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Abstract

We study the estimation of a Gaussian source by a Gaussian wireless sensor network (WSN) whereL distributed

sensors transmit noisy observations of the source through afading Gaussian multiple access channel to a fusion

center. In a recent work [1] Gastpar showed that for a symmetric Gaussian WSN with no fading, uncoded (analog)

transmission achieves the optimal performance theoretically attainable (OPTA). In this correspondence, we consideran

asymmetric fading WSN in which the sensors have differing noise and transmission powers. We first present lower and

upper bounds on the system’s OPTA under random fading. We next focus on asymmetric networks with deterministic

fading. By comparing the obtained lower and upper OPTA bounds under deterministic fading, we provide a sufficient

condition for the optimality of the uncoded transmission scheme for a given power tupleP = (P1, P2, · · · , PL). Then,

allowing the sensor powers to vary under a weighted sum constraint (this includes the sum-power constraint as a

special case), we obtain a sufficient condition for the optimality of uncoded transmission and provide the system’s

corresponding OPTA.

Index Terms – Power-distortion tradeoff, Gaussian multiple access channel with fading, uncoded transmission, remote

source coding, sensor networks, joint source-channel coding.

I. INTRODUCTION

We consider the estimation of a memoryless Gaussian source by a Gaussian wireless sensor network (WSN) where

L sensors observe the source signalX corrupted by additive independent noise. The overall system is depicted in

Fig. 1. The sensors communicate information about their observations through a fading Gaussian multiple access

channel (MAC) to a single fusion center (FC). The fading coefficients are not known by the encoders but are available

at the FC. The encoders are distributed and cannot cooperateto exploit the correlation between their inputs. Each

encoder is subject to a transmission cost constraint. The FCaims to reconstruct the main source,X, at the smallest

cost in the communication link. Our interest lies in determining the optimal power-distortion region, with the fidelity

of estimation at the FC measured by the mean squared-error (MSE) distortion. Specifically, for a givenL-tuple of

sensor powersP = (P1, P2, · · · , PL), we seek to determine the system’s minimum achievable distortion which we

refer to as the optimal performance theoretically attainable (OPTA).
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Fig. 1. A Gaussian wireless sensor network (WSN) with fading.

In [2], [1], it is proved that uncoded transmission is exactly optimal for symmetric Gaussian WSNs with a finite

number of sensors and no fading. Uncoded transmission in this case (and in the rest of this paper) means scaling

the encoder input subject to the channel power constraint and transmitting without explicit channel coding. Note

that the separate source and channel coding theorem of Shannon [3] does not hold for this problem [2], [1]. In the

case of deterministic fading, lower and upper bounds on the minimum distortion are presented in [2], [1], [4], and

for random fading, bounds are also presented in [5], [4]. Theminimum achievable distortion under a sum-power

constraint for the uncoded transmission scheme in the WSN with deterministic fading is presented in [6]. The

optimality of uncoded transmission in some other multi-user communication systems was recently shown in [7], [8].

For the asymmetric fading Gaussian WSN, the following important issues remain unknown: Under either random

or deterministic fading, what is the system’s OPTA? Also, what is the optimal coding strategy that achieves OPTA?

Our main contributions in this correspondence are as follows: First, by applying the idea of maximum correlation

coefficient, illustrated in [9], [10], [11], we generalize the OPTA lower bound in [1] to an asymmetric Gaussian

WSN with random fading. We show that the new bound is a tighterlower bound on the OPTA than that of [5] for a

Gaussian WSN with random fading. We also analyze the uncodedtransmission scheme and provide an upper bound

on the OPTA for a given set of sensor powers. These two bounds constitute an extension of the bounds given for

deterministic fading case in [2], [1]. We next specialize the results to the case of deterministic fading. We establish

a condition under which the lower and upper bounds on the system’s OPTA coincide, hence making the uncoded

transmission scheme optimal. We next allow the sensor powers to vary under a linear combination of powers (LCP)

constraint. Aside from being a natural generalization of the sum-power constraint, the LCP constraint explicitly

allows to introduce weight coefficients that reflect the potentially differing costs of supplying power to individual

sensors. Our final contribution is to provide sufficient conditions for the optimality of uncoded transmission under

a given LCP constraint and determine the system’s corresponding OPTA.

The remainder of this correspondence is organized as follows. In Section II, we present the system model and

problem statement. Section III provides lower and upper bounds on the OPTA in an asymmetric Gaussian WSN

with random fading. In Section IV, we consider deterministic fading and provide matching conditions by comparing

lower and upper bounds on the system’s OPTA. For uncoded transmission, an optimal power allocation under an

LCP constraint and a sufficient condition for its optimalityare also obtained. Conclusions are presented in Section V.
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II. PROBLEM STATEMENT

We consider a simple Gaussian WSN, illustrated in Fig. 1, where a team ofL sensors observe independent

noisy versions of the memoryless Gaussian source{X[k]}n
k=1. The underlying source{X[k]}n

k=1 is a sequence of

independent and identically distributed (i.i.d.) real-valued Gaussian random variables of mean zero and varianceσ2
X .

For each observation timek = 1, 2, 3, . . ., the noisy observations are given by

Yl[k] = X[k] + Vl[k], l = 1, . . . , L (1)

where {Vl[k]}
n
k=1 is a sequence of i.i.d. Gaussian random variables of mean zero and varianceσ2

Vl
which is

independent of{X[k]}n
k=1. We represent the firstn instances of{X[k]}k≥1 and{Yl[k]}k≥1 by the data sequences

Xn = (X[1],X[2], . . . ,X[n]) and Y n
l = (Yl[1], Yl[2], . . . , Yl[n]), respectively. The correlated sourcesYl are not

co-located and their observers cannot cooperate to directly exploit their correlation. Instead, the sequencesY n
l are

separately encoded toϕl (Y
n
l ) = Un

l where theϕl are encoder functions in the form

ϕl : R
n → R

n, l = 1, 2, . . . , L. (2)

Each transmitted sequenceUn
l is assumed to be average-power limited toPl, i.e.,

1

n

n∑

k=1

E
[
|Ul[k]|

2
]
≤ Pl , l = 1, 2, . . . , L. (3)

The sensors communicate the coded sequences to the decoder through a fading MAC. In fact, each transmitted signal

Ul is multiplied by a real-valued fading random variablebl, l = 1, 2, . . . , L. The bl are not known to the encoders

but are available to the decoder. The fading coefficients have non-zero mean and are independent of each other and

of theUl random variables. The time-k output of the channel is given by

W [k] =

L∑

l=1

bl[k]Ul[k] + Z[k], (4)

where the channel noise{Z[k]}n
k=1 is an i.i.d. sequence of Gaussian random variables of mean zero and varianceσ2

Z

that is independent ofXn, V n, and the fading coefficients. Based on the channel outputW n = (W [1], . . . ,W [n]), the

FC forms an estimatêXn of the main sourceXn. Fidelity betweenXn andX̂n is measured by the average squared

error distortion,∆ = 1
n
E[

n∑
j=1

(X[j]−X̂ [j])2]. The reconstructed signal can be described asX̂n = ψ (W n, bn), where

the decoder function is a mapping
ψ : R

n × R
nL → R

n. (5)

Let F (n) (P1, P2, . . . , PL) denote all encoder and decoder functions(ϕ1, . . . , ϕL, ψ) that satisfy (2)–(5). For a

particular coding scheme(ϕ1, . . . , ϕL, ψ), the performance is determined by the cost vectorP = (P1, P2, . . . , PL) and

the incurred distortion∆. For any target distortionD ≥ 0, the power-distortion regionP(D) is defined as the convex

closure of the set of all achievable power-distortion pairs(P,D), where a power-distortion pair(P,D) is achievable

if for any δ > 0, there is ann0(δ) such that for alln ≥ n0(δ) there exists(ϕ1, . . . , ϕL, ψ) ∈ F (n) (P1, P2, . . . , PL)

with distortion∆ ≤ D+ δ. Our aim is to investigate the power-distortion region of this fading Gaussian WSN and
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present lower and upper bounds on its OPTA, which is defined for a fixedP as

Dmin(P) = inf {D | (P,D) ∈ P(D)} . (6)

We also aim to derive optimality conditions for uncoded transmission in the sense of achieving the OPTA. In addition,

we want to minimize the MSE distortion given a linear combination of powers (LCP) constraint, i.e.,






minimize D(P)

subject to
L∑

l=1

βlPl ≤ Ω
(7)

whereD(P) is the distortion of the uncoded transmission scheme using power allocationP = (P1, . . . , PL) and

βl > 0, l = 1, . . . , L. This form of constraint is a slight generalization of the sum-power constraint which explicitly

allows to introduce weight coefficients for the potentiallydiffering costs of supplying power to individual sensors.

III. I NFORMATION-THEORETIC OPTA BOUNDS IN THE PRESENCE OFRANDOM FADING

We present lower and upper bounds on the OPTA in an asymmetricGaussian WSN with random fading. The

lower bound is based on analyzing the remote source coding scenario, where the sensor observations are given to

one common encoder; then applying the data processing as well as Jensen’s inequalities and finally using the idea

of maximum correlation coefficient, illustrated in [9], [10], [11]. The upper bound is based on analyzing uncoded

transmission which is the transmission of scaled versions of the sensors observations.

A. Lower Bound

Proposition 1: A lower bound on the OPTA in an asymmetric Gaussian WSN with random fading is

Dmin ≥ Dℓ , D∗
0




1 +

σ2
Xσ

2
Z

L∑
l=1

1
σ2

Vl

σ2
Z + Ωr




, (8)

where
D∗

0 =

(
1

σ2
X

+

L∑

l=1

1

σ2
Vl

)−1

, (9)

Ωr =

L∑

l=1

PlE[|bl|
2] + 2σ2

X

L∑

l=1

L∑

j>l

E [bl]E [bj ]

√√√√
PlPj

(
σ2

X + σ2
Vl

)(
σ2

X + σ2
Vj

) , (10)

and the expectations are taken with respect to the distribution of the fading random variables bl.

Proof: See the proof for Theorem 1 in [4]. This bound is an extension of Theorem 4 in [1] (Theorem 5 in

[2]) to the random fading case.

Next we compare the bound of Proposition 1 with the lower bound presented in [5] and demonstrate that our

bound is strictly tighter as long as at least one of the sensorobservation noise variancesσ2
Vl

is nonzero.

The lower bound presented in [5], which is for the case where the sensors observations have the same noise level

σ2
V1

= · · · = σ2
VL

= σ2
V , can be expressed for a general asymmetric WSN as
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Dlower(L,Ptot) = D∗
0




1 +

σ2
Xσ

2
Z

L∑
l=1

1
σ2

Vl

σ2
Z + Ptot

L∑
l=1

E[|bl|
2]




, (11)

where it is assumed that there is a total power constraint in the communication channel, i.e.,1
n

n∑
k=1

L∑
l=1

E[|Ul[k]|
2] ≤

Ptot, andPtot denotes the average total sensor power available per observation vector(Un
1 , . . . , U

n
L). Let us denote

σ2
1 = σ2

Z +

L∑

l=1

PlE[|bl|
2] + 2σ2

X

L∑

l=1

L∑

j>l

E [bl]E [bj ]

√√√√
PlPj

(
σ2

X + σ2
Vl

)(
σ2

X + σ2
Vj

) ,

and
σ2

2 = σ2
Z + Ptot

L∑

l=1

E[|bl|
2].

wherePtot =
∑L

l=1 Pl. By comparing (8) and (11), we observe that the only difference is in the denominator. The

lower bound of (8) is in the formDℓ = D∗
0



1 +
σ2

Xσ2
Z

L
P

l=1

1

σ2
Vl

σ2
1



 while Dlower(L,Ptot) = D∗
0



1 +
σ2

Xσ2
Z

L
P

l=1

1

σ2
Vl

σ2
2



.

We want to show thatσ2
1 ≤ σ2

2 . Since theσ2
Vl

are non-negative, we have

2σ2
X

L∑

l=1

L∑

j>l

E [bl]E [bj]

√√√√
PlPj

(
σ2

X + σ2
Vl

) (
σ2

X + σ2
Vj

) ≤ 2

L∑

l=1

L∑

j>l

|E [bl]E [bj]|
√
PlPj . (12)

Thus

σ2
2 − σ2

1 ≥ Ptot

L∑

l=1

E[|bl|
2] −

L∑

l=1

PlE[|bl|
2] − 2

L∑

l=1

L∑

j>l

|E [bl]E [bj ]|
√
PlPj

=
L∑

j=1

L∑

l=1

PjE[|bl|
2] −

L∑

l=1

PlE[|bl|
2] − 2

L∑

l=1

L∑

j>l

|E [bl]E [bj ]|
√
PlPj

=
L∑

l=1

L∑

j>l

(
PlE[|bj|

2] + PjE[|bl|
2]

)
− 2

L∑

l=1

L∑

j>l

|E [bl]E [bj]|
√
PlPj . (13)

We have
1

2

(
PlE[|bj|

2] + PjE[|bl|
2]

)
≥

√
PlPjE[|bl|

2]E[|bj |
2] ≥ |E[bl]E[bj ]|

√
PlPj (14)

where the first inequality is due to the arithmetic-geometric mean inequality and the second inequality follows from

the Cauchy-Schwarz inequality. Thus a term-by-term comparison in (13) shows that the difference is non-negative,

proving thatσ2
2 ≥ σ2

1 . Moreover, the inequality in (12) implies thatσ2
2 > σ2

1 as long as at least one of theσ2
Vl

is positive. Therefore, the lower bound of (8) onDmin is tighter than (11); the improvement is mainly due to the

maximization of the correlation coefficients.

Numerical Examples:

1) We consider asymmetric WSN consisting of two sensors and evaluate the resulting lower bounds numerically.

We assume thatE[|b1|
2] = E[|b2|

2] = 4, E[b1] = E[b2] = 1. The estimation distortion bound is plotted as a
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function of the power levelP1 = P2 = P in Fig. 2. We observe that the distortion is a decreasing function

of P and that the lower boundDℓ of (8) is tighter than the lower boundDlower of (11). Specifically, if we

calculate the percentage of the relative distortion gap (i.e., Dℓ−Dlower

Dlower
%) versus the value ofP , we observe

thatDℓ performs20% better (tighter) thanDlower for P > 1.5.

2) Now, we assume that the channel is not symmetric and plot the distortion bounds as a function of the power

level P1 = P2 = P in Fig. 3 for two different fading parameters:

• E[|b1|
2] = 8, E[|b2|

2] = 4, E[b1] = 0.2, E[b2] = 1.5

• E[|b1|
2] = 35, E[|b2|

2] = 20, E[b1] = 2, E[b2] = 4

Again, we observe that the lower boundDℓ is tighter than the lower boundDlower.

3) We next consider anasymmetric WSN. We assume thatσ2
V2

= σ2
V1

+γ, P1 = P2 = 20, E[|b1|
2] = E[|b2|

2] = 4,

andE[b1] = E[b2] = 1 and plot the estimation distortion bounds as a function ofγ in Fig. 4. There is almost

a fixed gap betweenDℓ andDlower.

B. Upper Bound: Analyzing Uncoded Transmission

By analyzing the uncoded transmission in our Gaussian WSN, we next present an upper bound on the OPTA.

In this approach, each sensor transmits its observation by simply scaling it to its power constraint, i.e.,Ul[k] =
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X = 100 andσ2

Z = 15.

√
Pl

σ2
X+σ2

Vl

Yl[k]. The received signal at the FC is then given by

W [k] =

L∑

l=1

{√
Pl

σ2
X + σ2

Vl

bl[k] (X[k] + Vl[k])

}
+ Z[k].

Since the encoding is memoryless, the optimal (minimum meansquared error) estimator is easy to obtain. By

evaluating the resulting MSE distortion, we obtain an upperbound on the minimum achievable distortion, which is

summarized in the next lemma.

Lemma 1: An upper bound on the OPTA in a Gaussian WSN with random fading can be expressed as

Dmin ≤ Duncoded , σ2
XE





σ2
Z +

L∑
l=1

Plσ
2
Vl
|bl|

2

σ2
X+σ2

Vl

σ2
Z + Ωr|b



 , (15)

where
Ωr|b = 2σ2

X

L∑

l=1

L∑

j>l

blbj

√√√√
PlPj

(
σ2

X + σ2
Vl

) (
σ2

X + σ2
Vj

) +

L∑

l=1

Pl |bl|
2 , (16)

and the expectation is with respect to the fading random variables, bl.

In the following, we provide some examples in order to compare the lower and upper bounds numerically.

First, we consider a Gaussian WSN withL = 2 sensors, whereσ2
Vl

= 1 (for l = 1, · · · , L). The fading coefficients

of the channels are taken ask × d−3.5, wherek is a normalization constant chosen to satisfyE[bl] = 1 and d is

a random variable uniformly distributed on the interval[1, 1.5]. In Fig. 5, we plot the percentage of the relative

distortion gap (i.e.,Duncoded−Dℓ

Duncoded
%) versus the sum-powerPtot assuming a uniform power schedule. We note that the

gap is less than 6% for all values ofPtot.

Fig. 6 shows the lower and upper bounds on the OPTA versus the total number of sensors,L under a uniform

power schedule and a sum-powerPtot = 2. The fading coefficients are taken ask×d−3.5, whered is drawn uniformly

from the interval[1, 6] andk is a normalization constant satisfyingE[bl] = 1. We observe that the gap between the

lower and upper bounds decreases as the total number of sensors increases.

Before closing this section, we point out that, using some algebraic manipulations, it is not hard to show that

if σ2
bl

= 0, the lower bound of (8) and the upper bound of (15) agree undersome conditions (see the proof of

Corollary 1 in Section IV-A, presented in Appendix I). This means that uncoded transmission can achieve the
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optimal performance if the fading coefficients stay constant over the duration of transmission. This may apply

to situations where the network conditions change very slowly. In the remainder of this work, we investigate the

Gaussian WSN with such deterministic channel gains.

IV. D ETERMINISTIC FADING SYSTEM

A. Optimality Condition for Uncoded Transmission

Assume that the fading coefficientsbl are fixed non-zero constants known at the fusion center. The lower bound

of (8) and the upper bound of (15) can be expressed as follows:
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Dmin ≥ Dℓ = D∗
0




1 +

σ2
Xσ

2
Z

L∑
l=1

1
σ2

Vl

σ2
Z + Ωr




, (17)

Dmin ≤ Duncoded =

(
σ2

X

σ2
Z + Ωr

)(
σ2

Z +
L∑

l=1

Plσ
2
Vl
|bl|

2

σ2
X + σ2

Vl

)
, (18)

where Ωr =
L∑

l=1

Plσ
2
Vl
|bl|

2

σ2
X+σ2

Vl

+

(
L∑

l=1

bl

√
Plσ

2
X

σ2
X+σ2

Vl

)2

. In the symmetric case, whereσ2
V1

= · · · = σ2
VL

= σ2
V and

P1 = · · · = PL = P , the lower bound (17) and the upper bound (18) coincide ifb1 = · · · = bL = b. Hence, we

obtain the OPTA for the symmetric Gaussian WSN under deterministic and identical fading. This is the same result

as recently established by Gastpar in [2] withb1 = · · · = bL = 1.

Corollary 1: For the asymmetric network with deterministic fading, the lower bound (17) and the upper bound

(18) coincide if and only if
b1σ

2
V1

√
P1

σ2
X + σ2

V1

= · · · = bLσ
2
VL

√
PL

σ2
X + σ2

VL

. (19)

Proof: See Appendix I.

Hence, for a given set of powers,P, if (19) is satisfied then the distortion achieved by the uncoded transmission

is the smallest possible achievable distortion. Note that (19) is both necessary and sufficient for the upper and lower

bounds to coincide, but it is only a sufficient condition for the optimality of uncoded transmission.

B. Optimal Power Allocation for Uncoded Transmission under an LCP Constraint

In a WSN, many sensor devices are battery-powered and thus power constrained. Therefore, minimizing power

consumption is critical in extending the lifetime of the individual sensor nodes and the entire network. A sum-

power constraint has a direct impact on the network lifetimesince it is imposed on the power consumption of all

sensors taken together. However in some applications, in order to prevent excessive power consumption for individual

sensors, or due to differing power supply capabilities at the sensors, individual power constraints for each sensor

may also be desirable. This motivates us to combine cost coefficients with the sum-power constraint and consider

a complexity constraint consisting of a linear combinationof powers (LCP). These cost coefficients might depend

on the sensors’ location and battery lifetime and can be assigned by the fusion center.

We thus herein consider an optimal power allocation for the uncoded transmission in order to minimize the MSE

distortion under an LCP constraint, i.e.,





minimize D(P)

subject to
L∑

l=1

βlPl ≤ Ω
(20)

whereD(P) is the distortion of the uncoded transmission scheme using power allocationP = (P1, . . . , PL) and

βl > 0, l = 1, . . . , L.

In [6], by applying the Lagrange multiplier method, it was shown that the optimal distortion sum-power tradeoff(
Duncoded,

L∑
l=1

Pl

)
for the uncoded scheme can be expressed as follows:
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Duncoded(Ptot) =



 1

σ2
X

+

L∑

l=1

1

σ2
Vl

+
σ2

Z

Ptotb
2
l

(
σ2

X + σ2
Vl

)




−1

, (21)

wherePtot =
L∑

l=1

Pl is the sum-power. This tradeoff is also given in [2, Eq. (6)] for the case of equal variance

observation noises and equal channel gains. Since we want tocompare lower and upper bounds on OPTA under

an LCP constraint (which subsumes the sum-power constraint), we first need to provide closed form expressions

of the optimal power allocation for the LCP case. The proof ofthe next lemma, which we omit, is based on an

application of the Lagrange multiplier method. Note that asa special case, the lemma also yields the formula (21)

for the minimum distortion under the sum-power constraint derived in [6].

Lemma 2: (Optimal Power Allocation for Uncoded Transmission under an LCP Constraint) An optimal power

allocation scheme for the constraint Ω =
L∑

l=1

βlPl is given by

Pl = λlΩ =
σ2

X + σ2
Vl

αb2l

(
Ωσ2

Vl
+ σ2

Zβl

(
σ2

X+σ2
Vl

b2l

))2 Ω , l = 1, · · · , L (22)

where

α =

L∑

l=1

βl(σ
2
X + σ2

Vl
)

b2l

(
Ωσ2

Vl
+ σ2

Zβl

(
σ2

X+σ2
Vl

b2
l

))2 .

Substituting the optimalPl given in (22) into (18) yields an upper bound on OPTA under theLCP constraint:

Duncoded(Ω) =



 1

σ2
X

+
L∑

l=1

1

σ2
Vl

+
σ2

Zβl

b2
l
Ω

(
σ2

X + σ2
Vl

)




−1

.

Corollary 2: (Uncoded Transmission Optimality Conditions under an LCP Constraint) In an asymmetric

Gaussian WSN with deterministic fading, uncoded transmission with the optimal power allocation given in (22)

is optimal in the sense of achieving the OPTA under an LCP constraint if the following conditions hold

b1

√
σ2

V1

β1(σ
2
X + σ2

V1
)

= · · · = bL

√
σ2

VL

βL(σ2
X + σ2

VL
)
. (23)

Proof: See Appendix II.

V. CONCLUSIONS

We considered a distributed WSN whereL noisy observations of a memoryless Gaussian source are transmitted

through a fading Gaussian MAC to a decoder. The decoder wantsto reconstruct the main source with an average

distortionD at the smallest possible power consumption in the communication link. Our goal was to characterize the

power-distortion region achievable by any coding strategyregardless of delay and complexity. We obtained a lower

bound on the system’s OPTA, i.e., its minimum achievable distortion for a given set of powers(P1, P2, . . . , PL). Also,

by analyzing the uncoded transmission scheme, we provided an upper bound on the OPTA. When specialized to the

network with deterministic fading, we provided sufficient conditions for the optimality of the uncoded transmission.

We also obtained an optimal power allocation in order to minimize distortion for a given LCP constraint as well as

an explicit condition for the optimality of uncoded transmission under an LCP constraint.
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APPENDIX I

PROOF OFCOROLLARY 1

Proof: We first rewrite the lower bound in (17) as

Dℓ =

σ2
Xσ

2
Z +D∗

0

L∑
l=1

Plσ
2
Vl
|bl|

2

σ2
X+σ2

Vl

+D∗
0

(
L∑

l=1

bl

√
Plσ

2
X

σ2
X+σ2

Vl

)2

σ2
Z +

L∑
l=1

Plσ
2
Vl
|bl|

2

σ2
X+σ2

Vl

+

(
L∑

l=1

bl

√
Plσ

2
X

σ2
X+σ2

Vl

)2 . (24)

Comparing (24) with the upper bound in (18) reveals that the lower bound and the upper bound coincide if and

only if

(
σ2

X −D∗
0

) L∑

l=1

Plσ
2
Vl
|bl|

2

σ2
X + σ2

Vl

= D∗
0σ

2
X

(
L∑

l=1

bl

√
Pl

σ2
X + σ2

Vl

)2

. (25)

From the definition ofD∗
0 we haveσ2

X−D∗

0

σ2
XD∗

0

=
L∑

l=1

1
σ2

Vl

. As a result, the equality condition in (25) is equivalent to

(
L∑

l=1

1

σ2
Vl

)
L∑

l=1

Plσ
2
Vl
|bl|

2

σ2
X + σ2

Vl

=

(
L∑

l=1

bl

√
Pl

σ2
X + σ2

Vl

)2

. (26)

Settinggl = blσ
2
Vl

√
Pl

σ2
X+σ2

Vl

, we rewrite and simplify (26) as

L∑

l=1

g2
l

σ2
Vl




L∑

j 6=l

1

σ2
Vj



 = 2

L∑

l=1

∑

j>l

glgj

σ2
Vl
σ2

Vj

. (27)

Comparing the coefficients of 1
σ2

Vl
σ2

Vj

(l 6= j) on both sides of equation (27) shows that the equality holds if and

only if g2
l + g2

j = 2glgj ; this is equivalent togl = gj which is our condition in (19).

APPENDIX II

PROOF OFCOROLLARY 2

Proof: From the proof of Corollary 1, a necessary condition for the upper and the lower bound to coincide is

that the equality in (26) holds. Substituting the optimalPl’s in this condition and settingfl =
σ2

Vl

Ωσ2
Vl

+σ2
Zβl

„

σ2
X

+σ2
Vl

b2
l

« ,

we obtain
L∑

l=1

f2
l

σ2
Vl




L∑

j=1

1

σ2
Vj



 =
L∑

l=1

f2
l

σ2
Vl

+ 2
L∑

l=1

∑

j>l

flfj

σ2
Vl
σ2

Vj

sgn(bl) sgn(bj), (28)

wheresgn(x) = x
|x| is the sign ofx. Subtracting

L∑
l=1

f2
l

σ2
Vl

from both sides in (28), we get

L∑

l=1

f2
l

σ2
Vl




L∑

j 6=l

1

σ2
Vj



 = 2

L∑

l=1

∑

j>l

flfj

σ2
Vl
σ2

Vj

sgn(bl) sgn(bj). (29)

Comparing the coefficients of 1
σ2

Vl
σ2

Vj

in both sides of equation (29) gives that the equality holds if and only if

f2
l + f2

j = 2flfj sgn(bl) sgn(bj).
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Sincefl ≥ 0, the equality holds if and only iffl = fj and sgn(bl) sgn(bj) = 1. Solving fl = fj implies that

βl

σ2
Vl

σ2
X + σ2

Vl

b2l
=

βj

σ2
Vj

σ2
X + σ2

Vj

b2j
. (30)

Combining (30) withsgn(bl) sgn(bj) = 1, we obtain (23) which completes the proof.
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