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Abstract

We study the estimation of a Gaussian source by a Gaussiatessrsensor network (WSN) whekedistributed
sensors transmit noisy observations of the source throufgiiag Gaussian multiple access channel to a fusion
center. In a recent work [1] Gastpar showed that for a symm&aussian WSN with no fading, uncoded (analog)
transmission achieves the optimal performance theoligtatainable (OPTA). In this correspondence, we consater
asymmetric fading WSN in which the sensors have differing@and transmission powers. We first present lower and
upper bounds on the system’s OPTA under random fading. Wefoexs on asymmetric networks with deterministic
fading. By comparing the obtained lower and upper OPTA bsunttier deterministic fading, we provide a sufficient
condition for the optimality of the uncoded transmissiohesoe for a given power tuple = (P, P»,---, Pr). Then,
allowing the sensor powers to vary under a weighted sum mnst(this includes the sum-power constraint as a
special case), we obtain a sufficient condition for the oglity of uncoded transmission and provide the system’s
corresponding OPTA.

Index Terms — Power-distortion tradeoff, Gaussian multiple accessiebbwith fading, uncoded transmission, remote
source coding, sensor networks, joint source-channehgodi

. INTRODUCTION

We consider the estimation of a memoryless Gaussian soyragdaussian wireless sensor network (WSN) where
L sensors observe the source sighakorrupted by additive independent noise. The overall systedepicted in
Fig. 1. The sensors communicate information about theieofasions through a fading Gaussian multiple access
channel (MAC) to a single fusion center (FC). The fading fioigits are not known by the encoders but are available
at the FC. The encoders are distributed and cannot cooperabeploit the correlation between their inputs. Each
encoder is subject to a transmission cost constraint. Thaif@ to reconstruct the main sourcg, at the smallest
cost in the communication link. Our interest lies in deterimg the optimal power-distortion region, with the fidelity
of estimation at the FC measured by the mean squared-er®E)Mistortion. Specifically, for a giveh-tuple of
sensor power® = (P, P, -, Pr), we seek to determine the system’s minimum achievable rtimtowhich we
refer to as the optimal performance theoretically attdmd®PTA).
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Fig. 1. A Gaussian wireless sensor network (WSN) with fading

In [2], [1], it is proved that uncoded transmission is exadptimal for symmetric Gaussian WSNs with a finite
number of sensors and no fading. Uncoded transmission $nctse (and in the rest of this paper) means scaling
the encoder input subject to the channel power constraidtta@msmitting without explicit channel coding. Note
that the separate source and channel coding theorem of &ndBlhdoes not hold for this problem [2], [1]. In the
case of deterministic fading, lower and upper bounds on timémmm distortion are presented in [2], [1], [4], and
for random fading, bounds are also presented in [5], [4]. Teimum achievable distortion under a sum-power
constraint for the uncoded transmission scheme in the WSN deéterministic fading is presented in [6]. The
optimality of uncoded transmission in some other multirlcmmunication systems was recently shown in [7], [8].

For the asymmetric fading Gaussian WSN, the following intgoatrissues remain unknown: Under either random
or deterministic fading, what is the system’s OPTA? Alsoatis the optimal coding strategy that achieves OPTA?
Our main contributions in this correspondence are as falidwirst, by applying the idea of maximum correlation
coefficient, illustrated in [9], [10], [11], we generalizhet OPTA lower bound in [1] to an asymmetric Gaussian
WSN with random fading. We show that the new bound is a tiglu@er bound on the OPTA than that of [5] for a
Gaussian WSN with random fading. We also analyze the unctsdadmission scheme and provide an upper bound
on the OPTA for a given set of sensor powers. These two bounistitute an extension of the bounds given for
deterministic fading case in [2], [1]. We next specialize tiesults to the case of deterministic fading. We establish
a condition under which the lower and upper bounds on theeBystOPTA coincide, hence making the uncoded
transmission scheme optimal. We next allow the sensor poteevary under a linear combination of powers (LCP)
constraint. Aside from being a natural generalization @& $um-power constraint, the LCP constraint explicitly
allows to introduce weight coefficients that reflect the ptitdly differing costs of supplying power to individual
sensors. Our final contribution is to provide sufficient dtinds for the optimality of uncoded transmission under
a given LCP constraint and determine the system’s correBpgrOPTA.

The remainder of this correspondence is organized as fslldmvSection I, we present the system model and
problem statement. Section Il provides lower and uppembisuon the OPTA in an asymmetric Gaussian WSN
with random fading. In Section IV, we consider determirigiiding and provide matching conditions by comparing
lower and upper bounds on the system’s OPTA. For uncodegrrigsion, an optimal power allocation under an
LCP constraint and a sufficient condition for its optimakise also obtained. Conclusions are presented in Section V.



Il. PROBLEM STATEMENT

We consider a simple Gaussian WSN, illustrated in Fig. 1, restee team of. sensors observe independent
noisy versions of the memoryless Gaussian so€é:]},_,. The underlying sourcéX|[k]};_, is a sequence of
independent and identically distributed (i.i.d.) realesl Gaussian random variables of mean zero and variaface
For each observation time= 1,2, 3, ..., the noisy observations are given by

Vik] = X[k] + Vi[k], 1=1,...,L 1)

where {V;[k]}}_, is a sequence of i.i.d. Gaussian random variables of meam aed varianceo—%/l which is
independent of X [k]};_,. We represent the first instances of X [k]},~, and {Y;[k]},, by the data sequences
X" = (X[1],X[2],...,X[n]) andY" = (Y[1],Y;[2],...,Y;[n]), respectively. The correlated sourcEsare not
co-located and their observers cannot cooperate to diregploit their correlation. Instead, the sequentgsare
separately encoded tg (Y;*) = U;* where they; are encoder functions in the form

o : R —» R™, l=1,2,...,L. (2)
Each transmitted sequentg' is assumed to be average-power limitedHoi.e.,

%ZEDUZ[W]SPZ, 1=1,2,. .. L (3)
k=1

The sensors communicate the coded sequences to the ddumdegyht a fading MAC. In fact, each transmitted signal
U, is multiplied by a real-valued fading random variable! = 1,2,..., L. The b; are not known to the encoders
but are available to the decoder. The fading coefficient& mn-zero mean and are independent of each other and
of the U; random variables. The time-output of the channel is given by

L
Wk] = blklUi[k] + Z[k], (4)
=1

where the channel noigeZ [k]}}_, is an i.i.d. sequence of Gaussian random variables of mearapel variance,
that is independent of ™, V", and the fading coefficients. Based on the channel odiput= (W[1],..., W{n]), the
FC forms an estimat&™ of the main source™. Fidelity betweenXx™ and X" is measured by the average squared
error distortion A = %E[i (X[j]— X [j])?]. The reconstructed signal can be describedas= v (W™, b"), where
the decoder function is ja:1mapping

Y R" x R"* — R, (5)
Let F") (P, P,,..., Py) denote all encoder and decoder functiois, ..., ¢r,v) that satisfy (2)—(5). For a
particular coding scheme, ..., ¢, %), the performance is determined by the cost vekter (P;, P, ..., Pr) and
the incurred distortion\. For any target distortio®® > 0, the power-distortion regio®(D) is defined as the convex
closure of the set of all achievable power-distortion péitsD), where a power-distortion pa{P, D) is achievable
if for any & > 0, there is am(d) such that for alln > ng(8) there existg g1, ..., or,¢) € FM) (P, Py, ..., Pp)
with distortion A < D + 4. Our aim is to investigate the power-distortion region a$ tfading Gaussian WSN and



present lower and upper bounds on its OPTA, which is definea fixed P as
Dypin(P) = nf {D | (P, D) € P(D)}. (6)

We also aim to derive optimality conditions for uncoded sramssion in the sense of achieving the OPTA. In addition,
we want to minimize the MSE distortion given a linear combiora of powers (LCP) constraint, i.e.,

minimize D(P)
L (7)
subject to Y. 3P, <Q
=1
where D(P) is the distortion of the uncoded transmission scheme usaweep allocationP = (P,...,P;) and
6, >0,1l=1,...,L. This form of constraint is a slight generalization of thenspower constraint which explicitly

allows to introduce weight coefficients for the potentiadl§fering costs of supplying power to individual sensors.

I1l. I NFORMATION-THEORETIC OPTA BOUNDS IN THE PRESENCE ORANDOM FADING

We present lower and upper bounds on the OPTA in an asymn@#icssian WSN with random fading. The
lower bound is based on analyzing the remote source codiegasio, where the sensor observations are given to
one common encoder; then applying the data processing dsasvéensen’s inequalities and finally using the idea
of maximum correlation coefficient, illustrated in [9], [1J11]. The upper bound is based on analyzing uncoded
transmission which is the transmission of scaled versidrihe sensors observations.

A. Lower Bound

Proposition 1: A lower bound on the OPTA in an asymmetric Gaussian WSN with random fading is

Dyin > D2 D5 [ 14 — =L 8)

where 1 L 1 1
D=5 + g — 9
0 < 2> ) ( )

2
X =1 Vi
L L L PP,
Qr =Y PRE[b[]+20% > > Elb] E[b] — J2 e (10)
—1 =1 j>1 (O’X + O'Vl) (O’X + 0Vj>

and the expectations are taken with respect to the distribution of the fading random variables b,.
Proof: See the proof for Theorem 1 in [4]. This bound is an extensibfiteeorem 4 in [1] (Theorem 5 in
[2]) to the random fading case. [ |
Next we compare the bound of Proposition 1 with the lower lbpresented in [5] and demonstrate that our
bound is strictly tighter as long as at least one of the seabservation noise varianceﬁ,l iS nonzero.
The lower bound presented in [5], which is for the case whiseesensors observations have the same noise level
oy, =--- =0y, = oy, can be expressed for a general asymmetric WSN as



Dlower(L7 Ptot) - DS 1+ =1 5 (11)

n L
where it is assumed that there is a total power constrairttércobmmunication channel, i.et, Z S E|UK])] <
k=11=1

P, and P,,; denotes the average total sensor power available per aigerwector(U7,...,U}"). Let us denote

al_aZ+ZPl [16]?] +20XZZE b E J( PP,
(o

)
2 2 2 2
=1 j>1 X +oh) (UX +UV})

and L )
0} = 0%+ P y_ Ellbi[’]
1=1
where P,y = Zle P,. By comparing (8) and (11), we observe that the only diffeeeis in the denominator The
o%0% E %0y E
lower bound of (8) is in the formD, = D | 1+ % while Dipyer (L, Piot) = D§ | 1+ é"l

o3

We want to show that? < o2. Since thea%/L are non-negative, we have

L L PZP' L L
iZZE[bz]E[bj]J : <2 > |EbIED]VAE; (12)
=1 j>I

0% +0%) (O& +0’vj> I=1 j>1
Thus
L
o — o} > PtotZEHbz\ ZPI [1b)%] —QZZ’E bi] E [bj)|\/ PP;
= =1 ]>l
L L
= > > BEb ZPZ [61]?] —2ZZ|E[bl]E[bjnf%
j=11=1 =1 j>I
L L
= ZZ( Ello;*] + P;E[|by|? )—2ZZ!E bi) E [/ PP (13)
=1 5>1 =1 j>I
We have
1
3 (PR + P =\ REEIPLEN P > 0B, VAT, (14)

where the first inequality is due to the arithmetic-georsatrean inequality and the second inequality follows from
the Cauchy-Schwarz inequality. Thus a term-by-term coimparin (13) shows that the difference is non-negative,
proving thato3 > of. Moreover, the inequality in (12) implies that > o7 as long as at least one of ths,

is positive. Therefore, the lower bound of (8) @»,, is tighter than (11); the improvement is mainly due to the
maximization of the correlation coefficients.

Numerical Examples:

1) We consider aymmetric WSN consisting of two sensors and evaluate the resultingid@unds numerically.
We assume thak|[|b1|?] = E[|b2|?] = 4, E[b1] = E[by] = 1. The estimation distortion bound is plotted as a
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Fig. 2. The estimation distortion v.s. the transmission @o@; = P, = P. We assume thati, = oy, = 5, 0% = 100 ando = 30.
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Fig. 3. The estimation distortion v.s. the transmission @oW; = P> = P in a symmetric WSN with asymmetric fading MAC. We assume
thatoy, = o7, =5, ox = 100 andoy = 30.

2)

3)

function of the power leveP, = P, = P in Fig. 2. We observe that the distortion is a decreasingtfanc
of P and that the lower bound, of (8) is tighter than the lower bounB;,.., of (11). Specifically, if we
calculate the percentage of the relative distortion g&p,(f%%) versus the value oP, we observe
that D, performs20% better (tighter) tharD,,,,., for P > 1.5.
Now, we assume that the channel is not symmetric and péotistortion bounds as a function of the power
level P, = P, = P in Fig. 3 for two different fading parameters:

o E[b1]*] =8, E[|bo|*] =4, E[b1] = 0.2, E[by] = 1.5

o E[|bi[’] = 35, E[|ba|*] = 20, E[b1] = 2, E[bo] = 4
Again, we observe that the lower boug is tighter than the lower bounf;, e,
We next consider aasymmetric WSN. We assume thaf, = o2 +v, P, = P> = 20, E[|b1|*] = E[|bs|*] = 4,
and E[b;] = E[be] = 1 and plot the estimation distortion bounds as a functiory @f Fig. 4. There is almost
a fixed gap betwee®, and D,y

B. Upper Bound: Analyzing Uncoded Transmission

By analyzing the uncoded transmission in our Gaussian WSiNnpext present an upper bound on the OPTA.

In this approach, each sensor transmits its observationirbglys scaling it to its power constraint, i.elj;[k] =
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Fig. 4. The estimation distortion v.s. the valueof= o7, — oy, . We assume thaP, = P, = 20, oy, = 10, ox = 100 andoy = 15.
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/U o= Yl[k:]. The received signal at the FC is then given by

L
Z{ﬁbl[k](X[k]+V2[/<?])}+Z[k].
=1 o% + ot

Since the encoding is memoryless, the optimal (minimum meguared error) estimator is easy to obtain. By
evaluating the resulting MSE distortion, we obtain an ugpaund on the minimum achievable distortion, which is
summarized in the next lemma.

Lemma 1: An upper bound on the OPTA in a Gaussian WSN with random fading can be expressed as

L P, 2 2
2 1y, 161
A2 7z " lzl Uiia%ﬁ
Dmin < Duncoded = UXE 0'%_+ Qr|b ) (15)
where o L L PP
Qp=20% YD bibj | ——— + Z Pilorf?, (16)
I=1 j>i (0% + %) (UX+UV>

and the expectation is with respect to the fading random variables, b;.

In the following, we provide some examples in order to coreghe lower and upper bounds numerically.
First, we consider a Gaussian WSN with= 2 sensors, where%/l =1 (forl =1,---,L). The fading coefficients
of the channels are taken &sx d=35, wherek is a normalization constant chosen to sati&fjh;] = 1 andd is
a random variable uniformly distributed on the interyal1.5]. In Fig. 5, we plot the percentage of the relative
distortion gap (i.e. %%) versus the sum-powdr,,; assuming a uniform power schedule. We note that the
gap is less than 6% for all values &%,;.

Fig. 6 shows the lower and upper bounds on the OPTA versusotherntumber of sensord; under a uniform
power schedule and a sum-pow®y; = 2. The fading coefficients are taken/as d—3-°, whered is drawn uniformly
from the interval[l, 6] andk is a normalization constant satisfyirigy;] = 1. We observe that the gap between the
lower and upper bounds decreases as the total number ofrsénseases.

Before closing this section, we point out that, using songeladaic manipulations, it is not hard to show that
if agl = 0, the lower bound of (8) and the upper bound of (15) agree usdare conditions (see the proof of

Corollary 1 in Section IV-A, presented in Appendix I). Thiseans that uncoded transmission can achieve the
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Fig. 5. Percentage of the relative distortion gap versusstim-powerP;,;. We assume thak = 2, 6% = 1, 0% = 1, P, = P». The fading

coefficients are taken ds x d~3®, wherek is a normalization constant satisfyirfg[b;] = 1 andd is drawn uniformly from the interval
[1,1.5].
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Fig. 6. The MSE estimation distortion versus the total nundfesensorsL, under a uniform power schedule. The fading coefficients are
taken ask x d~*°, wherel is drawn uniformly from the intervall, 6] and k is a normalization constant satisfyirg[b;] = 1. We assume
that Prot =2, 0% =1, 0% =1,0v, =1 (for i =1,---, ).

optimal performance if the fading coefficients stay constaver the duration of transmission. This may apply
to situations where the network conditions change very Iglolw the remainder of this work, we investigate the
Gaussian WSN with such deterministic channel gains.

IV. DETERMINISTIC FADING SYSTEM
A. Optimality Condition for Uncoded Transmission

Assume that the fading coefficienisare fixed non-zero constants known at the fusion center. derlbound
of (8) and the upper bound of (15) can be expressed as follows:



Dyin > Do =Di | 1 =1 , 17
¢ 0 * 0%%—97« (7
o2 L Pot b
Dmin < Dunco ed = X 2 — Y R 18
_ ded <0%+Qr> (UZ—F;O'%—FU%/L ( )
2
L. Po, b ? L P03 i 2 2
where Q, = > —o— + ( Y by /21 | - In the symmetric case, wherg}, = --- = o, = oy and
= xTOv, =1 xTOv,
P, =-.. = P, = P, the lower bound (17) and the upper bound (18) coincidg i& --- = b;, = b. Hence, we

obtain the OPTA for the symmetric Gaussian WSN under detgstic and identical fading. This is the same result
as recently established by Gastpar in [2] with=--- = b, = 1.
Corollary 1. For the asymmetric network with deterministic fading, the lower bound (17) and the upper bound

(18) coincide if and only if ) P, B _ 2 Pr
biovi\ [ = = bLov o (19)
UX + O"/‘1 UX + UVL

Proof: See Appendix I. [ |
Hence, for a given set of powerB, if (19) is satisfied then the distortion achieved by the wezbtransmission
is the smallest possible achievable distortion. Note th@} {s both necessary and sufficient for the upper and lower
bounds to coincide, but it is only a sufficient condition fbetoptimality of uncoded transmission.

B. Optimal Power Allocation for Uncoded Transmission under an LCP Constraint

In a WSN, many sensor devices are battery-powered and thusrpmnstrained. Therefore, minimizing power
consumption is critical in extending the lifetime of the iwvidual sensor nodes and the entire network. A sum-
power constraint has a direct impact on the network lifetsirece it is imposed on the power consumption of all
sensors taken together. However in some applicationsdiera@o prevent excessive power consumption for individual
sensors, or due to differing power supply capabilities at 4knsors, individual power constraints for each sensor
may also be desirable. This motivates us to combine cosficieafts with the sum-power constraint and consider
a complexity constraint consisting of a linear combinatidfrpowers (LCP). These cost coefficients might depend
on the sensors’ location and battery lifetime and can begasdi by the fusion center.

We thus herein consider an optimal power allocation for theoded transmission in order to minimize the MSE
distortion under an LCP constraint, i.e.,

minimize D(P)
L (20)
subject to Y /P < Q
=1
where D(P) is the distortion of the uncoded transmission scheme usaweep allocationP = (P,...,P;) and

G >0,1=1,...,L.
In [6], by applying the Lagrange multiplier method, it wasogin that the optimal distortion sum-power tradeoff
L

D ncoded, Pl> for the uncoded scheme can be expressed as follows:
=1
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1 1 B
Duncoded(Ptot) = 0__2 + Z ’ (21)
X

oy

2 2 2
=1 v, T B (0% + )

where P,,; = i P, is the sum-power. This tradeoff is also given in [2, Eq. (&) the case of equal variance
observation ni):iées and equal channel gains. Since we wasanipare lower and upper bounds on OPTA under
an LCP constraint (which subsumes the sum-power congtraiet first need to provide closed form expressions
of the optimal power allocation for the LCP case. The prootha next lemma, which we omit, is based on an
application of the Lagrange multiplier method. Note thataspecial case, the lemma also yields the formula (21)
for the minimum distortion under the sum-power constraigtivied in [6].

Lemma 2: (Optimal Power Allocation fLor Uncoded Transmission undeil&P Constraint) An optimal power

allocation scheme for the constraint 2 = ) 5, F; is given by
=1

2 2
UX—I—O'VZ

ab? <QUV 028, <0x+‘7vl>)2

P =)0 = Q, I1=1,--,L (22)

where

ZL: Bi(o% +0V) .
=1 b <QUV +Uzﬁl (ax+avl))2

Substituting the optimaP; given in (22) into (18) yields an upper bound on OPTA underlti® constraint:

-1

L
D ()
uncoded g Jbggl (UX n 0"2/1)

Corollary 2: (Uncoded Transmission Optimality Conditions under an LCe&hgraint) In an asymmetric
Gaussian WSN with deterministic fading, uncoded transmission with the optimal power allocation given in (22)
is optimal in the sense of achieving the OPTA under an LCP constraint if the following conditions hold

== S 4 23
B(ok + ot,) "\ BL(o% + ) (23)
Proof: See Appendix II. [ |

V. CONCLUSIONS

We considered a distributed WSN whelenoisy observations of a memoryless Gaussian source arentithed
through a fading Gaussian MAC to a decoder. The decoder wantsconstruct the main source with an average
distortion D at the smallest possible power consumption in the commtiaicank. Our goal was to characterize the
power-distortion region achievable by any coding stratexgardless of delay and complexity. We obtained a lower
bound on the system’s OPTA, i.e., its minimum achievabledien for a given set of powerd;, P, ..., Pr). Also,
by analyzing the uncoded transmission scheme, we providegbper bound on the OPTA. When specialized to the
network with deterministic fading, we provided sufficieminclitions for the optimality of the uncoded transmission.
We also obtained an optimal power allocation in order to miré distortion for a given LCP constraint as well as
an explicit condition for the optimality of uncoded transsion under an LCP constraint.



11

APPENDIX |
PROOF OFCOROLLARY 1

Proof: We first rewrite the lower bound in (17) as
2 o0 el Ro Bl [\
oxoz + Dy 121 oy, T Dy (Z b\ | sz507 >
= 5 ) (24)
0% + Z }Zgﬁf‘lﬁ (Z bl\/ affg >

Comparing (24) with the upper bound in (18) reveals that tweel bound and the upper bound coincide if and

Dy =

only if
RS L LI Z . 2 5)
ox 0 llaX—i-aV 07k : UX—FUVL '
L . . . . .
From the definition ofDj we have Dy Z . As a result, the equality condition in (25) is equivalent to

L 2
1 PlUV |bl|
g — E g b . (26)
(l:l Uéz) —1 JX +0Vz UX "'Uv

Settingg; = bla%/l, /m, we rewrite and simplify (26) as

L
Zgj Z— _222 glgﬂ. 27)

=1 Vi \ j#l = 1]>l Vj

Comparing the coefficients 0(12?7 (I # j) on both sides of equation (27) shows that the equality hdldsd
only if g7 + g7 = 2gig;; this is equ]ivalent ta = g; which is our condition in (19). [

APPENDIX I
PROOF OFCOROLLARY 2

Proof: From the proof of Corollary 1, a necessary condition for thpar and the lower bound to coincide is
that the equality in (26) holds. Substituting the optindk in this condition and setting; =

0'
Vi

+o !
QUV —I—UZBL( X Vl)
o7

we obtain
L L
Z fé Z =Zf—2 222 flfg sgn(by) sgn(b;), (28)
= v \j= ¢ =1 Vi =1 j>I
wheresgn(x) = ‘ | is the sign ofz. Subtractlngz f‘l/ from both sides in (28), we get
L 2 L
1
L Z— _222 flf sgn(br) sgn(b; ). (29)
=1 TV G U =1 ]>l V;

Comparing the coefficients Géf%,szv in both sides of equation (29) gives that the equality holdmd only if

[P+ f7 = 2fif; sen(by) sgn(b)).
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Since f; > 0, the equality holds if and only if; = f; andsgn(b;) sgn(b;) = 1. Solving f; = f; implies that

2 2 2 2
ﬂaX"_UVZ B; ox t 0oy,

=2 Y% 30

2w o B (30)

Combining (30) withsgn(b;) sgn(b;) = 1, we obtain (23) which completes the proof. [ |
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