: Each source sample vector x € RF is encoded into an index [€ Jy, and the
binary representation of the index [requires log, N bits. Hence the rate of a (k,N)

COVQ is

R _ logy, N

bits/source sample.

2.2.2 COVQ Necessary Conditions for Optimality

Distortion: Given a source X with probability density function p(x), let Y be the
output of the decoder when X is quantized by a COVQ. Using the definition of an

encoding region S,
={xeR':E(x)=1} forl=1,...,N

the expected squared-error distortion of a (k,N) COVQ, given the set of encoding

regions {S;};Y, and the codebook C = {¢;}),, can be found to be

Jj=b
Deove = E{d(X Y)}

= ZZPﬂb VE{d(X, ¢,)|X € S}P(X € S))

=1 j=1

- Z/ S PGIb0) o

l]l

14

Optimal Encoding: Given the optimal codebook C = {¢;}}¥,, how can we deter-
mine the optimal encoding function so as to minimize the expected squared-error
distortion when a source sample x is encoded into an index [, using a (k,N) COVQ

encoder?

Let Y be the reproduction, or the output of the decoder, of a source vector x and

let x € 5; then

B{dxY)} = Y PUBO) [x - g

> manP (b)) ||x = ¢ H .

Hence the optimal encoding function is
2
E(x) —argmmZP (7]b(1) HX—C]H

7j=1

The distortion incurred by mapping the source x into the index [is

§:Pﬂb)z gl

and the optimal encoding regions become

Si={xeR':i=arg min Di(x)} (2.11)

=

= {xeRF: ZPj|b Ix—¢|” Z G |x—¢l*v eIyt (212)

fore=1,...,N.

Optimal Decoding: Now assume that the optimal encoding regions {S;}¥ | defined
by (2.12) are given, then the optimal codevectors {¢,}¥, of codebook C need to be
derived. This is done by using the distortion

COVQ_Z/ ZP]|b HX_C]H p(x)dx.

7,]]_

15

Take the partial derivative of the above with respect to ¢, by separating the [** code-
vector in the above as follows
) . .
Deove = Z) { (A1b(@) N = el + 3 PGB = o } p(x)d.
J#l
Setting the derivative to zero we get

0= [P {=x-+e} p(x)as
Solving for ¢; we get :
- > s, P llb(Z) (X)dX
TN, Js, PUIb() p(x)dx

The optimal codevectors {¢;}7, defined by (2.13) are also referred to as centroids

(2.13)

since
¢, = arg min E{||X — y|*|V =1}
YeRk -

fori=1,...,N and V is the rand(;m index output of the channel.

2.2.3 COVQ Encoding Simplifications

In [16] Farvardin and Vaishampayan study the performance of the channel optimized
vector quantizer and illustrate how the encoding complexity of the COVQ can be

reduced. Consider the optimal encoder function of the (k,N) COVQ

E(x) = argmmZP (7]b(1) HX—Csz

j=1

= argmmZP (b)) {1zl — 2<x, ¢;> + llg; 1P}
7j=1

where <z, y> is the inner product over R*. This function can be simplified by intro-

ducing the functions

y(v)ZZP(jlb(v))g,- and a(v)zz (1) ey (2.14)

16

Substituting the above functions into the encoder function we get

E(x) = arg mlin{a(l) —2<x,y()>}.

N
=

N

, and the set of scalars {a(7y)};_;, the encoding

Given the set of vectors {y(7)
complexity of a (k,N) COVQ is now proportional to INV.

2.2.4 COVQ Initial Codebook Design

Let X and X be the input and output, respectively, of a quantizer and let ¢ be the
output of the decoder as in Figure 2.2. For such a setup the total end-to-end expected

squared-error distortion can be found to be

Dtotal - EHX - 9”2 (2'15)
= E|X-X+X-¢) (2.16)
= BIX-X|’+E|X - ¢’ +2 E{<X - X, X - ¢c>}. (2.17)

é ;g cross‘—rterm

In a related work [38], Totty and Clark studied the reconstruction error in waveform
transmission for scalar quantizers. The authors showed that if the codevectors of
the quantizer, above, satisfied the centroids condition (2.8), then the cross-term in
equation (2.17) can be eliminated. A detailed proof is also outlined in [9] by Cheng.

Hence, assuming the centroids condition is satisfied, the total end-to-end distortion

2

p and the channel

can be reduced to the sum of only the quantization distortion e

distortion €2.

Considering a particular quantizer with codebook C = {¢;}I¥; and encoding re-

gions {S;}}¥,, the above quantization distortion can be formulated to

N
€5 = Z/S Ix — ¢I°p(x)dx
=1 7

17

[><

1 c
b() Channel Decoder ——

X .
—— + Quantizer

Figure 2.2: Model of a general quantizer and a noisy channel.

where p(x) is the probability density function of X. Furthermore considering the
binary assignment function b(), where b : C — Jy and Jy = {1,..., N}, the channel
distortion can be formulated to be

N
2 _
=2

j=1 i

N
P(Qi)P(b(gj)|b(gi)) {“Qz - §j||2}

=1

where P(c;) is the a priori probability of the codevector ¢;; P(c;) = P(X € S;). In view

of this analysis and as suggested by Farvardin in [15], we can focus on minimizing the

channel distortion € by appropriately choosing the index assignment function b().

To choose an appropriate index assignment function b(), we use a technique called

simulated annealing.

Simulated annealing belongs to a class of randomized algorithms, [34], where the
next state configuration is generated randomly and “hill climbing” is allowed. “Hill
climbing” is a move that results in a state with higher energy or cost (in this case
the cost is €2(b)) than the current one accepted, such a move is used to avoid local
minimums. In the field of Information Theory, simulated annealing has been also
used to find good channel codes [18]. The simulated annealing algorithm tuned for
the purpose of minimizing the channel distortion €2(b)

N
e(b) =3 ple)Pb(ey)b(e)) {lle; — ¢

j=1 i=1

uses states defined as b = (b(¢),...,b(cy)), for a N codevector quantizer, and a

18

temperature schedule given by
T, =aT,_; where 0<a<]l. (2.18)

The algorithm is described below.

Simulated Annealing Algorithm

1. Set Maxper, the maximum number of perturbations, and the effective temper-

ature to an initial Tj. Randomly choose an initial state b.

2. Choose the next state b’ randomly and calculate the change in ’energy’ de? =

e2(b") —€2(b). If 6e2(b) < 0, replace b with b’, and goto step 3, else replace b by
b’ with probability exp{—de?/ T} and goto step 3. Note that as the temperature
decreases the probability of replacing a state b with one that has a higher cost

or energy €2(b), becomes lower.

3. If after Maxper number of perturbations, no energy drop occurs, goto step 4.

Otherwise goto step 2.

4. Lower the effective temperature according to (2.18). If the temperature T is
below a prescribed freezing temperature Ty or the system appears to be stable,

stop with b as the final state. Otherwise goto step 2.

Table 2.1, tabulates the set of prescribed parameters used in the simulated annealing

algorithm. These parameters were suggested in [9], [18] and [15].

In view of the result (2.17)
Dtotal - 62 + 62

q (&
one can suggest a 'channel optimized’ tandem source-channel coding system where

the codebooks of a quantizer are designed using the LBG algorithm of section 2.1.3

19

To 10.0
Ty 0.00025
o 0.97
Mazxper| 200

Table 2.1: Suggested parameters for Simulated Annealing Algorithm.

and the index assignment function designed using the simulated annealing algorithm.
In [15] Farvardin illustrates the advantages of using an initial codebook thus designed
as initial points to the design of a COVQ. Such a method of initializing the design of
a COVQ was shown to be superior, in achieving lower distortions, than designs that

used the splitting method or random initialization method.

2.2.5 Design Algorithm of a (k,N) COVQ

Now that the initial codebook C© and index assignment function b() can be found
using the analysis of Section 2.2.4, the (k,N) COVQ can be designed using a simple

algorithm that iterates through the necessary conditions (2.12) and (2.13).

(k,N) COVQ Algorithm

1. Set parameters k, N, the design BSC error crossover probability €4, the stopping
threshold ¢, the maximum number of iterations Maxiter, and M the total
number of training vectors {x,}}L,. Initialize p = 0, and initialize the codebook

CcO = {gl@) N | and index assignment function b(), from Section 2.2.4.

2. Calculate the N vectors {y'”)(v)})_; and the N scalars {a!”)(v)}]_, using code-

book C?) and functions (2.14).

20

3. For each f, encode x; using

E®) (Kf) = arg min {a(ﬂ)(i) — 2<%y, y () (z)>}

1€J N

where Jy = {1,..., N}.
4. Put x; into the appropriate encoding regions, (2.12). So if E® (x;) = i* then
with the distortion

D) = 3 PbED s,

=1

where the transition probabilities are calculated using (2.10) and €.

5. Repeat steps 3 and 4 for f = 1,..., M. Then update the codebook to C**+V

using

SV P(I|b(i)) sz;gfesﬁm Xy
>, P(UIb(0)) ng@fesg‘”

Finally calculate the overall distortion

M
1
D) — _—_ ZD(p) (Kf)-

gl(p+1) _

6. Check W < 0 or p > Mauwiter, if so then stop, otherwise p = p+ 1 and

go to step 2.

2.3 Product Quantizer (PQ)

The sample adaptive product quantizer (SAPQ), to be described in Chapter 3, is
based on the product quantizer (PQ). The PQ is an alternative to the vector quan-

tizer (VQ), that achieves a lower encoding complexity at the expense of a loss in

21

PE G

) . 1]

21 — E]. P 11 11 ™ g1 na Qi]_
1
X —» I - (Q£1}7 . J_EZ])

z E ' ; m]
Lm ™ m > lm Zm g gm *le
Product Encoder Decoder

Figure 2.3: Model of a (k,m,N) PQ.

performance (lower signal-to-distortion ratio). In this section the (k,m,N) PQ will

be described and studied.

2.3.1 PQ Model

Codebook: The codebook C of a (k,m,N) product quantizer (PQ) is a product of
a set of m codebooks {C;}72,. Each codebook Cj is a set of N codevectors {ggj] N

and a subset of R¥ such that

C=0C; x...xC, where C; = {glm N, and glm € R-. (2.19)

Structure: Figure 2.3 depicts how a source sample vector x = (x,,...,X,,), where
x, € RF for s = 1,...,m, is quantized by a (k,m,N) PQ. As depicted the PQ is
broken down into a product encoder (PE), and a decoder (G).

Encoder: A (k,m,N) PQ encoder is referenced here as a product encoder (PE). A

product encoder is a vector function that encodes a source sample x = (x;,...,X,,)

’=m

22

into a vector of indexes I. The constituent function of the product encoder are

encoder functions (Fj, for s = 1,...,m) such that
PE(x) = (Ei(x4),..-,En(x,)) =1 where E,(x,) =is€Jy={1,...,N}

and l:(i17...7im)€!]'ﬁ.

Decoder: At the decoder the index vector I = (iy,...,i,) produced by the product
encoder (PE) is decoded into codevectors. The decoding function is also a vector

function (G) that has m component functions {gs}7 ,, such that

G(L) = (92(i1)s- - gnli)) = (e o).
Note that encoder function E, and decoder function g, are related by codebook Cj,
for s = 1,...,m. In other words a (k,m,N) PQ can be thought of as a row of m
(k,N) vector quantizers. Each one of the m (k,N) VQ quantizes its corresponding

component source sample x, for s =1,...,m of x.

Rate: For a source sample vector x = (x;,...,X,,), where x, € RF for s =1,...,m,
the product encoder function (PE) of the (k,m,N) PQ produces an index vector
I =1(i1,...,0m), where iy € Jy for s = 1,...,m, when it encodes x. Hence there are
m indexes i, that are produced for every km source samples x = (x4, ...,X,,). BEach
index i, can be represented by a log, N-bit codeword. Hence the rate of a (k,m,N)

PQ is
~ mlogy N logy N

R
km k

bits/source sample.

2.3.2 PQ Necessary Conditions for Optimality

Distortion: For a (k,m,N) PQ, the partition cells or encoding regions, are defined
as

SV = (x e R : Bj(x) = i} (2.20)

23

where it =1,...,N, j=1,...,m and E; is the j* encoding function of the (k,m,N)
PQ. With the encoding regions defined the mean squared distortion of the (k,m,N)
PQ can be found. Let ¢ be the output of the decoder when a source X = (X, ..., X,,),

with probability density function p(x) = p(x;,-..,X,,), as input. Then the mean

» &m

squared distortion is
D,, = E{d(X,c)}

m N

= Y Y P, e SHE{X, - dNPX, € ST}
t=1 1;=1
m N

= 3N [- dPpsds

t=1 ;=1

where for t = 1,...,m, p,(x) is the marginal probability density function of X,,

by(x) = / / p(x)dx.
¥§16R’° X ERﬁ

no Xt

Optimal Encoding: Let y be the output of the decoder when source sample x =
(X4,.-.,X,,) is quantized by a (k,m,N) PQ, and let x, € S[th, fort =1,...,m and

zy € Jy, then

m
dx,y) = Y lx)
t=1

m
> min JWZH&—QZ}IIZ-
€

Z=(21,2m)EJ N 1

Hence the optimal product encoding function (PE) of a (k,m,N) PQ is

m

PE(x) = arg min gn Z Ix, — c2II?
z

_—(zl aaaa Zm)e N t=1

and naturally the optimal component encoding function is

Ey(x) = arg min [|x —)| (2.21)

zZed N

24

fort = 1,...,m. From the above formulation of the optimal encoding functions,
and from the definition of the encoding regions of a (k,m,N) PQ (2.20), the optimal

encoding regions can be found to be
S/ ={xeR s lx— o/ < llx -) vzedn) (2.22)

fore=1,...,Nand j=1,...,m.

Optimal Decoding: To find the optimal set of codevectors {gEﬂ}, the expected mean
squared distortion of the (k,m,N) PQ is manipulated in order to filter out codevector

ggj], the {** codevector of codebook C; where [€ Jy and j € J,,,, as follows

m N
D,, = ZZ/SM Ix — |1y (x)dx

t=1 i,=1
N N
j t
= 3 [= Py s+ S [= s
=1 i t#£j it=1" it

where {Sgt]} is given and defined as in (2.22), for i = 1,...,N and t = 1,...,m.

Taking the partial derivative of the above with respect to gy], and setting the resultant

derivative to zero we get
0= Slm{—z + cMp; (x)dx.

Solving for glm

we get
. fsylz p,(x)dx

= :
- fSEj] p,(x)dx

(2.23)

Note that this is the same as finding the optimal {** codevector of the j* (k,N) vector

quantizer, (2.24).

25

2.3.3 Design Algorithm of (k,m,N) PQ

As described by Gersho and Gray in [19], the (k,m,N) PQ can be thought of a

combination of m parallel and independent (k,N) vector quantizers, such that

PQ(x) = (VQi(x1), - -» VQu(x0)) (2.24)

where x = (x,,...,x,,), and x; € R* and VQ; is a (k,N) VQ, for j =1,...,m. With
this in mind, we can design a (k,m,N) PQ using an algorithm that designs each VQ,

or codebook C;, using the LBG-VQ algorithm of Section 2.1.3 for j =1,...,m.

(kym,N) PQ Algorithm

1. Set parameters k, m, N, the stopping threshold d, the splitting constant e, the
maximum number of iterations Maxiter, and M the total number of training
vectors {X; = (X;f,.--,X,) }jo,. Initialize j = 1, this is the counter that

keeps track of the m codebooks.
2. Start off with 7 =1, p =0, and

Ul0) _

(&1 =

WE

1
ML
f=1

as the initial codevector of codebook C; and

M
1 .
0 (0
DY) = =2y — O
=1
as the initial mean squared-error distortion for the vector quantizer VQ;.

3. If 7 > N goto step 8 otherwise double the codevectors in codebook C; using

MO — N1 4 gy

[.ﬂa(p> — []]7([’)(1 _ 6)

and ¢ = ¢

26

for s =1,...,7 then double 7 = 7 % 2 and set p = 0. Note that p is a counter
for the iterations and 7 is a counter for the number of codevectors in codebook

C,. At this point we have 7 codevectors C” = {c Whr

. For each f, encode x; ; into an index using (2.21) as

Egp) (Ej,f) = arg mjn ||§j / c ||2

1cJdr

where J, ={1,...,7}.

. Once x; ; has been encoded, put X; ; into the appropriate partition cells (2.22).

So if x; ; was encoded into E()(x x; ;) = 1", then
x; € SEH
and the resulting distortion is then

DY x; ;7] = |lxj; — 2.

. Repeat steps 4 and 5 for all f = 1..., M. Once all the partitions have been

made, update the codebook CS’J) using

lil.(p) X
Qi) _ Ty, €S T
=l -

X, X, fes[J] 2(p)

Finally calculate the overall distortion of VQ; using

M
Pr1_ (p)
Djp 7] = i E Djp [gj,f,T].

(p—1) (p)
Dj [T]_Dj [7]

. Check
DI)[7]

< § or p > Maxiter, if so then go to step 3 otherwise

increment p = p+ 1 and go to step 4.

27

8. If j > m then calculate the overall distortion as
1 m
Mazxiter
Doverall = E Z D]()[N]
j=1

and stop, otherwise increment 7 = 7 + 1 and goto step 2.

2.4 Channel Optimized Product Quantizer (COPQ)

Just as the product quantizer (PQ), is a building block for the sample adaptive
product quantizer (SAPQ), the channel optimized product quantizer (COPQ) serves
as a building block for the channel optimized sample adaptive product quantizer

(COSAPQ). In this section the (k,m,N) COPQ will be described and studied.

2.4.1 COPQ Model

Codebook: The codebook C of a (k,m,N) channel optimized product quantizer
(COPQ) is a product of a set of m codebooks {C;}7.,. Each constituent codebook

C;j is a set of N codevectors {ggj]}iN:l and a subset of R¥ such that

C=0C; x...xC, where C; = {ggﬂ}i]il and gEﬂ € R, (2.25)

Structure: Figure 2.4 depicts how a source sample vector x = (x,,...,X,,) IS quan-
tized by a (k,m,N) COPQ. Like the COVQ the COPQ includes the noise statistics
and hence the channel is included in the model of the COPQ.

Encoder: A (k,m,N) COPQ takes in a source sample x = (x,,...,X,,) and encodes
it into a vector of indexes I = (iy,...,1,) using a product encoder function (PE).
The product encoder function (PE) is a vector of encoding functions {Es}7 , such

that

28

PE G
) (1]
21 — E]. M 21 l]_ - g1 e gll
X— - . - — 1 — Channel ~L— - . - — (QE],...,QE?:})
. [m]
Product Encoder Decoder

Figure 2.4: Model of a (k,m,N) COPQ.

PE(x) = (Ei(x;),..-,En(x,)) =1 where E,(x,) =is€Jy={1,...,N}

and 1= (iy,...,i,) € JY.

Note that although the product encoder (PE) of a (k,m,N) COP(Q shares the same
name and description as that of a (k,m,N) PQ, their formulations are different. The
PE of the COPQ takes into consideration the channel noise whereas the PE of the
PQ does not. However both are a mapping from the Euclidean space R¥™ to the set
JU=A{1,...,N}™ PE: R — J}.

Channel: Transmission of the index vector I = (iy,...,i,) over a noisy channel is
realized by converting the indexes 11, . .., %5, of index vector I, where iy € Jy, into

log, N-bit codewords and transmitting each binary codeword one at a time. Thus

the channel is used independently by each transmitted index iy,...,,. Hence the
probability of receiving L = (Iy,...,[,,) given that I was transmitted is
P(L|L) = [[P(Llis)- (2.26)
s=1

In this thesis the natural binary codeword (NBC) assignment will be used for the

29

COPQ. So each of the indexes 71, ...,1%,, of index vector I, are encoded into their
n-bit binary codeword equivalent, where n = log, N. These codewords are then
transmitted over a BSC with cross over probability €, such that the channel transition

probabilities resolve to
P(l,is) = (1 — e) i) ()dullais) for s =1 ... m (2.27)

where dy(ls,is) is the Hamming distance between the n-bit binary codewords of i,

and /.

Decoder: At the decoder the index vector L = (Iy,. .., [;), received from the channel
output, is decoded into codevectors. The decoding function is also a vector function

(G) that has m component functions {g,}7 ,, such that

G(IL) = (1(1)s- -, gm(l)) = (e, ., ™).

Just as the PQ, a (k,m,N) COPQ can be thought of as row of m (k,N) COVQ, where
each (k,N) COVQ quantizes a component x, of x = (x;,...,X,,)-
Rate: Like the (k,m,N) PQ, the rate of a (k,m,N) COPQ can be derived to be

_ log, N
ok

R bits/source sample.

2.4.2 COPQ Necessary Conditions for Optimality

Distortion: The mean squared distortion of a (k,m,N) COPQ can be derived by

using the definition of a partition cell or encoding region
SVl = (x e R : Bj(x) = i} (2.28)

fori =1,...,N and j = 1,...,m. Let c be the output of a (k,m,N) COPQ for

a source X = (X,...,X,) with probability density function p(x) = p(xy,...,X,,),

) =m

30

then

DOOPQ = E{d(Xa 9)}

m N N
= YD P, e SHELY Pl X, -

t=1 ;=1 l;=1

= ZZ/SMZP li]it)

t=1 ;=1 it [g=1

‘ — ¢ pt (x)dx

where for t = 1,...,m,p,(x) is the marginal probability density function of X,,

= / . / p(x)dx.
X, Rk X,, ERF

no X,

Optimal Encoding: Again let Y be the output of the decoder when the source

x = (Xy,...,X,,) is quantized by a (k,m,N) COPQ. Let x, € S fort =1,...,m then

m N 9

BldxY)} = >3 Plll) |x - o
t=1 l;=1
2
> min WZZP ly|zt) _Cz

(z1 EJN t=1 [;=1

Hence the optimal product encoder function (PE) is
m N
PE(x) =arg min WZZP It 2) ‘X—Clt

(Zly 7Zm€ N t= 1 ;=1
and the optimal component encoding function is
2

E.(x) = arg m1n ZP l|2) HX—CZ

zENll

Thus the optimal encoding regions are

N
) 112
SV = (x B+ 3ROl s - ZPZI lx=|" veean) @29)
=1

31

fore=1,...,Nand j=1,...,m.

th

Optimal Decoding: Separate the i** codevector ggj] of the j** codebook C;, from

the expected squared-error distortion of a (k,m,N) COPQ as follows

DCOPQ = ZZ/SMZP(M%)

t=1 z;=1 2zt =1

- ﬁ:/sg]ip(uz) Hz—gy]Hzpj(z)dz
+Zi/sm iP(lt|zt)

t£j zt=1 2t [p=1

2
Py (E) dx

x- g

2

x P (E) dx

‘E -G,

and take the derivative of the above with respect to ggj]. Setting the resultant to zero

we get

0= iv:/sm P(i|z) {—§+giﬂ} p;(x)dx.

Solving for gEj ! we get

il _ Z,]zvzl P(ilz) fs[zj] x p;(x)dx
B Son, Plif2) fS[j] p;(x)dx

2.4.3 COPQ Encoding Simplifications

As in the theme of section 2.2.3, the encoding function

2

N
E/(x) = arg min ZP(Hz) ‘g—glm
ZEJN =1
N
= argmin 3 P(U2){|Isl” - 2<x, &> + |7}
#EIN =

fort =1,...,m, of a (k,m,N) COPQ can be reduced by using the functions

) = 2P and ajw):iP(ungP]HZ (2:30)

32

for j =1,..., m. The resulting simplified encoding function with a reduced complex-
ity is then
E.(x) = arg min {ay(2) — 2<x,y,(2)>}.

ZEJN

2.4.4 Design Algorithm of a (k,m,N) COPQ

Just as in the case of the (k,m,N) PQ, the (k,m,N) COPQ can be thought of as a

combination of m (k,N) channel optimized vector quantizers
COPQ(x) = (COVQ,(xy), - - -, COVQ,, (x,,))

where x = (xy,...,X,,), and x; € R¥ and COVQ; is a (k,N) COVQ, for j =1,...,m.
Hence a (k,m,N) COPQ can be designed in the same way as a (k,m,N) PQ, where
the individual (k,N) channel optimized vector quantizers are designed independently,
using the algorithm of Section 2.2.5. The initial codebooks used in this algorithm is
the codebook of a (k,m,N) PQ designed using the algorithm in Section 2.3.3.

Chapter 3

Sample Adaptive Product

Quantizer

The sample adaptive product quantizer (SAPQ) [11] is based on adaptive quantiza-
tion. For every source sample vector, the SAP(Q employs a codebook from a previously
designed set of 2" codebooks, available at both the encoder and the decoder. The
2" codebooks are actually codebooks of 2”7 product quantizers. Note, the codebook
used can change, or adapt, for every source sample vector. So when transmitting
the indexes, representing the codevectors or reconstruction vectors, the encoder must
also transmit an additional index indicating the codebook used for that source sample
vector. This chapter describes the SAPQ, and through numerical results we illustrate

the advantages of the SAPQ.

33

34

3.1 m-SAPQ Model

Codebook: A (k,m,N,n) m-SAPQ is constructed from a set of 27 codebooks {C;}2_,.

Each codebook C; is a product of m codebooks {C; ;}™ | that are subsets of RF with

[5,4]

cardinality /V. In other words, each codebook Cj ; contains N codevectors ¢; **, where
i=1,...,N, that belong to R

C; = Cy;X ... xCp; such that C,; = {™}Y | and ™/ € R, (3.1)
For I € J7 and j € Jon, define QE} to be a vector of codevectors gEj’j] that are ordered
as follows
Q[Ij] = (gg’ﬂ,...,ggrs’j]) where I = (iy,...,0y) and i; € Jy =1,...,Nfors=1,...,m

Note that QE} € Cj, and QE} is referred to as a product codevector.

Structure: Figure 3.1 depicts how a source vector x = (x,,...,X,,), where x, € R

for s = 1,...,mis quantized by a (k,m,N,n) m-SAPQ. The m-SAPQ encoder encodes

the source sample x into an index vector / € Jy and an overhead index j* € Jon.

Then the decoder decodes the index vector I and overhead index j* into a product
5]

codevector c; .

Encoder: At the m-SAPQ encoder the encoding of a source vector x is processed
by a set of 2" vector functions called product encoders (PE), {PE;}3",. Each vector
function PE; takes in a copy of the source vector x and encodes it using the product
codebook C;. Furthermore each PE; has m component encoding functions, {E, ;}7-,,
such that each function E;; encodes subvector x, into an index i, ; using codebook
Cs,j, for s = 1,...,m. The concatenation of all the indexes i,; for s = 1,...,m,

forms the index vector I; which is the output of PE;

PE;(x) = (Erj(z)), - Bnj(z,)) = I; where By j(z,) =iy, € Iy

35

and lj = (il,j;---;im,j) c Jﬁ

Hence the m-SAPQ encoder internally produces 2" index vectors {I,}%.,. However
only one index vector I € {lj}gll, is chosen to be transmitted to the decoder along
with the index j* representing PE;. (the PE that encoded x into). Details of
the encoding process and the choosing of index vector I/ and overhead index j* are

described in Section 3.2.2.

m-SAPQ Encoder Decoder
] . _ [1,57]
X — PE; _’ll 1] —* gi1,5* — &,
x— (L) —
X — PEy Iy im— Gmje
L=(ir,.ovim) T =(c, M)
PEj -

Zy~ Eij i1y

E" . . . —>lj:(i1’j,...,im,j)

L~ B j i,

X = (zlu'--uzm)

Figure 3.1: Figure of a (k,m,N,n) m-SAPQ and the j* Product Encoder PE;, where,

j=1,...,2 x=(x,...,x,) ER™ and I = (i1, ..., in) € JT.

36

Decoder: The decoder consists of 27 vector decoding functions {Gj}gll. The vector
decoding function G; consists of m component decoding functions, {g,}7,. Each
decoding function g, ; decodes an index 7 into the codevector ggs’j} (ggs’j} € Gy ;). At

the decoder the choice of which vector decoding function G, out of the set {G; ?":1,
is determined by the received overhead index. When index vector I and index j* are

received, the decoder decodes index vector I using the vector decoding function G-

Decoder(L,) = Gy (1) = (guy-(02). - Gy () = (7. dmy = &)

G, im
Naturally the decoding functions invert the encoding functions
PE; : R — J% and G;:J¢ — C; CR™
E,;: RF — Jy and gs;In — Gy C R
foryj=1,...,27and s =1,...,m.
Rate: The source input vector x = (x1,...,2,,), where x, € RF for s = 1,...,m,

has a total of km source samples. The m-SAPQ encoder output for source vector x
is L = (i1,...,i,) and j*. So each ig; € Jy, for s = 1,...,m, can be represented by
a log, N-bit codeword and j* € Jon can be represented by a n-bit codeword. In total
there are mlog, N 4+ 1 bits needed to represent x. Hence the rate of a m-SAPQ is

l N
_ 9% —|—L bits/source sample. (3.2)

i k km

3.2 m-SAPQ Necessary Conditions for Optimality

3.2.1 m-SAPQ Distortion

To find necessary conditions for optimality of a (k,m,N,n) m-SAPQ, the expected

mean square distortion of the (k,m,N,n) m-SAPQ needs to be calculated. To simplify

37

the notation we define the following terms for s =1,...,m
vs(l) = the s index component of I =i, ; v,:JV — Jy (3.3)
us(x) = the s™ vector component of x =z, ; u, : RF — RF, (3.4)

Furthermore let Sg be the encoding region for index vector Z and index j of a

(k7m7N777) m-SAPQ, i.e,
U = {x € R : m-SAPQ Encoder(x) = (Z,)} (3.5)

where Z € J, and j € Jyn. In other words Sg} is the set of source vectors x such
that x is encoded into index vector Z and overhead index j. In total there are 27N™
encoding regions SZ].

Let c represent the reproduction, or the output of the decoder, of the m-SAPQ for
source X with a probability density function p(x). Given the 27N™ encoding regions

of a m-SAPQ Sg], and the codebooks {Cj}?"zl, the expected mean square distortion
of a (k,m,N,n) m-SAPQ can be found to be

Dm-SAPQ - E{d(X; 9)} (36)
= Y Y BlX.)X espX e sy (3.7)

=1 zeJ7
B z; ZJ/ Z;Hus ey lPp(x)dx. (3.8)

Note that x and c are vectors of subvectors with their distortion defined to be the
sum of the squared distance between their corresponding subvectors. So if x € SZ]

then

d(x, ¢7)) leus — evinlP

38

3.2.2 m-SAPQ Optimal Encoding

We next consider the following: given product codebooks {C; }] 1, how can we de-
termine the optimal encoding function so as to minimize the mean square distortion
when a source sample x is encoded into an index vector I and index j*, using a
(k,m,N,n) m-SAPQ encoder?

Let ¢ be the reproduction, or output of the m-SAPQ decoder, of x and let x € SZ},

then

d(x,¢) = E]NA - eipll’

> mln ZHus —c ||2
N s=1

> min mmz u 53] 2,

> min iy 3 () —)|

Hence there are two optimizations to be implemented. As a consequence of the
structure of a m-SAPQ), the first optimization is done by each product encoder,for

j=1,...,2" PE;

PE;(x) = arg mln Z |lus(x (]Z)||2 =1; (3.9)
Ze N s=1
= (arg min ||Juy(x) — g[zllﬂ] %,...,arg min ||u,(x) — Q[ZT:;J”'Z) (3.10)
Z1€EJN ZmEJ N
where Z = (z1,...,2y), and each constituent encoder E;; of PE; produces the s
index component of I,
By (u,(x)) = arg min u,(x) — 9% = v, (1) (3.11)

ZsCJ N
independently of each other. The independence in encoding is again a consequence of

the structure of the m-SAPQ. The mean squared distortion incurred by each product

39

encoder PE;, and associated to [, is

D;(x) = min Y us(x) — cy7, 1% (3.12)

Within the encoder we have 27 index vectors {PE;(x) = I;}", each with an asso-
ciated distortion of {(Z;,D;(x))}:%,, for j = 1,...,27 Out of the 2" index vectors
{1;}5~,, the index vector [with the minimum distortion D;-(x) = min; D, is cho-
sen to be transmitted to the decoder. The PE that produced the index vector [is
distinguished by transmitting the overhead index vector j* along with I. Thus the
optimal encoding regions are given by

S[Im = {§ € R : j* = arg min Dj(x) and [= ;. = PEj*(g)} : (3.13)

B jEJzW

With I and j* defined above, the optimal distortion given the codebooks {C;}5%, is

Al m
Dsire = B{minD;} = 30 3 [S i) - i Potax. (314
I s=1

I=lredy
3.2.3 m-SAPQ Optimal Decoding

In the previous section we assumed that the set {Cj}?nzl was given, in other words
the set of all codevectors {gEs’j]} was assumed to be given. We will now find the set
of all optimal codevectors assuming that the set of 2" N™ optimal encoding regions
{S[Lj*}} are given. The distortion with the encoding regions {Sg*]} defined as in (3.13)
1s
2" m
t,5*
Doowe = 2250 [) — i Pptoce
it=LlyeJn 8L =1

[5.]

rth

Take the partial derivative with respect to the codevector ¢! by separating the 2

codevector of codebook C; j, where s € J,,,, 7 € Jon and ¢ € Jy, in the above distortion

40

as follows

Docwg = X)3 huta) — ey sl

IJmltl

N MZHut —) P (e

Gt #E ey Sy

= > /Sm{Hw(z)—9[5;@)||2+Z||ut(z>—g[5;@)||2}p<§>d§
1eJy 7L

tit#£s

" Z Z /s[j*] [[us(x) _Q%;](;])HQP(E)C@
t=1

It F ey UL

Setting the resultant derivative to zero we get

[5,4]

Solving for ¢; ”' we get the centroids

[s,9] f[”] lls() ()dX
! B fSZ[SJ] p\x _)dﬁ

(3.15)

where the partition cells Sz[s’j} are defined to be

sl = U sy (3.16)

I:Vg(I)=i
= {x € R"" : m-SAPQ Encoder(x) = ((i1,...,im),j) and i, = i}(3.17)

[5,4]

Note that there are 27 Nm partition cells Sl[s’j], one for each codevector ¢; ", and there

are 27N™ encoding regions Sg*]. Due the inherent nature of the m-SAPQ, although
there are 2"Nm codevectors, when encoding we have a choice of 27N™ encoding

regions S[Lj*] or product codevectors Q[Lj*}.

41

3.3 Example of a (k,m,N,n) m-SAPQ

This example is intended to better illustrate the notation, and the encoding and
decoding process of a m-SAPQ. Consider a (1,2,2,1) m-SAPQ with a codebook as
depicted in Figure 3.2. Consider a sample of the source vector x = (x1,Xs) located as
shown in Figure 3.2. When this source sample x is encoded by the (1,2,2,1) m-SAPQ

with codebooks {Cy, Cz}, the output of the product encoders is:

PEi(x) = (Eii(x1),Eoi(x2) = (1,1) =1,

PE;(x) = (Eiz(x1), Eap(x2)) = (1,1) = L.

The set of product encoder functions {PE;, PEs} and the set of encoder functions
{E11,E21,E 2, Ey} are formulated by (3.10) and (3.11) respectively. The resulting

distortions of each product encoder is

1,1 2,1 1
Di(x) = (-2 + - =lx—c,lP
Dy(x) = (x1— @)+ (xp — 232 2

2
ll™

[
(
[
(

I
I

(1]
(1,1)

2]

Clearly x is closer to product codevector ¢ then product codevector gEl 1) hence

the output of this m-SAPQ encoder is
m-SAPQ Encoder(x) = ((1,1),1) = (£, 1).

At the decoder, there are two decoding functions {G,G,}. Since in this case the

overhead index is 1, the decoder output is
Decoder((1,1),1) = G1(1,1) = (g1 (1), g1 (1)) = ("7, 2D,

Hence the m-SAPQ takes in the source sample x = (x;x3) and reproduces it as
(C[lzl} (271)).

1 -G

_ ol
Cl - Cl,l X 02,1 - {2(1,1)72(1,2)79(2,1)72(2’2)}
_ _ogn2l 2l 2 2]
CQ - Cl,2 X C2,2 - {2(1,1)72(1,2)79(2,1)72(2’2)}
Cii = (b ity
Cop = {51y
Crp = {7)
Cop = {7, &y
[2] 2]
[2,2] €1,2) C(2,2)
cy
[1] 1]
[2,1] C1,2) €(2,2)
cy
, [2] 2]
f 2]__ S, C2.1)
X2 L * =
[1] 1]
[2,1] €(1,1) €(2,1)
Cl T
At x 2L AL

Figure 3.2: Example of a (1,2,2,1) m-SAPQ.

43

3.4 1-SAPQ

The 1-SAPQ is a particular case of a m-SAPQ. In the case of the (k,m,N,n) m-
SAPQ, the 27 codebooks of (3.1), were products of m individual codebooks that
can be different from each other. For the (k,m,N,n) 1-SAPQ, the 27 codebooks
are products of the same codebook. The (k,m,N,n) 1-SAPQ only requires a set of

codebooks {Cj}?ll, where each codebook C; is a subset of R¥ of cardinality N; i.e.
C; = {ggj]}fil such that ng] € R”.

The structure of a (k,m,N,n) 1-SAPQ is depicted in Figure 3.3. The source sample
vector X = (x1, ..., Zy), is encoded into an index vector by a set of 27 vector functions
called repeated encoders (RE), {RE;}?_,. Each repeated encoder RE; encodes x into
an index vector I;, by using the same encoder function E; on each subvector x; of x,
for s =1,...,m. Out of the set {lj}?"zl, produced by the 2" repeated encoders, only
one index vector [j* with the minimum distortion is chosen and transmitted to the

decoder, along with an index indicating which of the 2" repeated encoders produced

I;.. The decoder then simply inverts the encoding functions.

Distortion: Given the codebooks {C;}3", and encoding regions {Sg]}, the distortion

of a (k,m,Nn) 1-SAPQ can be derived to be

DI-SAPQ - E{d(X; 9)} (318)
2n
= Y N BldX,)X esPpx es)) (3.19)
i=1 zeJ%

=2 > /SMZIIHS(E)—2[vj1<z>||2p(§)d§. (3.20)

i=1 geJmPL s=1

Optimal Encoding: Given the codebooks {C;}*.,, the residual distortion incurred

44

1-SAPQ Encoder Decoder
[. , 7]
x— RE; |—1 1] —> gj* — S
X— — (L) —
X — REg (—1Iy I — 95~ e QEZ:}
L=(ir,im) 1=, d)
RE; B

Ly~ Ej i

Ly, — Ej +im7j

X = (zlu'--vzm)

Figure 3.3: Figure of a (k,m,N,n) 1-SAPQ and the j** Repeated Encoder RE;, where,

jE€Jm x= (X, -,%,) ERM and I = (iy,...,i,) € ¥

by each repeated encoder RE; is given by

= min ZHus (Z)||2' (3.21)

zeJy o5

Then the optimal encoding regions of a (k,m,N,n) 1-SAPQ can be derived to be

S[[j*] = {§ € RF™ . j* = arg rnJin Dj(x) and [= I;. = RE- (g)} (3.22)
B Jj€Jan
where [€ Jiy, 75 =1,...,27,
RE;(x) = arg mln Z l|u (x @”2 = I (3.23)

ZENSI

= (arg min [luy(x) — ¢, arg min [Ju,(x) = %) (3.24)
Z1€J N ZmEJ N

45

, and

Ej(us(x)) = arg min [[u,(x) — ¢|I* = v,(L). (3.25)

Zs€J N

Optimal Decoding: Now given the encoding regions {Sg*]} defined as in (3.22),

the optimal codevectors can be found, as in Section 3.2.3, to be
¥l

Doy Jga w(x)p(x)dx
[Cra— o v
B Et:l fsi[w‘] P(E) dx

where i =1,...,N,7=1,...,27 and fort=1,...,m

(3.26)

s = |J sy (3.27)
I:Vi(1)=i

= {x € R"" : 1-SAPQ Encoder(x) = ((i1,...,%m),Jj) and i, = i}.(3.28)

3.5 Encoding Complexity and Storage Requirements

Let us now compare the encoding complexity and storage requirements for each of the
following quantizers: VQ, PQ, m-SAPQ, and 1-SAPQ. We define the encoding com-
plexity to be the total amount of multiplications required to encode a source sample
(complexity=total multiplications required for encoding/source sample). The storage
requirements are measured as the total number of scalar values that are required to
be stored at the encoder and decoder, in order to implement the quantizer in ques-
tion (storage=total scalars required for implementation).The results are summarized

in Table 3.1.

46

3.5.1 (ki,N1) VQ
Encoding Complexity: From Section 2.1.2, the (k1,N1) VQ encoding function is
B(x) = arg min [x — ¢? (3.29)
€d Ny
where Jy, = {1,...,N;} and x € RF. This encoding function (3.29) requires k;
multiplications to be performed N; times for a source sample x of dimension k;.
Thus the encoding complexity of a (k1,N7) VQ is

k1 Ny
ky

(k1,N7) VQ Complexity = = Ni.

Storage Requirements: In order to implement the (k1,N;) VQ only the codebook, (2.

, of the quantizer needs to be stored, this is a total of k£, /V; scalars, bringing the storage

requirements to

(k1,N7) VQ Storage = ki N;.

3.5.2 (kg,mQ,Ng) PQ

Encoding Complexity: From Section 2.3.2, the constituent encoding function of a
(kQ,mQ,NQ) PQ is
E,(x) = arg min ||x — c|| (3.30)

zelw,
where Jy, = {1,..., Ny}, x € R¥ and ¢t = 1,...,m,. This operation (3.30) requires
ko multiplications to be performed Ny times. There are my such encoding functions
E;(x), each encoding a component of the source sample x = (x4, ...,X,), where x, €
R¥2. This is a total of kemy N, multiplications for kems scalar source samples. Hence

the encoding complexity is

komg Ny

(ka,m2,No) PQ Complexity = = N,.

komy

47

Storage Requirements: Only the codebook of the (kg,mo,No) PQ needs to be
stored to implement it. This is a total of kymgNy scalars according to (2.19). Thus

the storage requirements are

(ka,mg,No) PQ Storage = koymyN,.

3.5.3 (kg,mg,Ng,T]g) m—SAPQ

th “th

Encoding Complexity: From Section 3.2.2, the s** encoder function of the j

product encoder PE; for a (k3,m3,N3,nm3) m-SAPQ is

K (3.31)

E,j(u(x)) = arg min [|u,(x) — ¢!

25€d vy
where Jy, = {1,..., N3}, x € R&™ and s = 1,...,mz and j = 1,...,2™. The
operation (3.31) requires k3 multiplications done N3 times to encode k3 source scalar
samples (uy(x) € R*). There are ms such encoding functions in each of the 27
product encoders PE;. Thus each PE;(x) requires k3m3N3 multiplications to encode
k3mg source samples (x € RF™s). There are 2 of these product encoders PE;(x),
in a (ks,m3,N3,m3) m-SAPQ. Hence the encoding complexity is

ksms N3

(k3,m3,N3,m3) m-SAPQ Complexity = 2 = 2 N3,

3M3
Storage Requirements: To store the codebook of a (k3,m3,N3,m5) m-SAPQ we

require k3m3zN32™ scalars. Thus the storage requirements are

(k3,m3,N3,n3) m—SAPQ Storage = k'3m3N32"3.

To keep the complexity of a (k3,mg3,N3,1m5) m-SAPQ less than that of a (k1,/V;) VQ,

of the same rate, the parameters (ks,ms,N3,n3) must be chosen so that 2 N3 < N,

10gzN3_|_ N3 __ logy Nu
1

- P 2= equal. In [11], it is also further advised to

while keeping R =
keep 8 = %—: as high as possible.

48

Quantizer Complexity| Storage

(k1,N1) VQ Ny k1 Ny

ky,m2,N3) PQ Ny komo Ny

(
(k3,m3,N3,m3) m-SAPQ| 2B N3 | kzmzN32™
(k4,m4,Nyms) 1-SAPQ 2M Ny k4 N42M

Table 3.1: Table of Encoding Complexity and Storage Requirements for Quantizers

designed under noiseless conditions.

3.5.4 (k4,m4,N4,n4)]_—SAPQ

Encoding Complexity: The encoding complexity of the (k4,mq,Ng,m4) 1-SAPQ is
derived in the same way as the (k3,mg3,N3,15) m-SAPQ to be

kymyN.
(k4,m4,Nyymy) 1-SAPQ Complexity = 2"4% = 2™ N,.
41y

This is the same as a (ky4,m4,Ny,n4) m-SAPQ.

Storage Requirements: The advantage of the (ky,m4,Ny,nmy) 1-SAPQ is a lesser
storage requirement than that of a (ky,m4,Ny4,n4) m-SAPQ. This is because the same
codebook C;, for j =1,...,2™ | is repeated within each repeated encoder RE;. The

storage requirements are then
(k4,m4,N4,n4) 1—SAPQ Storage = k4N42774

which is m%; less than that of a (kg,m4,Nyms) m-SAPQ.

3.6 Design Algorithm for SAPQs

The design algorithm for the m-SAPQ is next described. This design with be based

on the derivations of the necessary conditions for optimality (3.13) and (3.15). In

49

this algorithm we iterate over the necessary conditions for optimality in the similar

fashion to the Lind-Buzo-Gray (LBG) algorithm.

(kym,N,n) m-SAPQ Algorithm

1. Set parameters k, m, N, n, the stopping threshold ¢, the splitting constant k-
dimensional vector € = (e, ..., €), the maximum number of iterations Maxiter,
and M the total number of training vectors {x; = (z,f,...,2,, ;) }}=,. Start
off with 7 =1, p = 0, and initial codebooks {Cg‘)) m,

2. If 7 > 27 stop otherwise split the codebooks using

e =c¥ _¢ and CW”

(p)
5, sy € sgir = Cij +e
fors=1,...,mand j = 1,...,7 then double 7 = 7 % 2 and set p = 0. Note
that p is a counter for the iterations and 7 is a counter for the codebooks . At

this point we have 7 codebooks {Cgo) }7_1 where C;O) = Cg?])- X ... X CS;?J

3. For each f, encode x; into an index vector I and index j* using the product
encoders {PE](-p)};-Zl. This is done by encoding x; with each PEJ(-")

PE](p)(Xf) = I, = arg min Z Jus(xp) — c[||2

ZENSI

Then the optimal index vector I and overhead index j* is chosen to be

jro= argmm min Z Jus(xp) — CV ||2
]E TZEJN s=1 S

[= I.=PE?x).

4. Once x; is encoded, x; can be put into the appropriate cells, (3.17). So if x; is
encoded into ((i1,...,%5,), %) then

(p) -

Xf € SE—:]‘*]: . 7§f € SZ[Z’]*L(/))

50

The resulting distortion is

DOxp 7] = llus(xy) — eI
s=1

5. Repeat steps 3 and 4 for all f = 1...,M. Once all the partitions have been
made, calculate the centroids using

D el 1) Us(X)

C[s,j},(pﬂ) _
ZE:KG Sl 1)

=1

and update the codebooks to {C;pﬂ) j=1 using the new centroids. Finally

calculate the overall distortion using

M
D(p)[T] - = ZD(p>[§f’T]'
6. Check %ﬁp)m < 0 or p > Maaxiter, if so then go to step 2 otherwise

p=p+1and go to step 3.

This algorithm assumes an initial set of codebooks CS‘” for the (k,m,N,n) m-
SAPQ which is obtained from a (k,m,N) PQ, using the design algorithm of Sec-
tion 2.3.3. Similarly the (k,m,N,n) 1-SAPQ algorithm starts off with only one code-
book Cgo)which can be obtained from a (k,N) VQ, designed using the LBG algorithm
of Section 2.1.3. The algorithm for the design of the (k,m,N,n) 1-SAPQ codebooks

is easily deduced from the above design.

3.7 Numerical Results

In order to illustrate the advantages of the sample adaptive product quantizers

(SAPQ) over the generic quantizers, such as the vector quantizer (VQ) and the

o1

product quantizer (PQ), numerical results were produced. The design algorithms
of Sections 2.1.3, 2.3.3 and 3.6, were used to design the VQ, PQ, m-SAPQ and 1-
SAPQ. In all cases 200,000 training source samples were used to design each codebook.
The sources considered were the unit variance and zero mean Gauss-Markov source
and the memoryless Gaussian source. A Gauss-Markov source is a sequence {X;}
described by the recursion

Xi=pX;i1+U;

where {U;} is a sequence of independent and identically distributed (i.i.d) Gaus-
sian random variables, and p is the correlation coefficient. A memoryless Gaussian
sequence and a Gauss-Markov sequence was generated by setting the correlation co-
efficient to p = 0.0 and p = 0.9, respectively. The designed codebooks of the VQ,
PQ, m-SAPQ and 1-SAPQ were tested by implementing the quantizers shown in
Figure 3.4:

1. The quantizer is designed using the algorithms of Sections 2.1.3,2.3.3, and 3.6
with the design parameters: splitting constant ¢ = 0.001, stopping threshold
0 = 0.001 and maximum number of iterations Maxiter = 200. Note that all
the quantizers are designed using the same design parameters, and the same

training sequence {x;}. The final distortion of the quantizers is D|final].

2. The codebook C produced by the design algorithm is then used to implement the
encoder. The encoder is then used to encode the testing sequence {x;} # {x,};

a sequence that is entirely different from the training sequence.

3. The codebook produced from Step 1 is also used to implement a decoder. The

resultant reconstruction of the testing sequence is {y f}. The distortion of the

52

Maziter, 6, €
1.Design
{xp}—— & ——D|final
f
Quantizer
Codebook C or C CorC

} }

. 2.Implement 4.Implement
{7} —— - {y,}
Encoder Decoder

Figure 3.4: Block Diagram illustrating the validation of quantizers.

implemented quantizer can then be calculated as
A 2
D=3 1%y,

The performance of the channel optimized quantizers is measured using the signal-
to-distortion ratio (SDR) which is equal to SDR = —10log,,(D][final]) or SDR =
—101log;y(D). When comparing the VQ, PQ and SAPQ of the same rate R, the cri-
teria used for comparison is three-fold: namely the performance (SDR), the encoding
complexity (complexity=total multiplications required for encoding/source sample),

and the storage requirements (storage=total scalars required for implementation).

3.7.1 Comparing the VQ, m-SAPQ, and 1-SAPQ

Tables 3.6, and 3.7, show the performances (SDR = —10log,,(D|final])) of the
VQ, the m-SAPQ and the 1-SAPQ at rates R = 1.5,2.5 and 3.5, for memoryless
Gaussian and Gauss-Markov sources, respectively. The encoding complexities and

storage requirements are calculated using Table 3.1. These results are then tested

93

as in Figure 3.4, and their validated performances (SDR = —10log,,(D)) are then
tabulated in Tables 3.8, and 3.9.

Memoryless Gaussian Sources: In Table 3.6 we see that for rates R = 1.5,2.5, 3.5,
for every (2,22) VQ, we can find a 1-SAPQ and a m-SAPQ of comparable perfor-
mance and less encoding complexity and storage requirements: compare the (2,8) VQ
with the (1,2,2,1) 1-SAPQ and m-SAPQ, compare the (2,32) VQ with the (1,4,4,2)
1-SAPQ and m-SAPQ, compare the (2,128) VQ with the (1,4,8,2) 1-SAPQ and m-
SAPQ. Note that as the rate gets higher the advantage of the 1-SAPQ and m-SAPQ
over VQ increases. This is especially true for m-SAPQ. In order to attain an advan-
tage of using the m-SAPQ over the VQ and 1-SAPQ), the dimension km must be high
enough (km > 2).

Gauss-Markov Sources: For Gauss-Markov sources, Table 3.7 illustrates that for
every rate R and (2,2?%) VQ, we can find a 1-SAPQ of the same complexity and lower
storage requirements, that outperforms the (2,22%) VQ. Compare the (2,8) VQ with
the (1,4,2,2) 1-SAPQ, compare the (2,32) VQ with the (1,6,4,3) 1-SAPQ, compare
the (2,128) VQ with the (1,8,8,4) 1-SAPQ. Note that the dimensions km of these
1-SAPQ’s are higher than that of the VQ’s, of the same rate, but their encoding

complexity is the same and their storage requirements are lower.

3.7.2 Comparing PQ, m-SAPQ and 1-SAPQ

Tables 3.2 and 3.3 tabulate the performances of the PQ and the least complex m-
SAPQ and 1-SAPQ of rates R = 2.0,3.0,4.0 and 5.0. These results are validated in
Tables 3.4 and 3.5. From Tables 3.2, and 3.3 we see that in all cases the m-SAPQ
outperforms the PQ. The performance gain of the m-SAP(Q over the PQ increases as

the rate R increases (0.77-0.24 dB) for memoryless Gaussian sources, Tables 3.2. For

54

memoryless Gaussian sources the advantage of the 1-SAPQ over the PQ is realized
as the rate increases (R > 4.0). But when the source is Gauss-Markov the 1-SAPQ

has an advantage over the PQ when the rate is low (R < 4.0).

3.7.3 Comparing m-SAPQ and 1-SAPQ

In Tables 3.6, 3.7, 3.2, and 3.3, we see that the (k,m,N,n) m-SAPQ always performs
equal to, or greater than, the (k,m,N,n) 1-SAPQ. The m-SAPQ outperforms the
1-SAPQ. Though the (k,m,N,n) m-SAPQ always has the disadvantages of having
m times the storage requirement than the (k,m,N,n) 1-SAPQ. Note that the above
conclusion is only contradicted by one result: namely in Table 3.7 compare (1,8,8,4)
1-SAPQ and the (1,8,8,4) m-SAPQ. The poor performance of the (1,8,8,4) m-SAPQ
may have been due to the limitations in the size of the training sequence (200,000
samples). This hypothesis is supported by comparing Tables 3.7 and 3.9, where the
difference in the performance of the (1,8,8,4) m-SAPQ with the testing sequence over
the training sequence is exceptionally great (0.22 dB). A longer training sequence

may have been required in order to design the codebook of the (1,8,8,4) m-SAPQ.

3.7.4 The Effect of 5 =m/N

At a given rate R we can clearly see from Tables 3.6 and 3.7, that the higher f = m/N
is, the better are the performances of the m-SAPQ and the 1-SAPQ. Of course the
increase of f = m/N increases the encoding complexity and storage requirements of
the m-SAPQ and 1-SAPQ. Though just as a guideline, when trying to determine the
best choice of parameters k, m, N and n of a SAPQ, one should always aim for a

high = m/N.

%)

‘km‘ Quantizer ‘R:Z.O‘R:3.0‘R:4.0‘R:5.0‘
2 PQ Codebook (N) 4 8 16 32
k=1 SNR (dB) 9.27 | 14.57 | 20.18 | 25.95
Complexity 4 8 16 32
Storage 8 16 32 64
2 1-SAPQ | Codebook (V) 2 4 8 16
k=1n=1 SNR (dB) 8.72 14.49 20.28 26.24
Complexity 4 8 16 32
Storage 4 8 16 32
B8 =m/N 1 1/2 1/4 1/8
2 m-SAPQ | Codebook (N) 2 4 8 16
k=1np=1 SNR (dB) 9.51 15.03 20.84 26.72
Complexity 4 8 16 32
Storage 8 16 32 64
B =m/N 1 1/2 1/4 1/8

Table 3.2: SDR (dB) performances comparison of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N,n) m-SAPQ, at rates R, designed using 200,000 memoryless

Gaussian training samples.

56

‘km‘ Quantizer ‘R:Z.O‘R:3.0‘R:4.0‘R:5.0‘
2 PQ Codebook (NV) 4 8 16 32
k=1 SNR (dB) 9.28 | 14.57 | 20.18 | 25.98
Complexity 4 8 16 32
Storage 8 16 32 64
2 1-SAPQ | Codebook (V) 2 4 8 16
k=1n=1 SNR (dB) 12.50 15.22 19.84 25.40
Complexity 4 8 16 32
Storage 4 8 16 32
B8 =m/N 1 1/2 1/4 1/8
2 m-SAPQ | Codebook (N) 2 4 8 16
k=1np=1 SNR (dB) 12.50 15.36 20.61 26.22
Complexity 4 8 16 32
Storage 8 16 32 64
B=m/N 1 1/2 1/4 1/8

Table 3.3: SDR (dB) performances comparison of the (k,m,N) PQ, the (k,m,N,n) 1-
SAPQ, and the (k,m,N,n) m-SAPQ), at rates R, designed using 200,000 Gauss-Markov

training samples.

57

‘km‘ Quantizer ‘R:Z.O‘R:3.0‘R:4.0‘R:5.0‘
2 PQ Codebook (N) 4 8 16 32
k=1 SNR (dB) 9.29 14.60 20.21 25.94
2 1-SAPQ | Codebook (N) 2 4 8 16
k=1n=1 SNR (dB) 8.74 14.50 20.25 26.20
2 m-SAPQ | Codebook (N) 2 4 8 16
k=1n=1 SNR (dB) 9.52 15.02 20.81 26.67

Table 3.4: SDR (dB) performances testing designs of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N,n) m-SAPQ), at rates R, using 200,000 memoryless Gaussian

testing samples.

‘km‘ Quantizer ‘R:Z.O‘R:3.0‘R:4.0‘R:5.0‘
2 PQ Codebook (N) 4 8 16 32
k=1 SNR (dB) 9.32 14.63 20.26 26.00
2 1-SAPQ | Codebook (N) 2 4 8 16
k=1n=1 SNR (dB) 12.54 15.27 19.87 25.47
2 m-SAPQ | Codebook (V) 2 4 8 16
k=1n=1 SNR (dB) 12.54 15.41 20.63 26.23

Table 3.5: SDR (dB) performances testing designs of the (k,m,N) PQ, the (k,m,Nn)
1-SAPQ), and the (k,m,N,n) m-SAPQ), at rates R, using 200,000 Gauss-Markov testing

samples.

58

[km] Quantizer |[R=15|R=25|R=35]
2 vQ Codebook (V) 8 32 128
SNR (dB) 6.94 | 12.40 | 18.14
Complexity 8 32 128
Storage 16 64 256
2 1-SAPQ | Codebook (V) 2 4 8
k=1m=1| SNR (dB) 6.86 | 12.25 | 17.87
Complexity 4 8 16
Storage 4 8 16
B8 =m/N 1 1/2 1/4
2 m-SAPQ | Codebook (N) 2 4 8
k=1m=1| SNR (dB) 6.86 | 12.25 | 17.87
Complexity 4 8 16
Storage 8 16 32
B8 =m/N 1 1/2 1/4
4 1-SAPQ | Codebook (V) 2 4 8
k=1m=2| SNR (dB) 6.95 | 1257 | 18.25
Complexity 8 16 32
Storage 8 16 32
B8 =m/N 2 1 1/2
4 m-SAPQ | Codebook (N) 2 4 8
k=1m=2| SNR (dB) 7.08 | 12.60 | 18.42
Complexity 8 16 32
Storage 32 64 128
B8 =m/N 2 1 1/2
6 1-SAPQ | Codebook (N) 2 4 8
k=1nm=3| SNR (dB) 6.61 | 12.79 | 18.64
Complexity 16 32 64
Storage 16 32 64
B8 =m/N 3 3/2 3/4
6 m-SAPQ | Codebook (V) 2 4 8
k=1m=3| SNR (dB) 7.34 | 12.90 | 18.80
Complexity 16 32 64
Storage 96 192 384
B8 =m/N 3 3/2 3/4
8 1-SAPQ | Codebook (N) 2 4 8
k=1m=4| SNR (dB) 6.95 12.86 18.85
Complexity 32 64 128
Storage 32 64 128
B =m/N 4 1
8 m-SAPQ | Codebook (V) 2 8
k=1m=4| SNR (dB) 752 | 13.15 | 19.13
Complexity 32 64 128
Storage 256 512 1024
B =m/N 4 2 1

Table 3.6: SDR (dB) performances comparing the (k,N) VQ, the (k,m,N,n) 1-SAPQ,
and the (k,m,N,n) m-SAPQ, at rates R, designed using 200,000 memoryless Gaussian

training samples.

99

[km] Quantizer |[R=15|R=25|R=35]
2 vQ Codebook (V) 8 32 128
SNR (dB) 10.79 | 16.25 | 21.89
Complexity 8 32 128
Storage 16 64 256
2 1-SAPQ | Codebook (V) 2 4 8
k=1m=1| SNR (dB) 8.01 | 1243 | 17.63
Complexity 4 8 16
Storage 4 8 16
B8 =m/N 1 1/2 1/4
2 m-SAPQ | Codebook (N) 2 4 8
k=1m=1| SNR (dB) 8.01 | 13.67 | 17.63
Complexity 4 8 16
Storage 8 16 32
B8 =m/N 1 1/2 1/4
4 1-SAPQ | Codebook (V) 2 4 8
k=1n=2 SNR (dB) 10.90 13.91 18.65
Complexity 8 16 32
Storage 8 16 32
B8 =m/N 2 1 1/2
4 m-SAPQ | Codebook (N) 2 4 8
k=1n=2 SNR (dB) 11.00 15.81 19.12
Complexity 8 16 32
Storage 32 64 128
B8 =m/N 2 1 1/2
6 1-SAPQ | Codebook (N) 2 4 8
k=1m=3| SNR (dB) 11.56 16.55 19.57
Complexity 16 32 64
Storage 16 32 64
B8 =m/N 3 3/2 3/4
6 m-SAPQ | Codebook (V) 2 4 8
k=1m=3| SNR (dB) 11.78 | 16.82 | 19.70
Complexity 16 32 64
Storage 96 192 384
B8 =m/N 3 3/2 3/4
8 1-SAPQ | Codebook (N) 2 4 8
k=1n=4 SNR (dB) 11.55 16.85 22.29
Complexity 32 64 128
Storage 32 64 128
B =m/N 4 1
8 m-SAPQ | Codebook (V) 2 8
k=1m=4| SNR (dB) 12.46 17.43 22.27
Complexity 32 64 128
Storage 256 512 1024
B =m/N 4 2 1

Table 3.7: SDR (dB) performances comparing the (k,N) VQ, the (k,m,N,n) 1-SAPQ,
and the (k,m,N,n) m-SAPQ), at rates R, designed using 200,000 Gauss-Markov train-

ing samples.

60

km Quantizer R=15|R=25|R=3.5
2 vQ Codebook (N) 8 32 128
SNR (dB) 6.96 | 12.42 | 18.07
2 1-SAPQ | Codebook (V) 2 4 8
k=1n= SNR (dB) 6.87 | 12.42 | 17.90
2 m-SAPQ | Codebook (N) 2 4 8
k=1ny=1| SNR (dB) 6.87 | 12.27 | 17.90
4 1-SAPQ | Codebook (N) 2 4 8
k=1n= SNR (dB) 6.83 | 12.27 | 18.22
4 m-SAPQ | Codebook (N) 2 4 8
k=1ny=2| SNR (dB) 707 | 12.58 | 18.40
6 1-SAPQ | Codebook (N) 2 4 8
k=1ny=3| SNR (dB) 6.59 | 12.77 | 18.62
6 m-SAPQ | Codebook (V) 2 4 8
k=1ny=3| SNR (dB) 731 | 12.83 | 1865
8 1-SAPQ | Codebook (N) 2 4 8
k=1ny=4| SNR (dB) 6.30 | 12.82 | 18.81
8 m-SAPQ | Codebook (V) 2 4 8
k=1n=4 SNR (dB) 7.45 12.98 18.84

Table 3.8: SDR (dB) performances testing designs of the (k,N) VQ, the (k,m,Nn)

1-SAPQ), and the (k,m,N,n) m-SAPQ), at rates R using 200,000 memoryless Gaussian

testing samples.

61

km Quantizer R=15|R=25|R=3.5

2 vQ Codebook (N) 8 32 128

SNR (dB) 10.82 | 16.24 | 21.84

2 1-SAPQ | Codebook (V) 2 4 8
k=1n= SNR (dB) 8.04 13.74 17.70
2 m-SAPQ | Codebook (N) 2 4 8

k=1m=1| SNR (dB) 8.04 | 13.74 | 17.70

4 1-SAPQ | Codebook (N) 2 4 8
k=1n= SNR (dB) | 10.94 | 16.01 | 18.70
4 m-SAPQ | Codebook (N) 2 4 8

k=1n=2 SNR (dB) 11.04 16.18 19.13

6 1-SAPQ | Codebook (N) 2 4 8

k=1n=3 SNR (dB) 11.61 16.60 18.62

6 m-SAPQ | Codebook (N) 2 4 8

k=1n=3 SNR (dB) 11.80 16.81 19.62

8 1-SAPQ | Codebook (N) 2 4 8

k=1n=4| SNR (dB) 11.57 | 16.86 | 22.26

8 m-SAPQ | Codebook (N) 2 4 8

k=1n=4 SNR (dB) 12.45 17.32 22.05

Table 3.9: SDR (dB) performances testing designs of the (k,N) VQ, the (k,m,Nn) 1-
SAPQ, and the (k,m,N,n) m-SAPQ), at rates R, using 200,000 Gauss-Markov testing

samples.

Chapter 4

Channel Optimized Sample

Adaptive Product Quantizer

In this chapter the concepts of a sample adaptive product quantizer are extended to a
channel optimized sample adaptive product quantizer (COSAPQ), where the channel
statistics are included in the design of the quantizer. Both the m-SAP(Q and 1-SAPQ
are extended to a COm-SAPQ and COI1-SAPQ, respectively. In this chapter the

channel considered is the binary symmetric channel (BSC).

4.1 COm-SAPQ Model

Codebook: A (k,m,N,n) COm-SAPQ is constructed from a set of 27 codebooks
{C,}2L,. Each codebook C; is a product of m codebooks {Cy;}7-, that are subsets

of R¥, of cardinality N. In other words, each codebook C;; contains N codevectors

62

63

el where i = 1,..., N, that belong to RF:

)

C; =Cy;x...xCy; such that C,; = {QES’ﬂ}fil and ¢! € R¥, (4.1)

)

[5,4]

For I € J%y and j € Jon, define g[lj} to be a vector of codevectors ¢; " that are ordered

as follows
QE} = (gg’ﬂ,...,g%’ﬂ) where I = (iy,...,0m), s € Jn ={1,...,N} fors=1,...,m.

Note that g[lﬂ €Cjforj=1,...,27 and Q[Ij} is referred to as a product codevector.

Structure: Figure 4.1 depicts how a source vector x = (x,,...,X,,), where x, € R

for s =1,...,m, is quantized by a (k,m,N,n) COm-SAPQ. The COm-SAPQ encoder

encodes the source sample x into an index vector I € J and an overhead index

j* € Jon. The index vector I and index j* are then transmitted over a noisy channel.

At the decoder, the received index vector L € J'y and index j' € Jon are decoded into
']

a product codevector c; °.

Encoder: At the COm-SAPQ encoder the encoding of a source vector x is processed
by a set of 2" vector functions called product encoders (PE), {PE;}2_,. Each vector
function PE; takes in a copy of the source vector x and encodes it using the codebook
C,. Furthermore each PE; has m component encoding functions, {E; ;}" ,, such that
each function E, ; encodes subvector x, into an index i,; , for s = 1,...,m. The
concatenation of all the indexes i, ; for s = 1,...,m, forms the index vector I; which

is the output of PE;

—m

and lj = (il,j;---;im,j) S J%

Hence the COm-SAPQ encoder internally produces 27 index vectors {PE;(x) =

I,}%",. However only one index vector I € {I;}5.,, is chosen to be transmitted

64

over the channel along with the index j* € Jy» representing PE;- (the PE that en-

coded x into I). Details of the encoding process and the choosing of index vector I

and overhead index j* are described in Section 4.2.2.

COm-SAPQ Encoder Decoder
X — PBE |—1I, | h— 91y Qﬁ’ﬂ
—~ (£,5) — Channel — (L, j")— -
X — PEgyn Iy l;n — 9mj g'l[::’j]
L={0,. s im) L=, 0m) = dmTY)

PE;

Zy~ Eij i1y

. _*l' = (il,jv"' 7im,j)

L~ B j i,

X = (zlu'--vzm)
Figure 4.1: Figure of a (k,m,N,n) COm-SAPQ and the j* Product Encoder PE;

where, 7 = 1,...,2" x = (x,...,%X,) € R I = (iy,...,i,) € J¥, L =

(L, Lw) €7, and j* € Jon.

65

BSC
(i
(ir, i,) QLo 10, 1L 0L] 0010, I AL gy
n 7 n 7
- v' - 1 1 v.
mn+nbits 1—¢ mn+nbits

Figure 4.2: Figure of the transmission of binary codewords over the BSC.

Channel: Transmission of the index vector I = (i1, ..., ;) and index j* over a noisy
channel is realized by converting the indexes 4, ..., %, of index vector /, and j* into
binary codewords and transmitting each binary codeword one at a time. Thus the
channel is used independently by each transmitted index iy, ...,1%, and 7*. Hence the
probability of receiving L = (Iy,...,l,) and j" given that I and j* were transmitted,

formulates to

m

P(L, '|L,j7) = P('li")P(LID) = P('|5) [[Plis). (4.2)

s=1
In this chapter the natural binary codeword (NBC) assignment is used. So each of
the indexes 7y, ..., i,,, of index vector I, are encoded into their n-bit binary codeword
equivalent, where i, € Jy and n = log, N, and j* is encoded into its n-bit binary
codeword equivalent. These codewords are then transmitted over a BSC with cross
over probability € as in Figure 4.2 such that the channel transition probabilities resolve

to

P(l,li,) = (1— ¢ dulaisd()dnlleis for s =1 ... m (4.3)

P(I7) = (Lol (e)in's) (44)

where dg(l, 1) is the Hamming distance between the n-bit binary codewords of i,

66

and [, and similarly dy (5, j*) is the Hamming distance between the n-bit binary

codewords of j* and j'.

Decoder: The decoder consists of 2" vector decoding functions {G}2~,. Each vector
decoding function G; consists of m component decoding functions, {g,,}7,. Each
decoding function g, ; decodes an index 7 into the codevector ggs’j} (ggs’j} € Cy ;). At
the decoder the choice of which vector decoding function G to use, out of the set
{Gj}?':l, is determined by the received overhead index j'. When index vector L and

index j' are received, the decoder decodes index vector L using the vector decoding

function G
-]_7 s m, -/ !
Decoder(L, j') = Gy (L) = (g1 (1), - gy (lm)) = (&), .. = & .
Naturally the decoding functions invert the encoding functions

PE; : R — J% and G;:J% — C; CR™

Es,j : Rk — Jy and Gs,j + Jn — Cs,j - Rk

foryj=1,....,27and s=1,...,m.

Rate: The source input vector x = (z1,...,2,,), where x, € R* for s = 1,...,m,
has a total of km source samples. The COm-SAPQ encoder output for source vector
xis I = (i1,...,%y) and j*. So each iy € Jy, for s = 1,...,m, can be represented by
a log, N-bit codeword and j* € Jon can be represented by a 7-bit codeword. In total

there are mlog, N + 1 bits needed to represent x. Hence the rate of a COm-SAPQ is

_logy N

R
k

+ % bits/source sample. (4.5)

67

4.2 COm-SAPQ Necessary Conditions for Opti-

mality

4.2.1 COm-SAPQ Distortion

To find necessary conditions for optimality of a (k,m,N,n) COm-SAPQ), the expected
mean square distortion of the (k,m,N,n) COm-SAPQ needs to be calculated. To
simplify notation we reuse (3.3) and (3.4).

Furthermore let Sg]

(k,m,N,n) COm-SAPQ), i.e

be the encoding region for index vector Z and index j of a

SJl = {x € R"™ : COm-SAPQ Encoder(x) = (Z,)} (4.6)
where Z € J, and j € Jon. In total there are 27N™ encoding regions Sg}.

Let c represent the reproduction, or the output of the decoder, of the COm-SAPQ
for source X with a probability density function p(x). Given the set SZ} of 21N™

encoding regions of a COm-SAPQ, and the codebooks {C;}%.,, the expected mean

]1’

square distortion of a (k,m,N,n) COm-SAPQ can be found to be
DCOm-SAPQ = E{d(X C)}

- ZZ ZZ (J'l/)P(LIZ) E{dX, /)X e sSYP(X € ST

=t zeJy I=lrely

- %[5 3 e

i=t zeJy ZJ'1LJ t=1

The above can be simplified using

68

from Appendix A, to be

D=3 3 /

=1 zeJy

4.2.2 COm-SAPQ Optimal Encoding

We next consider the following: given product codebooks {Cj}ﬁll, how can we de-
termine the optimal encoding function so as to minimize the mean square distortion

when a source sample x is encoded into an index vector I and index j*, using a

(k,m,N,n) COm-SAPQ encoder?

Let ¢ be the reproduction, or the output of the decoder, of a source vector x and

let x € Sg], then

on m N 1112
Eldx0} = Y. PUINHY. Y P(V¢(L)|Vt(Z))‘ut() = eyl
j'=1 t=1 v¢(L)=1
on N . 2
> min YPGNY. Y PDM(2) [ux) -
zely o1 t=1 v¢(L)=1

min min Y PG5 Y PlL)v(2)|

Izely o

v

Hence there are two optimizations to be implemented. As a consequence of the
structure of a COmM-SAPQ, the first optimization is done by each product encoder
PE;

21

PE;(x) = arg min STP()Y Y Plu(Llv(2)

zZc N jr=1 t=1 vy(L)=1

u(x) — ¢

[t.d']
V(L)

for j = 1,...,2" and each constituent encoder E;; of PE; produces the s™ index

69

component of I,

on N
L2
ESJ (U‘S(X)) = arg min Z P(jI|J Z P |Zs Us (E) - Q&;ﬂ(i) = Vs(lj)
ZsEJN i1—1 -
J Vs(L)=1
(4.7)
independent of each other, for s = 1,...,m and where Z = (z1,...,25). The mean

squared distortion incurred by each product encoder PE; that is associated to I; is

m N
D;(x) = mmzmu >3 PL)2)) [wlx) - i (48)
ZE N jr=1 t=1 v¢(L)=1

Within the encoder we have 27 index vectors {PE;(x) = I;}", each with an asso-
ciated distortion of {(Z;,D;(x))}:%,, for j = 1,...,27 Out of the 2" index vectors
{1;}5~,, the index vector I, I € {I;}5",, with the minimum distortion Dj-(x) =
min; Dj, is chosen to be transmitted over the channel. The PE that produced the
index vector [is distinguished by transmitting the overhead index vector j* over the

channel along with I. Thus the optimal encoding regions are given by

S[Ij*] = {§ € RM : j* = arg min D;(x) and [= [. = PEj*(g)} : (4.9)

. =J
]€J27I

With I and j* defined above, the optimal distortion given the codebooks {Cj}?ll is

D COm-SAPQ — E{rn]ln Dj (X)}

_zz/“zm 1S PLnD)

=leJn t=1 vi(L)=1

2

p(x)dx.

t']
(

[
=v¢(L)

w(x) —c

4.2.3 COm-SAPQ Optimal Decoding

In the previous sections we assumed that the set of codebooks {Cﬁ?ll were given, in

other words the set of all codevectors {ggs’j]} were assumed to be given. We will now

70

find the set of all optimal codevectors {QES’-’]} assuming that the set of 27/N™ optimal
encoding regions {S[Lj*}} are given. The distortion with the encoding regions {S[Lj*}}
defined as in (4.9) is

m

N
COmSAPQ_ Z Z /[]ZP J |] Z Z P(vy(L)[vi(1)) Hut(ﬁ) —2%’;7&) i

‘ p(x)dx.
=1 t=1 v,(L)=1

Take the partial derivative with respect to the codevector Cz by filtering out the
" codevector of codebook C; ;, where s € J,,, 7 € Jon and [€ Jy, in the above

distortion as follows

m N ' 9
Diewa = 33 / AP S P) — ||+
= Jm t=1 v¢(L)=1
m , 9
STPE1 Y. Y PLD) [wilx) - || o)
J'g'#d =1 v¢(L)=1
2 N L2
= 23 [P0 Y P [uo - i |+
it=1peJnSL Vs(L)=1
N 2
* t,J
PGS Y PeLlD) [wat) — el |+
tit#s vi(L)=1
m N 9
T t,j’
ST P Y. Y PL(D) [wlx) — || P e

3"3'#9 t=1 v{(L)=1

Setting the resultant derivative to zero we get

ooy D [PUIPOL) = el {0+ s

Jr= 11 Jm

S [PP {9 +) pls

j*=li1=1 =1 (11 im)

- zz/[m VP, =) { ~u.9) + ¢} plax)dx

7*=111=1

71

where I = (i1,...,4y) and
sil= | sf (4.11)
13 ve(h)=i

= {x € R"" : COm-SAPQ Encoder(x) = ((i1,...,im),5") and i, = i}. (4.12)

Solving for gEs’j] we get

[5,] Zy*_l Zz PGP () fS[s,j*] us(x)p(x)dx
a° = - . (4.13)
Zj*:l Zi:l P(j]5%)P(]7) fsi[s,j*] p(x)dx

4.3 CO1-SAPQ

Just as the 1-SAPQ, the CO1-SAPQ is a particular case of the COm-SAPQ. A
(k,m,N,n) CO1-SAPQ only requires 27 codebooks {Cj}?il, where

Cj = {c }l . and c e RE. (4.14)

Figure 4.3 depicts how a source vector x = (x;,...,X,,), where x, € RF for s =
1,...,m, is quantized by a (k,m,N,n) CO1-SAPQ. Note the the repeated encoders
(RE) of a CO1-SAPQ), are still vector functions with the same constituent encoding
functions, E; for each RE;, where j = 1,...,2". The difference between the repeated
encoders of a CO1-SAPQ and that of Section 3.4, is the inclusion of channel statistics

(4.4) and (3.3) in the RE function of the CO1-SAPQ.
Distortion: Given the codebooks {C;}3", and encoding regions {Sg]}, the distortion

of a (k,m,N,n) COL-SAPQ can be derived to be

DCOI—SAPQ = E{d(X C)}

= ZZE{ZZ (7'1/)P(L|Z)d(X,)X e sSUP(X e sY)

=t zedy I=lrely

72

Optimal Encoding: Given the codebooks {C;}3",, the mean squared distortion

incurred by each repeated encoder RE; is given by

m

_=mmZPm§j P(v(L)lv(2)) |

ZE N =1 t=1 v,(L)=1

. 2
u(x) — gﬁit}@H . (415)

Hence the optimal encoding regions of a (k,m,N,n) CO1-SAPQ are defined by

sl = {X € R* : j* = arg min Dj(x) and [=1, = RE]-*(X)} : (4.16)

h jEJzﬂ

where I € Jiy, 7*=1,...,27,

21 m N) 9
RE;(x) = arg min > P(NHY. Y PvilL)lvil))‘ut(z)_c%) ~ 1,
ZeJ N -1 t=1 v,(L)=1
, and
21 N) 9
Bj(u,(x)) = arg min D P(lj) D P(v(L)lz) ||us(x) = egfp|| = vs(Ly).
FEIN oy Vs(L)=1
(4.17)

Optimal Decoding: Given the encoding regions {S[Lj*]} defined as in (4.16), the
optimal codevectors of a (k,m,N,n) CO1-SAPQ can be derived to be
[]] Z?n Z’f\f 1 Z:‘,n 1 P(]U*)P l|Z fs[tsj*] us X) (X)dﬁ
q = ; .
Z] ==1 Zz IZt PP () fs[w*] p(x)dx

where [=1,...,N,7=1,...,2" and fort=1,...,m

(4.18)

sl=) s (4.19)
I: vil)=1

= {x € R"" : CO1-SAPQ Encoder(x) = ((i1,...,im),7") and i, =14}. (4.20)

73

CO1-SAPQ Encoder Decoder
X — RE; _’11 l1 — gy >
X—| - . . > (l7j*) —>Channel—> (L’]I)—b .
X — REg Iy Ly, — gj >
I={(i1,...,im)

RE;

Ly~ Ej i

E_’ . . . _’lj:(il,j7"'77:m,j)

Ly, — Ej +im7j

X = (glv'--vzm)

Figure 4.3: Figure of a (k,m,N,7) CO1-SAPQ and the j* Repeated Encoder
RE; where, j = 1,...,2", x = (x4,..,X,) € R I = (i,...,0,) € J¥,

m

L=(l1,....1n) €J7, and j* € J.

4.4 Encoding Simplifications

Encoding complexity is measured as the total number of multiplications required to
encode a scalar source sample. In processing, it is far simpler to add then to multiply

and hence multiplication is taken as a reasonable measure of complexity.

<,

74

4.4.1 COm-SAPQ Encoding Simplifications

Consider a (k,m,N,n) COm-SAPQ with source sample x, the s** encoder function of

“th

7 product encoder PE; is

o2
Bo(ns(x)) = arg min S Z P)PV (L)) ||us (%) =)| = vilL)

ZseNllv

where PE;(x) = 1;. The term

2

P(I17)P(vs(L)]2)

ug(x) — ¢

[5,']
Vs (L)

requires (k + 2) multiplications which must be carried out for v4(L) = 1,..., N,
j =1,...,2" and z; € Jy. Hence a total of N(2"N(k + 2)) multiplications are

required to encode k source samples (u,(x) € R*) into an index v,(I;). So the

N(27N(k+2))

3 per sample. This

encoding complexity of the optimal encoder function is

encoding complexity can be reduced by taking the encoder function

By s(u,(x)) = arg mmzzmu (lslz2) { I Gl + |

= 2<, (0, 0>)
e

where v (L) = [, and where <z, y> is the inner product over RF for z,y € R*, and

simplifying it using functions

2 N
VaiO) ZZPJIJ (e and auy() =323 PEIHPUMIEI?
j'=11=1

=1 1=1
(4.21)

for v € Jy, so that
E; j(us(x)) = arg min {a; ;(25) — 2<u,(x), yS](zs)>} = VS(I]) (4.22)

Zs€EJ N

Now given {a,;(7)}), and {y, ;(7)}),, the function

{as,j (Zs) - 2<us (§)7 y$,j(zs) >}

75

requires only k£ multiplications per z; € Jy. So a total of Nk multiplications are
required to encode k source samples u,(x) into an index v,(I;) using (4.22). This
brings the encoding complexity of the encoding function E, ; down to &% per sample.

Since for j =1,...,2",
PE;(x) = (B j(w(x)), ... Enj(un(x))) =

the encoding complexity of the (k,m,N,n) COm-SAPQ is reduced as a whole. The

product encoder function PE;, for j =1,...,2", reduces to
m 12
t,5'
PR = argmin 303 Z F1PDI2)) [wilx) -] || (4:28)
zely o =i
= arg m1n Z {ow;(vi(2)) — 2<wy(x), y,;(vi(Z))>} = L. (4.24)

zeJy 1o
When encoding a source sample x, within the (k,m,N,n7) COm-SAPQ encoder there
are 2" index vectors {Z,;}27, produced by the 27 product encoders, {PE;(x) = I,}57,

each with an associated distortion, {(Z;, D;(x))}5., where

t, i’
w(x) — QEIt](i)

D60 = min 3537 35 PUIPMI(LIM(Z)

N
The index j* € Jon representing the index vector I = I ;. with the minimum distortion

is then chosen by

j* =arg min D;(x) = arg min < min E {at,j(vt(z — 2<uy(x) yt] vi(Z >}
jedan j€dan ZEJN =1
(4.25)

76

4.4.2 CO1-SAPQ Encoding Simplifications

Consider a (k,m,N,n) CO1-SAPQ with source sample x, the constituent encoder

function of repeated encoder RE; is

')

where v(L) = I, and where <z, y> is the inner product over R* for z,y € R", and

"

Ej(u,(x)) = arg mmZZPm (1) { s (02 = 2<(20), > +

wely 5T

simplifying it using functions
ZZP J19)PU” and oy ZZP 19PN (4.26)
=1 I=1 =1 =1

for v € Jy, so that

Ej(us(x)) = arg min {a;(z,) — 2<u,(x),y,;(25)>} = vs(L,). (4.27)

Zs€J N

Now given {a;(7)}L, and {y;(7)}]_,, the function

{Otj (25) — 2<uy(x), Y (25)>}

requires only k£ multiplications per z; € Jy. So a total of Nk multiplications are
required to encode k source samples u,(x) into an index vy(Z;) using (4.27). This

brings the encoding complexity of the encoding function E; down to Y& per sample.

4.5 Encoding Complexity and Storage Requirements

Let us now compare the encoding complexity and storage requirements for each of
the following channel optimized quantizers: COVQ, COPQ, COm-SAPQ, and CO1-

SAPQ. We define the encoding complexity to be the total amount of multiplications

7

required to encode a source sample (complexity=total multiplications required for en-
coding/source sample). The storage requirements are measured as the total number
of scalar values that are required to be stored at the encoder and decoder, in order to
implement the quantizer in question (storage=total scalars required for implementa-

tion). The results are summarized in Table 4.1.

4.5.1 (ki,N;) COVQ

Encoding Complexity: From Section 2.2.3 a (k;,N;) COVQ encoder, encodes a
source sample x € R* | using the following function

E(x) = arg min {a(l) — 2<x,y(l)>} (4.28)

lEJNl

where Jy, = {1,...,N;}, and functions y() and «() are defined as in (2.14). This
operation (4.28) requires k; multiplications done N; times to encode x € R¥ into an
index in Jy,. Hence a total of k;N; multiplications are required for source x € R¥
which brings the complexity to

k1 Ny
ki

(k1,N7) COVQ Complexity = = N,.

This is the same as a the complexity of a (k1,N;) VQ.

Storage Requirements: In order to implement (4.28) the sets {y(1)},Y, and {a(l)}*,,

need to be pre-calculated, and stored at the encoder. Calculating the vectors of y(()
for 1 =1,..., Ny gives us N; vectors, each of dimension k; using (2.14). Calculating
the scalars «(l) for [= 1,..., Ny gives us N; scalars to be stored. Hence from both
sets {y([)};*, and {a(l)};Y, we have a total of ky N, + N, scalars to store at the en-

coder. Then at the decoder we require kN7 scalars to be stored for the codebook C,

78

(2.9). This brings the storage requirements of the (k;,N;) COVQ to be

(k1,N1) COVQ Storage = 2k; Ny + Nj.

4.5.2 (k2,m2,N2) COPQ

Encoding Complexity: From Section 2.4.3, the product encoder (PE) of a (kq,ms,N>)
COPQ is a vector function of my encoder functions that perform the following oper-
ation

E;(x) = arg min {oy(z) — 2<x,y,(2)>} (4.29)

z€d N,
where Jy, = {1,...,No}, x € R¥ ¢ = 1,...,my, and functions y,() and oy() are
defined as in (2.30). This operation (4.29) requires kN, multiplications for each
source subvector x € RF2. There are my such encoders E;(x), each encoding a source
subvector x, from vector x = (x;,...,X,,,) € R¥™. Hence a total of msksN, mul-
tiplications are required to encode my source vectors of dimension k,, bringing the
complexity to

m2k2N2
m2k2

(ka,m2,N2) COPQ Complexity = = N>.

Storage Requirements: Just as in the case of the (k;,N;) COVQ, the sets {y,(2) })2

z=1
and {ay(2)}22,, need to be calculated for t = 1,...,my. For each t, y,(z) when pre-
calculated for z = 1,..., Ny produces N, vectors of dimension ky. Hence there are

maoky Ny scalars needed to store the results of the my sets {y,(2)}2,. Similarly the
function ay(z) produces N, scalars for z = 1,..., N,. There are my sets {a,(2)}22,,
hence a total of myN, scalars need to be stored. All the myky Ny scalars and my Ny
scalars for y,() and «y(), respectively, are stored at the encoder. At the decoder we

need to store an additional kymy N, scalars for the codebook (2.25), bringing the total

79

to

(ka,mq,N2) COPQ Storage = 2kymoNy + mgNo.

4.5.3 (kg,mg,Ng,T]g) COI’I’I—SAPQ

Encoding Complexity: In Section 4.4, we clearly describe the encoding complexity

for the s** encoder function of j** product encoder PE;

Eyj(us(x)) = arg min {oy;(z,) — 2<uy(x), v, ;(2)>} (4.30)

2s€J Ny

where now for the (ks,ms3,N3,m3) COm-SAPQ x € RFs™s Jy, = {1,..., N3}, s =

L,...,m3, j = 1,...,m3 and functions «,;() and y, ;() are defined in (4.21) with a

ks N3

source sample x € RFs™ We showed the encoding complexity to be s

given
the set {as,j(v)}é\fil and {y, ;(7) fyvil. In each product encoder PE; we have mj such
encoding functions processing source samples of dimension k3, us(x) € R¥s. Each PE;

processes ksms source samples x € R¥™3 ysing these ms encoding functions hence

kams N3
kamg

(k3,m3,N3,m3) COm-SAPQ there a 2" such PE;, bringing the complexity to

the total number of multiplications per source sample for each PE; is . Ina

ks N:
(k3,m3,N3,173) COm-SAPQ Complexity = 2"3% — oM N,
3Mms3

Storage Requirements: As described above, in order for the complexity of equa-
tion (4.30) to be low we need to pre-calculate and store the sets {asyj(y)}fyvil and

{ys,; ()]7\21 for s =1,...,m3 and j = 1,...,2™. Each set {ysyj('y)}fyvil is a set of

N3 vectors of dimension k3. In total we need kzm3zN32™ scalars for sets {y; ;(7) fyvil
where s = 1,...,m3 and j = 1,...,2™. Similarly the sets {c,;(7) f,vil contain

Nj scalars for s = 1,...,m3 and 7 = 1,...,2™. Hence at the encoder we require

80

ksmgN32™ 4+ mgN32™ scalars. At the decoder we need to store the codebook (4.1)

which is a total of k3m3N32™ scalars, bringing the storage requirements to

(ks,m3,N3,m3) COm-SAPQ Storage = 2k3m3N32™ + m3N32'™.

So to keep the encoding complexity of a (k3,mg3,N3,13) COm-SAPQ lower then that
of a (k1,N;) COVQ of the same rate, we need 2™ N3 < N;. This is accomplished by
carefully choosing the parameters of the (k3,mg3,N3,n3) COm-SAPQ. When choosing
the parameters of (k3,ms,N3,n3) COm-SAPQ), a balance must be kept between keeping

the rate B = 282N 4 B = 82 M oqual and trying to achieve the inequality

k3 3ms3 k1
21 Ny < Nj.

4.5.4 (k4,m4,N4,7)4) CO]_-SAPQ

Encoding Complexity: The derivation of the encoding complexity of the (k4,m4,Ny,14)
CO1-SAPQ is exactly the same as that of the (k3,m3,N3,m3) COm-SAPQ), using sec-

tion 4.4. It can be derived to be

kymaN,
(ka,ma,Naya) COL-SAPQ Complexity = 2"4% — 9m N,
4y

which is the same encoding complexity as a (kq,m4,Ny4,m4) COmM-SAPQ.

Storage Requirements: The advantage of the (kq,m4,Ny4,n4) CO1-SAPQ over the

(ks,m3,N3,m3) COm-SAPQ is in the storage requirements. The encoding function

Ny

(4.27) requires the pre-calculation of the sets {a;(v)},2; and {y;(7) ffél for j =

Ny

1,...,2™M. This is Ny vectors of dimension k, for the set {y;(7)},2

, and N, scalars
for the set {ozj('y)},]yvél. The total at the encoder is hence kyN42™ + N42™ stored

scalars. At the decoder the codebook (4.14) requires only kyN42" scalars, bringing

81

Quantizer Complexity Storage
(k1,N1) COVQ Ny 2k1N1 + N,
(k}Q,mg,Ng) COPQ Ny 2komoNgy + mao Ny

(kg,m3,N3,’I73) COIII-SAPQ 2773N3 2k3?’ﬂ3N32773 + m3N32’73

(k4,m4,N4,774) CO1-SAPQ 2M Ny 2ky N, 2™ + N,2M

Table 4.1: Table of Encoding Complexity and Storage Requirements for Quantizers

designed with noisy memoryless channels (BSC).

the storage to
(k4,m4,Nq,ms) COL-SAPQ Storage = 2k, N,2™ + N2

which is m% less than the storage requirements of a (k4,m4,Ny4,nm,) COmM-SAPQ.

4.6 Design Algorithm for CO-SAPQs

The design algorithm for the COm-SAPQ is next described. This design with be
based on the derivations of the necessary conditions for optimality (4.9) and (4.13).
In this algorithm we iterate over the necessary conditions for optimality in the similar
fashion to the Lind-Buzo-Gray (LBG) algorithm. This design is derived in order to

attain a local minimum using a designed initial codebook.

(kym,N,n) COm-SAPQ Algorithm

1. Set parameters k, m, N, n, the design BSC error crossover probability €4, the

stopping threshold §, the splitting constant k-dimensional vector € = (e, . .., €),

82

the maximum number of iterations Maxiter, and M the total number of train-

ing vectors {x; = (z,,. -)}}/[:1 Initialize 7 = 1, p = 0, and the initial

gmf

set of codebooks C() — C’fl) X o X C,Sg?l

. If 7 > 2" stop; otherwise split the codebooks using

C'(p-) :C(p-) —¢ and C’

5,J 85] = $,J+T

= C§Z> +e€

fors=1,...,mand j =1,...,7, then double 7 = 7 % 2 and set p = 0. At this

point we have 7 sets of codebooks {Cg-p) }iot-

.Fors=1,...,m, 5 =1,...,7and v = 1,..., N calculate the 7Nm vectors
{gg (7)} and values {ozgf’} (7)} as in (4.21), using the codebooks {Cgp)};-:l. For
each x;, encode x; with each {PEg-p)}]T-:1 as in (4.24). This will give us the
set of index vectors {/;}7_,. The PES@ that produces the index vector I with

minimum distortion is chosen using (4.25).

. Once x; is encoded, x; can be put into the appropriate cells, (4.12). So if x; is

encoded into ((i1,...,iny), ") then for
Xf E Si[llzj*]:(p), . 7§f E S,L[:;L’]*L(p)

The resulting distortion is

m N
xf, ZP]|] ZZPH@S g (x) —cg ’(p)||2.

s=1 [=1

. Repeat Steps 3 and 4 for f =1,..., M. Then calculate the centroids, using

o) _ >t ity PULTP U Xy e giorm100 0s(x)
Zj*:l S, Pl P(1i) 2515651[3,1*],(0)

83

and update the set of codebooks to {C§p+l)}}—:1 using the new centroids. Finally
calculate the overall distortion

DW)[r] = 7 ZD(”)[Xf,T]-

. M
mM =

6. Check %ﬁp)m < 0 or p > Maxiter, if so then go to Step 2; otherwise set

p=p+1and go to Step 3.

This algorithm assumes an initial set of codebooks C§°) for the (k,m,N,n) COm-
SAPQ which is obtained from a (k,m,N) COPQ designed for the same ¢; using the
algorithm of Section 2.4.4. The algorithm for the design of the (k,m,N,n) CO1-SAPQ
codebooks is easily deducible from the above design. Similarly the (k,m,N,n) CO1-
SAPQ algorithm starts off with only one codebook which can be obtained from a
(k,N) COVQ, again designed with the same €; using the algorithm of Section 2.2.5.

4.7 Numerical Results

Numerical results were produced in order to compare the performances of the channel
optimized sample adaptive product quantizer (COSAPQ) over other generic channel
optimized quantizers such as the channel optimized vector quantizer (COVQ), of
Section 2.2.5, and the channel optimized product quantizer (COPQ), of Section 2.4.4.
The design algorithms of Sections 2.2.5, 2.4.4, and 4.6 were used to design the COVQ),
COPQ, COm-SAPQ and CO1-SAPQ. The design parameters used to generate the
numerical results of this section were: a maximum number of iterations Maxiter =

200, a splitting constant ¢ = 0.001, and a stopping threshold § = 0.001. The same

84

€4, Maziter, §, €

}

1.Design
{x;} — D[final]
Quantizer
€4, Codebook C or C Codebook C or C
. 2.Implement 3.Simulate 4.Implement
{x;} —— —{y,}
Encoder BSC with ¢, Decoder

Figure 4.4: Block Diagram illustrating the validation of channel optimized quantizers.

design parameters were used for designing the codebooks of the COV(Q, COPQ, COm-
SAPQ and CO1-SAPQ. Furthermore 200,000 training source samples were used to
design each codebook. The sources considered were the unit variance zero mean,
Gauss-Markov and the memoryless Gaussian sources. A Gauss-Markov source is a

sequence {X;} described by the recursion
Xi=pXi1+U;

where {U;} is a sequence of independent and identically distributed (i.i.d) Gaus-
sian random variables, and p is the correlation coefficient. A memoryless Gaussian
sequence and a Gauss-Markov sequence was generated by setting the correlation co-
efficient to p = 0.0 and p = 0.9, respectively. In some cases the designed codebooks
of the COVQ, COPQ, COm-SAPQ and CO1-SAPQ were tested by implementing the

quantizers as in Figure 4.4. Figure 4.4 depicts how

1. The channel optimized quantizer is designed using the algorithms of Section 2.2.5,

Section 2.4.4, and Section 4.6 with: design BSC cross over probability €4, split-

85

ting constant € = 0.001, stopping threshold 6 = 0.001 and maximum number
of iterations Maxiter = 200. The quantizers are designed using the training

sequence {X}. The final distortion of the quantizers is D[final].

2. The codebook C produced by the design algorithm and ¢4 is then used to imple-
. .) (p)
ment the encoder by calculating and storing the sets: {ggp]) (7)} and {5 (7)}
: (p) - (p)
as in (4.21), or {gg,p) (7)} and {a7”(7)} as in (4.26), or {ggf’) (7)} and {o”(7)}
as in (2.30), or {y*) ()}, and {a()(y)})_, as in (2.14). The encoder is then

used to encode the testing sequence {X,} # {x,}; a sequence that is entirely

different to the training sequence.

3. The output of the encoder is feed into a simulated BSC with cross over proba-

bility ..

4. The codebook produced from Step 1 is also used to implement a decoder that
decodes the output of the simulated BSC. The resultant reconstruction of the
testing sequence is {Xf}' The distortion of the implemented quantizer can then

be calculated as

D=3 % -y,
f

The performance of the channel optimized quantizers is measured using the signal-
to-distortion ratio (SDR) which is equal to SDR = —10log,,(D]final]) or SDR =
—10log,o(D). The comparison of the channel optimized quantizers is done by com-
paring the performance, the encoding complexity and the storage requirement of each
channel optimized quantizer at the same rate. The criteria here is three-fold that is:
performance (SDR), encoding complexity (complexity=total multiplications required
for encoding/source sample), and storage requirement (storage=total scalars required

for implementation).

86

4.7.1 Comparing COVQ, COPQ, COm-SAPQ and CO1-SAPQ

Tables 4.2 and 4.3 tabulate the performances (SDR) of COVQ, COPQ, COm-SAPQ
and CO1-SAPQ), respectively, at rates R = 1.0, 2.0 and 3.0 for memoryless Gaussian
and Gauss-Markov sources. The encoding complexities and storage requirements
were calculated using Table 4.1 and the performances were calculated using SDR =
—10log,,(D[final]). Note that since product quantizers are being compared with
quantizers, km is used to measure the dimension of the quantizers; m = 1 for all

channel optimized vector quantizers (COVQ).

Memoryless Gaussian Source: In Table 4.2 compare COV(Q and COm-SAPQ for
rates R = 1.0,2.0 and 3.0. For memoryless Gaussian sources and ¢; > 0, COm-
SAPQ performs within 0.2 dB of COVQ of the same rate R and design BSC cross
over probability €;. The performance of COm-SAPQ can exceed that of COVQ by
up to 0.19 dB; compare (2,64) COVQ and (1,2,2,4) COm-SAPQ at rate R = 3.0
and e; = 0.005. This performance gain by COm-SAPQ over COV(Q), is also matched
by a degradation of up to 0.16 dB over COVQ; compare (4,64) COVQ and (2,2,2,2)
COm-SAPQ at rate R = 1.0 and ¢; = 0.005. Still in all cases COm-SAPQ attains a
SDR within 0.2 dB of that of COV(Q with an encoding complexity equal to half that
of COVQ at the same rate R, and a lower (to 3) storage requirement to that of

9
COVQ at the same rate R.

In Table 4.2, if we compare the least complex CO1-SAPQ to COPQ of the same
rate R, we see that CO1-SAPQ out-performs COPQ only at rates R = 1.0 and
2.0, and when ¢; > 0.050. The performance gain is in the range of 0.57-0.21 dB.
Otherwise, for rate R = 3.0 COPQ outperforms CO1-SAPQ by up to 0.46 dB.

Gauss-Markov Sources: In Table 4.3, we observe that for Gauss-Markov sources

COm-SAPQ performs 1.0-0.33 dB lower than COVQ of the same rate R and dimen-

87

sion km. However when the dimension km of CO1-SAPQ is increased, a performance
gain of up to 0.81 dB is achieved over COVQ; compare (2,64) COVQ and (1,4,4,4)
CO1-SAPQ at rate R = 3.0 and ¢; = 0.005. The gain over COVQ decreases as ¢4 in-
creases. However at times COVQ does perform up to 0.23 dB better than CO1-SAPQ.
Still CO1-SAPQ attains SDRs of up to 0.81 db more than COV(Q while maintaining

a lower (£ to 3) storage requirement then COVQ of the same rate R.

Note that in Table 4.3, the least complex CO1-SAPQ always outperforms COPQ
at the same rate. The performance gains of the least complex CO1-SAPQ is in the
range of 3.08-1.12 dB.

4.7.2 Comparing ’'noisy’ and ’noiseless’ quantizers

Asin [16] Tables 4.4-4.9 compare the performances of the channel optimized quantiz-
ers to the quantizers designed under noiseless conditions. Note that the LBGVQ(+sim.annl.)
is the LBGVQ design as in Section 2.2.4. Thus this LBGVQ(+sim.annl.) does in-
clude some joint channel-source coding in its design. All the quantizers were designed
and tested as described in Figure 4.4 with €. = ¢4, and the performance is measured
using SDR = —10log,,(D). As in [16] the same conclusion can be derived, that is
the performance gain of the channel optimized sample adaptive product quantizers
over the sample adaptive product quantizers increases when the channel noise €, is
increased, when the dimension km is increased, when the rate R is increased, and

when the correlation p is increased.

88

4.7.3 Comparing COSQ and COSAPQ

Since the channel optimized scalar quantizer (COSQ), is considered for image coding
[8, 10] we compare the performance gain of COSAPQ over COSQ in Tables 4.10 and
4.11. Note that a rate R = 1.0, COSAPQ cannot be compare to a COSQ, since for
R=1.0if k =1 of the (k,;m,N,n) COSAPQ then 1.0 — = = log, N. In Table 4.10
there is a definite gain of COm-SAPQ over COSQ. A gain by COm-SAPQ of 1.57-0.27
dB over COSQ of the same rate R is observed. In Table 4.11 there is a definite gain
by the least complex CO1-SAPQ of 3.08-1.12 dB over COSQ of the same rate R.

4.7.4 Mismatch Conditions

Tables 4.4-4.9 test the results of Tables 4.2 and 4.3 by implementing the quantizers
as in Figure 4.4 with e, = €¢;. The condition (¢, = €;) where the design BSC cross
over probability perfectly matches the ’realized” BSC cross over probability is an
ideal condition. Normally the codebooks of the quantizers are designed using an
estimate of the cross over probability of the BSC to be used for transmission. Hence
a more realistic insight to the performance of the quantizers can be obtained by
implementing the quantizers as in Figure 4.4, but with €. # €¢;. This is the mismatch
conditions that are depicted in Figures 4.5-4.16 for memoryless Gaussian and Gauss-
Markov sources. In Figures 4.5-4.7 the ¢, = 0.005 and the source is memoryless
Gaussian. In Figures 4.8-4.10 the ¢; = 0.050 and the source is memoryless Gaussian.
Similarly for Figures 4.11-4.13 the ¢; = 0.005 and the source is Gauss-Markov, and
in Figures ,4.14-4.16 the ¢; = 0.050 and the source is Gauss-Markov.

Memoryless Gaussian Sources: For memoryless Gaussian sources Figures 4.5

4.10 illustrate that COm-SAPQ performs within 0.2 dB of COV(Q designed with the

89

same €; and at the same rate R, when the channel noise €, < 0.001. But as the channel
gets noisier (e, > 0.050), the performance of COm-SAPQ converges to within 0.05
dB to that of COV(Q designed with the same ¢; and at the same rate R.

Gauss-Markov Sources: For Gauss-Markov sources Figures 4.11-4.13 illustrate
an up to 0.2 dB gain by CO1-SAPQ of higher km over COVQ designed with the same
eq and of the same rate R. But as the channel is anticipated to be noisier (i.e €4 is
greater) and as the channel does get noisier (¢, > 0.050), CO1-SAPQ performance
approaches (within 0.02 dB) that of COV(Q designed with the same ¢; and at the
same rate R. Although if the channel is anticipated to be noisy and the channel in
reality is not as noisy (e, < 0.01), a gain of up to 0.5 dB is attained by CO1-SAPQ

of higher £m, over COVQ designed with the same ¢; and at the same rate R.

4.7.5 Summary of Numerical Results

Our numerical results illustrate that when the source is memoryless Gaussian, and
when the channel being used is anticipated to be noisy (¢; > 0), COm-SAPQ will
perform within 0.2 dB of the performance of a COVQ, designed with the same design
parameters. As the channel gets noisier (¢, > 0.050), COm-SAPQ’s performance
converges closer to that of COVQ (within 0.05 dB). These performances are attained
with half the encoding complexity and lower (2 to 3) storage requirements then COVQ
at the same rate R and dimension km. In all cases COm-SAPQ outperforms COPQ
and COSQ.

Furthermore if the source is Gauss-Markov, CO1-SAP(Q) with a higher dimension
km, but the same encoding complexity, as COVQ, at the same rate R, will outperform

COVQ designed with the same design parameters by 0.2 dB. As the channel gets

90

noisier (e, €5 > 0.050) CO1-SAPQ performance converges to within 0.02 dB of that
of COVQ), of the same rate R and encoding complexity, but with CO1-SAPQ having
5

the advantage of lower (% to §) storage requirements then COVQ. But when the

channel gets noisier (¢; > 0.050) and the channel actually used for transmission is
not as noisy as anticipated (e, < 0.01) then CO1-SAPQ will have a gain of up to 0.5
dB over COVQ of the same rate R. At all times CO1-SAPQ outperforms COPQ and
COSQ when the source is Gauss-Markov.

91

€d
R |km | Quantizer 0.0000.005]0.010]0.050 [0.100 | 0.150 | complexity | storage
30| 2 | YOVQ 15.2312.19|11.07| 7.35 | 5.11 | 3.78 64 320
k=2,N =64
corq 14.57|12.00|10.47 | 5.62 | 4.65 | 3.48 8 48
k=1,N=38
COm-SAPQ 15.07 [12.38 | 11.04| 7.20 | 5.14 | 3.75 32 192
k=1,N=2n=4
COLSAPQ 13.59 | 11.54]10.29| 6.48 | 4.35 | 3.13 32 96
k=1,N=2n=4
g | COISAPQ 15.1912.41]10.92| 6.61 | 4.47 | 3.18 64 192
k=1,N=4n=4
20[2 | FOVQ 9.64 | 8.71 | 8.02 | 5.52 | 3.82 | 2.71 16 80
k=2,N=16
corQ 9.27 | 8.50 | 7.86 | 4.85 | 3.04 | 1.99 4 24
k=1,N=4
COm-SAPQ 9.51 | 8.71 | 8.10 | 5.48 | 3.86 | 2.79 8 48
k=1,N=27n=2
COLSAPQ 8.72 | 8.04 | 7.50 | 5.16 | 3.61 | 2.50 8 24
k=1,N=2n=2
g | COISAPQ 8.92 | 8.16 | 7.58 | 5.06 | 3.45 | 2.45 16 48
k=1,N=2n=3
Lo| 4 | €OVQ 4.66 | 4.44 | 4.24 | 3.14 | 2.26 | 1.61 16 144
k=4,N =16
corQ 438 | 4.16 | 3.96 | 2.72 | 1.75 | 1.14 4 40
k=2,N=4
COm-SAPQ 447 | 4.28 | 4.09 | 3.13 | 2.26 | 1.61 8 80
k=2,N=2mn=2
COISAPQ 441 | 415 | 3.95 | 2.81 | 1.96 | 1.44 8 40
k=2,N=2n=2
6 | COISAPQ 4.53 | 4.25 | 4.01 | 2.73 | 1.95 | 1.39 16 80
k=2,N=2n=3

Table 4.2: SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (k,N) COVQ, the (k,m,N) COPQ, the (k,m,N,n) COm-SAPQ,
and the (k,m,N,n) CO1-SAPQ), at rates R and dimension km, designed using 200,000

memoryless Gaussian training samples and BSC cross over probability .

92

€d
R |km | Quantizer 0.0000.005]0.010]0.050 [0.100 | 0.150 | complexity | storage
30| 2 | YOVQ 19.03 | 14.50 | 13.58 | 9.36 | 6.80 | 5.13 64 320
k=2,N =64
corQ 14.57|12.00| 10.47 | 5.60 | 4.63 | 3.46 8 48
k=1,N=38
COm-SAPQ 16.62|14.22|12.75 | 8.43 | 6.07 | 4.62 32 192
k=1,N=2n=4
COLSAPQ 17.24|14.02|12.65 | 8.68 | 6.25 | 4.58 32 96
k=1,N=2n=4
g | COISAPQ 19.72|15.31|13.85| 9.51 | 6.88 | 5.19 64 192
k=1,N=4n=4
20[2 | FOVQ 13.54|11.39(10.04| 7.27 | 5.27 | 3.82 16 80
k=2,N=16
corQ 9.28 | 8.50 | 7.85 | 4.83 | 3.02 | 1.96 4 24
k=1,N=4
COm-SAPQ 12.50 | 10.76 | 9.71 | 6.26 | 4.53 | 3.37 8 48
k=1,N=27n=2
COLSAPQ 12.50 | 10.76 | 9.71 | 6.26 | 4.53 | 3.37 8 24
k=1,N=2n=2
g | COISAPQ 13.95|11.81]10.68 | 7.08 | 5.21 | 3.93 16 48
k=1,N=2n=3
Lo| 4 | €OVQ 10.20| 9.15 | 8.36 | 6.24 | 4.64 | 3.42 16 144
k=4,N =16
corQ 7.89 | 7.35 | 6.87 | 4.41 | 2.81 | 1.84 4 40
k=2,N=4
COm-SAPQ 9.66 | 8.78 | 8.17 | 5.63 | 4.08 | 3.10 8 80
k=2,N=2mn=2
COISAPQ 9.52 | 8.63 | 8.01 | 5.55 | 4.11 | 3.09 8 40
k=2,N=2n=2
CO1-SAP
6 Q 9.99 | 9.11 | 8.51 | 6.09 | 4.58 | 3.50 16 48
k=2,N=2n=3

Table 4.3: SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (k,N) COVQ, the (k,m,N) COPQ, the (k,m,N,n) COm-SAPQ,
and the (k,m,N,n) CO1-SAPQ), at rates R and dimension km, designed using 200,000

Gauss-Markov training samples and BSC cross over probability 4.

93

€c
Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 15.20|11.39 | 9.95 | 4.84 | 2.24 | 0.54
k=2N=64
PQ 14.60 | 12.03 10.32 | 4.96 | 2.17 | 0.52
k=1,m=2,N=38
m-SAPQ 15.09(11.97|10.17 | 4.58 | 1.86 | 0.28
k=1m=2,N=2,n=4
1-SAPQ 13.59(11.21] 9.64 | 4.41 | 1.80 | 0.25
k=1m=2,N=2,n=4
1-SAPQ 15.16 | 12.16 | 10.44 | 4.78 | 2.07 | 0.50
k=1,m=4,N=4n=4
covQ 15.20 [12.19 | 11.06 | 7.36 | 5.13 | 3.79
k=2,N =64
coPQ 14.60(12.02]10.50 | 5.61 | 4.64 | 3.48
k=1,m=2,N=38
CO-m-SAPQ 15.09 [12.39|11.04 | 7.21 | 5.16 | 3.74
k=1,m=2,N=2,n=4
CO-1-SAPQ 13.59 [11.60|10.31 | 6.47 | 4.35 | 3.13
k=1m=2,N=2,n=4
CO-1-SAPQ 15.16 [12.47(10.92 | 6.55 | 4.46 | 3.15
k=1,m=4,N=4n=4

Table 4.4: SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N) COPQ,
the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ),
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,7) m-SAPQ, and the
(k,m,N,n) 1-SAPQ, at rate R = 3.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability ..

94

€c
Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 9.66 | 8.63 | 7.82 | 4.21 | 2.36 | 0.94
k=2,N =16
PQ 9.29 | 8.47 | 7.82 | 4.59 | 2.42 | 1.02
k = 1, m = 2, N =4
m-SAPQ 9.52 | 8.68 | 7.97 | 4.56 | 2.36 | 0.94
k=1m=2,N=2,n=2
1-SAPQ 8.73 | 8.01 | 7.40 | 4.26 | 2.16 | 0.77
k=1m=2,N=2,n=2
1-SAPQ 8.89 | 8.09 | 7.42 | 4.16 | 2.03 | 0.62
k=1,m=3,N=2,n=3
cova 9.66 | 8.70 | 7.98 | 5.51 | 3.82 | 2.72
k=2 N=16
coPQ 9.29 | 8.49 | 7.86 | 4.87 | 3.06 | 2.01
k = 1, m = 2, N =4
COm-SAPQ 9.52 | 8.73 | 8.10 | 5.50 | 3.88 | 2.81
k=1,m=2,N=2,n=2
COL-SAPQ 8.73 | 8.05 | 7.51 | 5.18 | 3.63 | 2.60
k=1m=2,N=2,n=2
COL-SAPQ 8.89 | 8.14 | 7.55 | 5.06 | 3.47 | 2.46
k=1,m=3,N=2,n=3

Table 4.5: SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N) COPQ,
the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ),
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,7) m-SAPQ, and the
(k,m,N,n) 1-SAPQ, at rate R = 2.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability ..

95

€c

Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 465 | 441 | 413 | 2.82 | 1.62 | 0.73
k=4,N =16
P

Q 4.38 | 4.15 | 3.95 | 2.62 | 1.43 | 0.56
k = 2, m = 2, N =4
m-SAPQ 4.46 | 4.26 | 4.05 | 2.80 | 1.66 | 0.80
k=2m=2,N=2,n=2
1-SAPQ 4.41 | 4.15 | 3.91 | 2.47 | 1.24 | 0.37
k=2m=2,N=2,n=2
1-SAPQ 452 | 4.23 | 3.95 | 2.33 | 1.03 | 0.14
k=2m=3,N=2,n=3
covQ 4.65 | 4.42 | 4.15 | 2.99 | 2.27 | 1.62
k=4,N =16
coPQ 4.38 | 4.17 | 3.97 | 2.75 | 1.78 | 1.16
k = 2, m = 2, N =4
COm-SAPQ 4.46 | 4.26 | 4.07 | 2.94 | 2.25 | 1.61
k=2,m=2,N=2,n=2
COL-SAPQ 4.41 | 4.14 | 3.94 | 2.81 | 1.96 | 1.45
k=2m=2,N=2,n=2
COL-SAPQ 4.52 | 4.23 | 4.00 | 2.74 | 1.95 | 1.35
k=2m=3,N=2,n=3

Table 4.6: SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N) COPQ,
the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ),
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,7) m-SAPQ, and the
(k,m,N,n) 1-SAPQ, at rate R = 1.0, using 200,000 memoryless Gaussian testing

samples and a simmulated BSC cross over probability ..

96

€c
Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 19.01|13.63|11.07| 5.29 | 2.37 | 0.71
k=2N=64
PQ 14.64 [12.01]10.39| 5.01 | 2.25 | 0.57
k=1,m=2,N=38
m-SAPQ 16.65|12.82(10.74 | 4.85 | 2.09 | 0.48
k=1m=2,N=2,n=4
1-SAPQ 17.26 | 12.87[10.74 | 4.74 | 1.97 | 0.38
k=1m=2,N=2,n=4
1-SAPQ 19.71(13.42]10.98 | 4.55 | 1.69 | 0.05
k=1,m=4,N=4n=4
covQ 19.01|14.62[13.62| 9.48 | 6.85 | 5.20
k=2 N =64
coPQ 14.60 [12.02 | 10.50 | 5.57 | 4.60 | 3.45
k=1,m=2,N=38
CO-m-SAPQ 16.64|14.30 | 12.75 | 8.45 | 6.10 | 4.66
k=1,m=2,N=2,n=4
CO-1-SAPQ 17.26 | 14.11]12.63 | 8.71 | 6.27 | 4.63
k=1m=2,N=2,n=4
CO-1-SAPQ 19.71(15.27(13.94| 9.52 | 6.91 | 5.21
k=1,m=4,N=4n=4

Table 4.7: SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N) COPQ,
the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ),
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,7) m-SAPQ, and the
(k,m,N,n) 1-SAPQ, at rate R = 3.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e..

97

€c
Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 13.56 | 11.30| 9.86 | 4.82 | 2.18 | 0.57
k=2,N =16
PQ 9.32 | 8.54 | 7.89 | 4.65 | 2.44 | 1.02
k = 1, m = 2, N =4
m-SAPQ 12.54(10.50 | 9.13 | 4.21 | 1.62 | 0.07
k=1m=2,N=2,n=2
1-SAPQ 12.54(10.52| 9.14 | 4.23 | 1.65 | 0.09
k=1m=2,N=2,n=2
1-SAPQ 13.98 [11.07| 9.45 | 3.98 | 1.29 | -0.26
k=1,m=3,N=2,n=3
covQ 13.56|11.38 [10.05| 7.31 | 5.30 | 3.90
k=2 N=16
coPQ 9.32 | 8.55 | 7.92 | 4.94 | 3.10 | 2.04
k = 1, m = 2, N =4
COm-SAPQ 12.54[10.78 | 9.74 | 6.32 | 4.60 | 3.44
k=1,m=2,N=2,n=2
COL-SAPQ 12.54(10.79| 9.74 | 6.33 | 4.60 | 3.44
k=1m=2,N=2,n=2
COL-SAPQ 13.98(11.78 [10.69| 7.12 | 5.37 | 3.98
k=1,m=3,N=2,n=3

Table 4.8: SDR (dB) performances comparing the (k,N) COVQ, the (k,m,N) COPQ,
the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ),
with simmulated annealing, the (k,m,N) PQ, the (k,m,N,7) m-SAPQ, and the
(k,m,N,n) 1-SAPQ, at rate R = 2.0, using 200,000 Gauss-Markov testing samples

and a simmulated BSC cross over probability e..

98

€c
Quantizer 0.000[0.005[0.010]0.050 [0.100 [0.150
LBGVQ(+sim.annl.) 10.21] 9.10 | 8.26 | 4.50 | 2.13 | 0.59
k=4,N =16
PQ 7.93 | 7.37 | 6.91 | 4.26 | 2.31 | 0.99
k = 2, m = 2, N =4
m-SAPQ 9.71 | 8.71 | 7.84 | 4.16 | 1.87 | 0.44
k=2m=2,N=2,n=2
1-SAPQ 9.57 | 8.51 | 7.64 | 3.91 | 1.61 | 0.18
k=2m=2,N=2,n=2
1-SAPQ 10.01| 8.99 | 8.23 | 4.55 | 2.23 | 0.79
k=2m=3,N=2,n=3
covQ 10.21] 9.15 | 8.30 | 6.20 | 4.63 | 3.40
k=4,N =16
corQ 7.93 | 7.37 | 6.93 | 4.51 | 2.90 | 1.93
k = 2, m = 2, N =4
COm-SAPQ 9.71 | 8.81 | 8.16 | 5.65 | 4.11 | 3.16
k=2,m=2,N=2,n=2
COL-SAPQ 9.57 | 8.67 | 8.00 | 5.58 | 4.14 | 3.15
k=2m=2,N=2,n=2
COL-SAPQ 10.01] 9.12 | 8.52 | 6.12 | 4.61 | 3.54
k=2m=3,N=2,n=3

Table 4.9: SDR (dB) performances comparing the (k,N) COVQ), the (k,m,N,n) COm-
SAPQ, and the (k,m,N,n) CO1-SAPQ, to the (k,N) LBGVQ, with simmulated an-
nealing, the (k,m,N) PQ, the (k,m,N,n7) m-SAPQ, and the (k,m,N,n) 1-SAPQ), at
rate R = 1.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC
cross over probability e..

99

€d
Rate | km | Quantizer 0.000[0.005[0.0100.050 [0.100 [0.150 | complexity | storage
30 |1 | 9%Q 14.50 | 12.00| 10.47 | 5.63 | 4.66 | 3.48 8 8
k=1,N=38
p | OVQ 15.23 [12.19|11.07 | 7.35 | 5.11 | 3.78 64 320
k=2,N =64
g | COmSAPQ 15.0712.38 | 11.04| 7.20 | 5.14 | 3.75 32 192
k=1,N=2,n=4
p | COISAPQ 13.59 | 11.54(10.29 | 6.48 | 4.35 | 3.13 32 96
k=1,N=2mn=4
g | COISAPQ 15.1912.41]10.92| 6.61 | 4.47 | 3.18 64 192
k=1,N=4n=4
20 | 1| 99% 9.28 | 8.50 | 7.86 | 4.85 | 3.04 | 1.99 4 4
k=1,N=4
p | COVQ 9.64 | 8.71 | 8.02 | 5.52 | 3.82 | 2.71 16 80
k=2,N=16
g | COmSAPQ 9.51 | 8.71 | 8.10 | 5.48 | 3.86 | 2.79 8 48
k=1,N=2,n=2
g | COISAPQ 8.72 | 8.04 | 7.50 | 5.16 | 3.61 | 2.50 8 24
k=1,N=27n=2
g | COISAPQ 8.92 | 8.16 | 7.58 | 5.06 | 3.45 | 2.45 16 48
k=1,N=27n=3

Table 4.10: SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (1,N) COSQ, the (k,m,N,n) COm-SAPQ, and the (k,m,Nn)
CO1-SAPQ), at rates R = 2.0, 3.0, designed using 200,000 memoryless Gaussian train-

ing samples and BSC cross over probability 4.

100

€d
Rate | km | Quantizer 0.000[0.005[0.0100.050 [0.100 [0.150 | complexity | storage
50 | 1| 905Q 14.57 [12.00 [10.46 | 5.60 | 4.63 | 3.45 8 8
k=1,N=38
o | COVQ 19.03 [14.50 [13.58 | 9.36 | 6.80 | 5.13 64 320
k=2,N =64
o | COm-SAPQ 16.62 [14.22[12.75 | 8.43 | 6.07 | 4.62 32 192
k=1,N=2,n=4
o | COLSAPQ 17.24 [14.02 [12.65 | 8.68 | 6.25 | 4.58 32 96
k=1,N=2,n=4
g | COLBAPQ 19.72[15.31 [13.85 | 9.51 | 6.88 | 5.19 64 192
k=1,N=4n=4
20 | 1| ©95Q 9.28 | 8.50 | 7.85 | 4.83 | 3.02 | 1.96 4 4
k=1,N=4
o | COVQ 13.54 [11.39 [10.04 | 7.27 | 5.27 | 3.82 16 80
k=2,N =16
COm-SAP
2 m Q 12.50 [10.76 | 9.71 | 6.26 | 4.53 | 3.37 8 48
k=1,N=2,n=2
CO1-SAP
2 Q 12.50 [10.76 | 9.71 | 6.26 | 4.53 | 3.37 8 24
k=1,N=2,n=2
g | COLSAPQ 13.95[11.81[10.68 | 7.08 | 5.21 | 3.93 16 48
k=1,N=2,7=3

Table 4.11: SDR (dB) performances, encoding complexity and storage requirement
comparisons for the (1,N) COSQ, the (k,m,N,n) COm-SAPQ, and the (k,m,Nn)
CO1-SAPQ, at rates R and dimension km, designed using 200,000 Gauss-Markov

training samples and BSC cross over probability 4.

101

Channel Mismatch for Memoryless Gaussian sources with €4 = 0.005

and Rate= 1.0
4.5 T T T ' T T T T | T T T T T T T T |
4,16) COVQ ——
(2,2,4) COPQ - [] -
PR R R , 72 COIII—SAPQ
4l 2) CO-1-SAPQ - - -+ |
3) CO-1-SAPQ —o—
3.5 _
3 - —
25 F -
SDR
(dB) o | -
1.5 F -
1 - —
0.5 _
0 . . . PR | |
0.001 0.01 0.1

€c

Figure 4.5: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 1.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

102

Channel Mismatch for Memoryless Gaussian sources with €4 = 0.005

and Rate= 2.0
9 T T T T T T T T
A ' (2,16) COVQ ——
.................... (17 74 COPQ o o
1,2,2,2) COm-SAPQ
..................... 1,2,22) CO-1-SAPQ - - x -
8 1,3,2,3) CO-1-SAP(Q) —o—
7 -
6 -
SDR
5 -
(dB)
4 -
3 -
2 -
1 | |
0.001 0.01 0.1

€c

Figure 4.6: Graph of SDR (dB) performances comparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate

R = 2.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

103

Channel Mismatch for Memoryless Gaussian sources with €4 = 0.005

and Rate= 3.0
].4 T T T T T T T T | T T T T T T T T |
(2,64) COVQ ——
(12.8) COPQ - [
1,2,2,4) COm-SAPQ
~ 122.4) CO-1-SAPQ - -3¢ - -
pP————— 1/4/44) CO-1-SAPQ —o— |
10 —
8 - —]
SDR
dB
@) |]
4 - —]
2 - —]
0 L L L L MR L L L L MR |
0.001 0.01 0.1

€c

Figure 4.7: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 3.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

104

Channel Mismatch for Memoryless Gaussian sources with €4 = 0.050

and Rate= 1.0
4.5 T T T T T T T T | T T T T T T T T |
4,16) COVQ ——
(2,2,4) COPQ - -[]--
A 2,2,2,2) COm-SAPQ
___________________ 2,2,2,2) CO-1-SAPQ - - % -
A3 2,3,2,3) CO-1-SAPQ —o—]|
35 F _
3 — |
SDR
2.5 |- .
(dB)
2 — |
15 .
1 — |
0.5 : . : T
0.001 0.01 0.1

€c

Figure 4.8: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 1.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

105

Channel Mismatch for Memoryless Gaussian sources with €, = 0.050

and Rate= 2.0
9 T T T T T T T
| (2,16) COVQ ——
(1,2,4) COPQ - [
1,2,2,2) COm-SAPQ
_____________________ 1,2,2,2) CO-1-SAPQ - - % -+
8 1,3,2,3) CO-1-SAPQ —o—
7 -
6 -
SDR
5 -
(dB)
4 -
3 -
2+ 7
O
1 PR L |
0.001 0.01 0.1

€c

Figure 4.9: Graph of SDR (dB) performances comparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate

R = 2.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

106

Channel Mismatch for Memoryless Gaussian sources with €4 = 0.050

and Rate= 3.0
].]. T T T ' T T T T | T T T T T T T T |
(2,64) COVQ ——
.................... (1,2,8) COPQ - -[] -
2.2.4) COm-SAPQ
10 - 4) CO-1-SAPQ - x: -+ 7
4) CO-1-SAPQ —o—
9 - —]
8 - —]
7 - —]
SDR
6 - —]
(dB)
5 - —]
4 - —]
3k -
9L i
B
1 L L L L oo | L L L L MR |
0.001 0.01 0.1

€c

Figure 4.10: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 3.0, using 200,000 memoryless Gaussian testing samples and a simmulated BSC

cross over probability e,

107

Channel Mismatch for Gauss-Markov sources with €, = 0.005

and Rate= 1.0
]_0 T T T T T T T T | T T T T T T T T |
4,16) COVQ ——
(2,2,4) COPQ - []
. 2,2,2,2) COm-SAPQ
9 2,2,2.2) CO-1-SAPQ -+ % -+]|
.................... 273,273 CO_]__SAPQ o
8 — |
.................... 1. .
7 — |
6 — |
SDR
5 — |
(dB)
4 — |
3 — |
2 — |
1 — |
0 L L L L MR L L L L MR |
0.001 0.01 0.1

€c

Figure 4.11: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 1.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

108

Channel Mismatch for Gauss-Markov sources with €, = 0.005

and Rate= 2.0
].2 T | T T T T T T |
(2,16) COVQ) ——
(1,2,4) COPQ - -[]--
1,2,2,2) COm-SAPQ
1,2/2/2) CO-1-SAPQ) - - - -
1323) CO-1-SAP(Q) —o—
10 —
8 - —]
SDR
6 - —]
(dB)
4 - —]
2 - —]
0 M| |
0.001 0.01 0.1
6C

Figure 4.12: Graph of SDR (dB) performances comparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate

R = 2.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

109

Channel Mismatch for Gauss-Markov sources with €, = 0.005

and Rate= 3.0
].6 T | T T T T T T |
(2,64) COVQ ——
(12.8) COPQ - [
4) COm-SAPQ
.................... 4) CO-1-SAPQ - - -
14 F 4) CO-1-SAPQ —o—
12
10
SDR
8 -
(dB)
6 -
4 -
2 B .
O
0 | |
0.001 0.01 0.1
GC

Figure 4.13: Graph of SDR (dB) performances comparing the (k,N) COVQ, the

(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate

R = 3.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

110

Channel Mismatch for Gauss-Markov sources with €5 = 0.050

and Rate= 1.0
9 T T T T T T T T T T T T T T T T
' 4,16) COVQ ——
(2,2,4) COPQ - -[] --
2,2,2) COm-SAPQ
2) CO-1-SAPQ - -
S <o 3) CO-1-SAPQ —e—]|
Sl |
6 - —]
SDR
5 - —]
(dB)
4 - —]
3 - —]
2 —]
[
1 L L L L oy L L L L oy
0.001 0.01 0.1

€c

Figure 4.14: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 1.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

111

Channel Mismatch for Gauss-Markov sources with €, = 0.050
and Rate= 2.0

].]. T T T T T T T] T T T

16; COVQ ——
4y corQ -
m-SAPQ
]__SAPQ T
1-SAPQ —o—

(2,
(1,
2) CO
2) CO
3) CO

)

)
)
)

1 L L L L L T
0.001 0.01 0.1

€c

Figure 4.15: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 2.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

112

Channel Mismatch for Gauss-Markov sources with €, = 0.050

and Rate= 3.0
].4 T T T T T T T T | T T T T T T T T |
(2,64) COVQ ——
(12.8) COPQ - [
2,2.4) COm-SAPQ
4) CO-1-SAPQ - - % -~
iy SRS 1) CO-1.8APG |
10 —
8 - —]
SDR
dB
@) |]
4l i
D.
L]
0 L L L L MR L L L L MR |
0.001 0.01 0.1

€c

Figure 4.16: Graph of SDR (dB) performances comparing the (k,N) COVQ, the
(k,m,N) COPQ, the (k,m,N,n) COm-SAPQ, and the (k,m,N,n) COL-SAPQ at rate
R = 3.0, using 200,000 Gauss-Markov testing samples and a simmulated BSC cross

over probability e,

Chapter 5

Conclusion

5.1 Summary of Work

In Chapter 2, we illustrated the necessary conditions for optimality of the vector
quantizer and presented a design algorithm for V(Q, namely the LBGV(Q algorithm,
based on iterating over the necessary conditions for optimality. V() design was then
extended to include channel statistics, and the result was a joint source-channel coder
called the channel optimized vector quantizer (COVQ). We then described the product

quantizer (PQ) and its extension the channel optimized product quantizer (COPQ).

In Chapter 3 we introduced the sample adaptive product quantizer (SAPQ) as
designed by Kim and Shroff. SAPQ was studied and numerical results were produced
to compare SAPQ performances with that of VQ and PQ. As a result, we saw that
there is a definite advantage of using m-SAPQ and 1-SAPQ over PQ and VQ, when

the source is memoryless Gaussian, since SAPQ attained performances close to that

113

114

of VQ with half the encoding complexity and lower storage requirements. For Gauss-
Markov sources we saw that for every VQ, we could find a 1-SAPQ that outperforms
the VQ, while keeping the encoding complexity equal to that of VQ, and having a

storage requirement less then that of VQ.

In Chapter 4, we extended the design of SAPQ to include channel statistics. As
a results we designed a channel optimized sample adaptive product quantizer (COS-
APQ) which was then tested and compared to COV(Q and COPQ. We discovered that
for memoryless Gaussian sources COm-SAPQ performed within 0.2 dB to COVQ),
and converging to 0.05 dB as the channel noise increased. This performance of COm-
SAPQ was achieved with half the encoding complexity and lower storage requirements
then that of COVQ of the same rate. When the source is Gauss-Markov we found that
CO1-SAPQ outperformed COVQ by 0.2-0.8 dB with the same encoding complexity
but lower storage requirements. As the channel got nosier CO1-SAP(Q performances
converged to within 0.02 dB of COVQ, but still these performances were achieved

with less storage requirements then that of COVQ of the same rate.

5.2 Future Work

Future work on this thesis may include the study of other channels such as discrete
channels with memory and BPSK-modulated Raleigh fading channels. Improvements

in the design of the initial codebook is another possible direction of future research.

Appendix A

Distortion of COm-SAPQ

In the design of a COm-SAPQ), as formulated in (4.2), the distortion of a (k,m,N,n)
COm-SAPQ is given by

DC’Om-SAPQ = Z Z /D]Z Z j |j L|Z
t=1

]IZGJ’" Zj’ lL

-y Y / MZPMJ Z (M@Hut(g—g% b(x)dx.

i=1 g Jn 8z j=1 el

The above distortion is simplified by manipulating the term
> PlLZ)

LeJy t=1

Note that L = (Iy,...,l,) and Z = (21,..., 2y) SO

m 2

P(LIZ) = P(y,....lnl21, s %m)
= (lllzl) P(lmn|2m)

= HP v (L)|v,(Z))

115

116

and hence we can manipulate

> ez { s - i,

m

LGJN

by considering the term T,

T,= Y P(L|Z)‘u x

Ledy

for a fixed s € {1,...,m}. In this way we get

I
- 3 [Pz >\us<z>—év;%i>1
LeJy =1
= 3 P2 [0 - | TT P (2))
LEJ; rr£Ss

Il
NE
] =
e
e
=
=l
N

=
E
[
I
<
3
>/
I
I

[l
hE
s,

e
&
=
N

Y. P (D)Iv(2))

Vs(L)=1 rir#s Ve (L)=1
Clearly
N
> Pw(D)v(2) =1
Vy(L)=1
so then

[5,5']
=Vs(

> P(LIZ)||us(x

LEJK,L VS(L):]‘

and hence we have

P(L|Z) Z‘ut —c

LeJm t=1 Vi(L)=1

Bibliography

1]
2]

[5]

H. Abut, Vector Quantization, IEEE Reprint Collection., IEEE Press, May 1990.

H. Abut, R.M. Gray, and G. Rebolledo, “Vector quantization of speech and
speech-like waveforms,” IEEE Acoust. Speech Signal Process., ASSP-30, pp 423—
435, June 1982.

H. Abut, and S.A. Luse, “Vector quantizers for subband coded waveforms,” Int.
Conf. on Acoust., Speech, and Signal Process., vol. 1, pp 10.6.1-10.6.4, March
1984.

J.P. Adoul, and P. Mabilleau, “4800 bps RELP vocoder using vector quantization
for both filter and residual representation,” Int. Conf. on Acoust., Speech, and

Signal Process., vol. 1, pp 601, April 1982.

F.Alajaji, N. Phamdo, and T.Fuja, “Channel codes that exploit the residual
redundancy in CELP-encoded speech,” IEEE Trans. Speech Audio Processing,
Vol. 4, pp. 325-336, Sept. 1996.

E.Ayanoglu and R. M. Gray, “The design of joint source and channel trellis
waveform coders,” IEEE Trans. Inform. Theory, Vol. I'T-33, pp. 855-865, Nov.
1987.

117

118

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

T.M.Cover and J.A.Thomas, Elements of Information Theory, A Wiley Series

in Telecommunications: John Wiley Sons, Inc. 1991.

J.Cheng and F.Alajaji, “Channel optimized quantization of images over binary
channels with memory,” Part of The 1997 Canadian Workshop on Information
Theory , June 1997.

J.Cheng , Channel Optimized Quantization of Images over Binary Channels with
Memory, M.Sc.Eng Thesis, Department of Mathematics and Statistics, Queen’s
University, 1997.

Q.Chen, and T.R. Fischer, “Image coding using robust quantization for noisy

digital transmission,” IEEE Trans. on Image Processing,.

D.S. Kim and N.B. Shroff , “Quantization based on a novel sample-adaptive
product quantizer (SAPQ),” IEEE Trans. Inform. Theory, Vol. 45 No.7, pp.
23062320, Nov.1999.

D.S. Kim and N.B. Shroff , “Sample-adaptive product quantization: Asymptotic
analysis and examples,” IEEE Trans. on Signal Processing, Vol. 48, No. 10, pp.
2937-2947, Oct.2000.

M. Effros and P. A. Chou, “Weighted universal bit allocation: Optimal multiple
quantization matrix coding,” Proc. IEEE ICASSP, pp. 2343-2346, Detroit, May
1995.

M. Effros, P. A. Chou and R. M. Gray, “Universal image compression,” IEEE
Trans. Image Processing, Vol. 8, pp. 1317-1329, Oct. 1999.

N. Farvardin , “A study of vector quantization for noisy channels,” IEEE Trans.

Inform. Theory, Vol. 36,NO. 4, pp. 799-808, Jul. 1990.

119

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

N. Farvardin and V. Vaishampayan , “On the performance and complexity of
channel-optimized vector quantizers,” IEEE Trans. Inform. Theory, Vol. 37, pp.
155-160, Jan.1991.

N. Farvardin and V. Vaishampayan , “Optimal quantizer design for noisy chan-
nels: An approach to combined source-channel coding,” IEEE Trans. Inform.

Theory, Vol. I'T-33, pp. 827-838, Nov.1987.

A.A. Gamal, L.A. Hamachandra, I. Shperling, and V. Wei, “Using simulated
annealing to design good codes,” IEEE Trans. Inform. Theory, Vol. IT-33, pp.
116-123, Apr.1987.

A. Gercho, and R. M. Gray, Vector Quantization and Siganl Compression, Nor-
well, MA :Kluwer,1992.

R. M. Gray, “Vector quantization,” IEEE ASSP Mag. vol. 1, pp. 4-29, April
1984.

H. Kumazawa, M. Kasahara, and T. Namekawa, “A Construction of Vector
Quantizers for Noisy Channels,” Elect. and Eng. in Japan, vol. 67-B, pp 3947,
Jan. 1984.

A. Kurtenbach, and P. Wintz , “Quantizing for noisy channels,” IEEE Trans.
Commun. Technol, Vol. COM-17, pp. 291-302, Apr. 1969.

R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived
from a variable-length scalar quantizer: Part I — Memoryless sources,” IEEE

Trans. Inform. Theory, Vol. 39,pp. 851-867, May 1993.

120

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived
from a variable-length scalar quantizer: Part IT — Vector sources,” IEEE Trans.

Inform. Theory, Vol. 39, pp. 868-876, May 1993.

Y.Linde, A. Buzo and R.M. Gray , “An algorithm for vector quantizer design,”
IEEE Trans. Inform. Theory, Vol. 28, pp. 84-95, Jan.1980.

S.P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Info. Theory,
vol. 28, pp 129-137, March 1982.

J. Max, “Quantizing for minimum distortion,” IRE Trans. Info. Theory, vol.

IT-6, pp 7-12, March 1960.

J.W. Modestino, and D.G. Daut, “Combined source-channel coding of images,”

IEEE Trans. Comm., vol. COM-29, pp 1261-1274, Sept. 1981.

A. Ortega and M. Vetterli, “Adaptive scalar quantization without side informa-

tion,” IEEE Trans. Image Processing, Vol. 6, pp. 665-676, May 1997.

N. Phamdo, N. Farvardin, and T. Moriya, “A unified approach to tree-structured
and multistage vector quantization for noisy channels,” IEEE Trans. Info. The-

ory, Vol. 39, pp. 835-850, May 1993.

N. Phamdo, F. Alajaji and N. Farvardin , “Quantization of memoryless and
Gauss-Markov sources over binary Markov channels,” IEEE Trans. on Comm.,

Vol. 45, No. 6, pp. 668-675, Jun.1997.

T.S. Rappaport, Wireless Communications Principles and Practices, Upper Sad-
dle River, NJ :Prentice-Hall,1996.

121

[33] K.Sayood and J.C. Borkenhagen, “Use of residual redundancy in the design of
joint source/channel coders,” IEEE Trans. Comm., vol. 39, pp 838-846, June
1991.

[34] J.Schwartz, “Fast probabilistic algorithms for verification of polynomial identi-

ties”, J. Assoc. Comput., Vol. 27, pp. 701-717, Mar.1980.

[35] C.E. Shannon, “A Mathematical Theory of Communications,” Bell Syst. Tech.
J., vol. 27, pp. 379-423 and 623-656, 1948.

[36] C.E. Shannon, “Coding theoroms for a discrete source with a fidelity criterion,”

IRE NAt. Conv. Rec., pp. 142-163, Mar. 1959.

[37] M. Skoglund and P. Hedelin, “Hadamard-based soft-decoding for vector quanti-
zation over noisy channels,” IEEE Trans. Inform. Theory, Vol. 45, pp. 515532,
Mar. 1999.

[38] R.E. Totty and G.C. Clark, “Reconstruction errors in waveform transmission”,

IEEE Trans. Inform. Theory, Vol. IT-13, pp. 336-338, Apr.1967.

Vita

Zahir Raza

Education

Queen’s University M.Eng Mathematics and Engineering 1999-2002

Queen’s University B.Eng Mathematics and Engineering 1995-1999

Experience

Sr. Engineer (2001) T-mobile U.S, Bellevue, Washington

Research Assistant (1999-2001) Mathematics and Statistics, Queen’s University, On-

tario

Teaching Assistant (1998-2001) Mathematics and Statistics, Queen’s University, On-

tario

Publications

Z. Raza, F. Alajaji, and T. Linder, “Channel optimized sample adaptive product
quantization”, Thirty-Ninth Annual Allerton Conference on Communication, Con-

trol, and Computing, Oct. 2001

122

