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Abstract

We study the problem of approximating the family of hard-decision frequency-shift keying demodulated corre-

lated flat Rician fading channels via a recently introduced queue-based channel (QBC) model for binary communi-

cation channels with memory. For a given “discretized” fading channel, we construct a QBC whose noise process

is statistically “close” in the Kullback-Leibler sense to the error or noise process generated by the fading channel

and the modeling accuracy is evaluated in terms of noise autocorrelation function (ACF) and channel capacity.

Numerical results indicate that the QBC provides a good approximation of the fading channels for a wide range of

channel conditions. Furthermore, it estimates the noise ACF more accurately than the finite-state Markov models

recently studied by Pimentelet. al. while at the same time remaining mathematically tractable.
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I. INTRODUCTION

In recent years, there has been an increasing interest in transmitting voice, data, image and video signals over

wireless communication channels. However, wireless channels undergo a variety of time-varying signal impairments

caused by propagation loss, shadowing, multipath fading, and thermal noise. In particular, it is important to

understand the deleterious effects of fading on wireless transmission. A common feature of many fading channels

is that they cause symbol errors to occur in clusters or bursts [2].

In the presence of error bursts, interleaving is usually applied to destroy or mitigate the memory because most

coding systems and protocols are designed under the assumption of memoryless error processes. With perfect

or ideal interleaving, it is possible to model the fading channels as memoryless channels. However, the use of

interleaving introduces extra delay and complexity, and perfect interleavers do not exist in any practical system.

In real-time personal communication systems, data is transmitted in short blocks and fairly strict delay constraints

must be obeyed (e.g., see [3]). Non-interleaved or finite-interleaved packet transmission over fading channels has

received significant attention recently [4], [5].

Therefore, in this work we start with the premise that the inherent memory of fading communication channels

cannot be neglected. Actually, an advantageous feature of memory is that the channel quality in the near future

can be forecast based on the knowledge of previous channel conditions due to the statistical dependence of errors.

In order to obtain highly reliable data transmission over channels with memory, we should take advantage of the

channel memory by constructing effective error control coding strategies. For this reason, it is critical to fully

understand the error structure of such channels. This is achieved via channel modeling, where the main objective

is to provide a model whose properties are both complex enough to closely capture the real channel statistical

characteristics, and simple enough to allow mathematically tractable system analysis. In this work, we employ a

binary additive channel model with memory based on a finite queue that reliably and tractably describes a family

of correlated fading channels.

During the past several decades, a variety of channel modelshave been proposed and studied for the modeling

of wireless fading channels (e.g., see [6], [7], [8] and the models therein). A finite-state Markov channel (FSMC) is

a discrete valued channel with a finite set of possible stateswhose transition is governed by an underlying Markov

chain and with a probability assignment that is independentof time [9], [2], [10]. FSMCs have been widely
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adopted for the description of the correlation structures and success/failure processes of wireless channels with

bursty behavior [11] because they are efficient in quick simulations, system performance evaluations and protocol

investigations. Two of the earliest FSMC models for representing the “discretized” version (under hard-decision

demodulation) of binary-input fading channels with memoryare the Gilbert-Elliott channel (GEC) [12], [13] and

the Fritchman channel (FC) [14]. They were for example employed to model high-frequency channels [15], mobile

radio channels [16], [17], [18], low earth orbit satellite channels [19] and magnetic tape recorders [20]. The GEC

model also has been used to evaluate the performance of coding and decoding schemes over bursty channels [21],

[22], [3].

Many FSMC models, including the above mentioned works, havebeen proposed to fit realistic wireless channels.

In [23], Wang and Moayeri proposed an FSMC based on the partitioning of the received signal-to-noise ratio

(SNR) into a finite number of states to model Rayleigh fading channels. The same approach was also presented

independently in [4] and used in [24], [25]. The model proposed in [23] attracted much attention because it has a

good balance between accuracy and complexity. It was applied to the evaluation of system-related channel properties

(such as the correlation properties of the fading mobile radio channel) in [26], [27] by modeling the channel as a

first-order Markov process whose transition probabilitiesare a function of the channel characteristics. In [28], an

analytical model was used to evaluate the effect of mobile velocity on the performance of a communication system

operating in a multi-path fading channel.

FSMCs are often generated via finite-state hidden Markov models (HMMs).1 General HMMs were studied in

[29] to model flat fading channels. Due to their HMM structure, such channels can be difficult to mathematically

analyze (e.g., they do not admit an exact closed-form expression for their capacity and/or their block transition

distribution is not transparently expressed in terms of thechannel parameters), particularly when incorporated

within an overall source and/or channel coded system. This may partly explain why to date, few coding techniques

that effectively exploit the noise memory have been successfully constructed for HMM-based channel models and

for channels with memory in general. Instead, most current wireless communication systems are designed for

memoryless channels and employ channel interleaving in an attempt to disperse the channel memory and make

the channel appear memoryless (even burst-error correcting codes such as Reed Solomon codes operating on a

1A description of a large class of finite or infinite state HMM based channel models is provided in [2].
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HMM-based channel perform best when interleaving is used, e.g., see [5]). However, in addition to the increased

complexity/delay caused by interleaving, the failure to exploit the channel’s memory at the encoder and/or decoder

leads to a waste of channel capacity since it is well known that memory increases capacity2 for a wide class of

channels (the class of information stable channels [31], [32]). It is therefore vital to construct channel models which

can well represent the behavior of real-world channels while remaining analytically tractable for design purposes.

In [32, Section VI], Alajaji and Fuja proposed a simple binary additive noise channel with memory, referred to as

the finite memory contagion channel (FMCC), where the noise process is generated via a finite-memory version of

Polya’s urn scheme for the spread of a contagious disease through a population [33]. In such a channel, every error

(or “infection”, if we use the contagion interpretation) effectively increases the probability of future errors ([33]),

and hence may lead to a clustering or burst of errors (i.e., an“epidemic” in the population). The resulting channel,

which is fully described by only three parameters, has a stationary ergodicM th order Markov noise source and

admits single-letter analytical expressions for its blocktransition distribution and capacity. This model was adopted

in several source-channel and channel coding studies (e.g., [34]-[42]) where the channel statistics are incorporated

into the system design in order to exploit the noise memory.

The queue-based channel (QBC), recently introduced in [43], [44], [45], is a binary additive noise channel with

memory based on a finite queue. The QBC is a more general model than the FMCC as it subsumes the later as a

special case. It also features a stationary ergodicM th order Markov noise source and it is fully characterized by

four parameters (ǫ, α, p andM ), thus having one more degree of freedom than the FMCC (by setting α = 1, the

QBC reduces to the FMCC for the same bit error rate, correlation coefficient and memory order). It is important

to point out that Pimentel, Falk and Lisbôa recently showedin a numerical study [46] that the class of binary

channel models with additiveKth order Markov noise (to which the QBC belongs) is a good approximation, in

terms of the autocorrelation function (ACF) and variational distance, to the family of hard-decision frequency-

shift keying demodulated time-correlated flat Rayleigh andRician fading channels for a good range of fading

environments, particularly for medium and fast fading rates. Note however, that the generalKth order Markov noise

channels considered in [46] have a complexity (number of parameters) that grows exponentially withK, rendering

it impractical for the modeling of channels with large memory such as very slow Rayleigh fading channels (e.g.,

2In other words, the capacity of the “equivalent” memorylesschannel achieved by ideal interleaving (with infinite interleaving span) is

smaller than the capacity of the original channel (e.g., see[30]).
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see Fig. 2 or [46, Fig. 11]). The QBC model, on the other hand, does not suffer from this limitation as it has a

fixed number of parameters (four parameters) and it can accommodate very large values of the memoryM . Like

the FMMC, it enjoys a transparent formula for itsn-fold statistics and a closed form formula for its capacity,

which are appealing features as they provide powerful analytical tools for code design and system analysis. In a

recent related work [47], the problem of modeling the GEC using the QBC was investigated, and it was shown

(numerically) that the QBC provides a good approximation ofthe GEC for various channel conditions.

In this work, we investigate the problem of approximating the same class of Rician fading channels studied in [46]

via the QBC. Specifically, for a given hard-decision demodulated fading channel, we construct a QBC whose error

(i.e., noise) process is statistically as close as possibleto the error process generated by the fading channel. This is

achieved by selecting the QBC parameters that minimize the Kullback Leibler divergence rate between both noise

processes for identical bit error rates and correlation coefficients. Since the QBC model has a simple Markovian

structure and low complexity as it is fully described by onlyfour parameters (while still allowing for large memory

values), the optimization problem involves only two parameters and can be efficiently solved numerically. Modeling

results indicate that the QBC is a good fit for fading channelsas it accurately models (in terms of autocorrelation

function and capacity) their burst-error behaviour for a wide range of channel environments, including slow fading.

The QBC is thus an interesting alternative to existing models for channels with memory (such as HMMs) which

tend to be either too complex for tractable analysis and codedesign that exploits the channel’s memory, or too

limiting for realistic modeling.

The rest of this paper is organized as follows. Preliminaries on the GEC and QBC channel models are presented

in Section II. In Section III, we investigate the modeling ofthe Rician fading channels via the QBC. In Section IV,

we provide the numerical fitting results. For the sake of comparison, we also model the fading channels via the

GEC (which has the same number of parameters as the QBC) usingthe parameterization method of Pimentelet.

al. in [46]. The accuracy of both methods is evaluated in terms ofACF and capacity. In Section V, we conclude

with a summary along with several directions for future work.

II. T HE GEC AND QBC BINARY CHANNEL MODELS

Hereafter, a discrete-time binary additive noise communication channel refers to a channel with common input,

noise and output alphabetX = Z = Y = {0, 1}, described byYn = Xn⊕Zn, for n = 1, 2, 3, · · · , where⊕ denotes
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addition modulo 2, and whereXn, Zn, andYn denote, respectively, the channel’s input, noise, and output at time

n. Hence a transmission error occurs at timen wheneverZn = 1. It is assumed that the input and noise sequences

are independent of each other. In this work, a given noise process{Zn}∞n=1 will be generated according to one of

the GEC, the QBC and the discretized Rician fading channel.

A. Gilbert-Elliott Channel

The GEC model [12], [13], [30] is driven by an underlying stationary ergodic Markov chain{Sk} with two

states: a good state and a bad state, denoted byG (or state 0) andB (or state 1). In a fixed state, the channel

behaves like a binary symmetric channel (BSC). The GEC is thus a time-varying BSC, wherepG andpB are the

crossover probabilities in the good and bad states, respectively (the Gilbert channel (GC) [12] is obtained when

pG = 0; i.e., it behaves like a noiseless BSC in the good state). After every channel transmission, the chain makes

a state transition according to the transition probabilitymatrix

P
△
=







Pr{Sk = 0|Sk−1 = 0} Pr{Sk = 1|Sk−1 = 0}

Pr{Sk = 0|Sk−1 = 1} Pr{Sk = 1|Sk−1 = 1}






=







1 − b b

g 1 − g






,

where0 < b < 1 and0 < g < 1. A useful approach for calculating the probability of an error or noise sequence

for the GEC is discussed in [6]. The probability of a noise sequence of lengthn, zn = (z1, z2, · · · , zn), can be

expressed as

PGEC(z
n)

△
= PGEC{Zn = zn} = π

T

(

n
∏

k=1

P (zk)

)

1, (1)

where·T denotes transposition,P(zk) is a2×2 matrix whose(i, j)th entry is the probability that the output symbol

is zk when the chain makes a transition from stateSk−1 = i to Sk = j, i.e.,

P(0) =







(1 − b)(1 − pG) b(1 − pB)

g(1 − pG) (1 − g)(1 − pB)






, P(1) =







(1 − b)pG bpB

gpG (1 − g)pB






, (2)

1 is the 2-dimensional vector with all ones and the vectorπ indicates the stationary distribution vector of the

underlying Markov chain

π =







π0
△
=Pr{Sk = 0}

π1
△
=Pr{Sk = 1}






=







g
b+g

b
b+g






. (3)
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B. Queue-Based Channel with Memory

The additive noise process of the queue-based binary channel with memory [43], [44], [45] is generated according

to a sampling mechanism involving the following two parcels.

• Parcel 1 is a queue of lengthM that contains initiallyM balls, either red or black.

• Parcel 2 is an urn that contains a very large number of balls where the proportion of black balls is1− p and

the proportion of red balls isp, wherep ∈ (0, 1), p ≪ 1/2.

We assume that the probability of selecting parcel 1 (the queue) is ε, while the probability of selecting parcel

2 (the urn) is1 − ε and ε ∈ [0, 1). Notice that the channel is actually a BSC with crossover probability p when

ε = 0; in this case we experiment on the urn only.

The noise process{Zn}∞n=1 is generated according to the following procedure. By flipping a biased coin (with

Pr(Head)=ε), we select one of the two parcels (select the queue if Heads and the urn if Tails). If parcel 2 (the

urn) is selected, a pointer randomly points at a ball, and identifies its color. If parcel 1 (the queue) is selected, the

procedure is determined by the length of the queue. IfM ≥ 2, a pointer points at the ball in cellk with probability

1/(M−1+α), for k = 1, 2, · · · ,M−1 andα ≥ 0, and points at the ball in cellM with probabilityα/(M−1+α),

and identifies its color. IfM = 1, a pointer points at the ball in the only cell of the queue withprobability 1;

in this case we setα = 1. If the selected ball from either parcel is red (respectively black), we introduce a red

(respectively black) ball in cell1 of the queue, pushing the last ball in cellM out. The noise process{Zn}∞n=1 is

then modeled as follows:

Zn =











1, if the nth experiment points at a red ball,

0, if the nth experiment points at a black ball.

It can be shown that the resulting channel noise process{Zn}∞n=1 is a stationary ergodic (irreducible)M th order

Markov process. Moreover, various statistical and information theoretic quantities of the QBC, such as the channel

block transition probability, capacity and ACF, can be determined (in closed-form) in terms ofM , p, ε, andα [43],

[44], [45]. The expressions for these quantities are hereinsummarized.

Block Transition Probability: For a given input blockXn = (X1, · · · ,Xn) and a given output blockY n =

(Y1, · · · , Yn), wheren is the blocklength, the channel block transition probability is

P(M)
QBC {Y n = yn|Xn = xn} = P(M)

QBC {Zn = zn}△=P(M)
QBC (zn),
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wherezi = xi ⊕ yi, for i = 1, 2, · · · , n, and the noisen-fold distribution is as follows.

• For blocklengthn ≤ M ,

P(M)
QBC (zn) =

∏n−dn

1−1
j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]

∏dn

1−1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=M−n

[

1 − (α + j) ε
M−1+α

] , (4)

wheredb
a = zb + zb−1 + · · · + za (db

a = 0 if a > b), and
∏a

j=0(·)
△
=1 if a < 0.

• For blocklengthn ≥ M + 1,

P(M)
QBC (zn) = L(M)

n
∏

i=M+1

[

(

di−1
i−M+1 + αzi−M

) ε

M − 1 + α
+ (1 − ε)p

]zi

{

[(

M − 1 − di−1
i−M+1

)

+ α(1 − zi−M )
] ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

, (5)

where

L(M) =

∏M−1−dM

1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]

∏dM

1 −1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] .

Note that the channel’s bit error rate (BER) and noise correlation coefficient are given by

BERQBC = P(M)
QBC {Zi = 1} = P(M)

QBC {Z1 = 1} = p, (6)

and

CorQBC =
E[Z2Z1] − E[Z2]E[Z1]

Var[Z1]
=

ε
M−1+α

1 − M−2+α
M−1+α

ε
, (7)

respectively, whereE[·] denotes expectation, and Var[·] is the variance.

Autocorrelation Function (ACF): The ACF of a binary stationary process{Zn}∞n=1 is defined byR[m] =

E[ZiZi+m] = P(M)
QBC {Zi = 1, Zi+m = 1}. It can be shown that the ACF of the QBC satisfies the following.

RQBC[m] =







































p if m = 0;

ε

M−1+α
+(1−ε)p

1−M−2+α

M−1+α
ε

p if 1 ≤ m ≤ M − 1;

(1 − ε)p2 + ε
M−1+α

(

∑m−1
i=m−M+1 RQBC[i] + αRQBC[m − M ]

)

if m ≥ M .

(8)

Capacity: Since the QBC is a channel with stationary ergodic additive noise, it is information stable, and its

(operational) capacity,C(M)
QBC , is given by the familiar mutual information rate formula (e.g., [48]):

C
(M)
QBC = lim

n→∞
sup
Xn

1

n
I(Xn;Y n), (9)
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whereI(·; ·) denotes mutual information [49]. It can be shown that inputn-tuplesXn that are uniformly distributed

over {0, 1}n maximizeI(Xn;Y n); this yields the following expression forC(M)
QBC .

C
(M)
QBC = 1 −

M−1
∑

ω=0

(

M − 1

ω

)

L(M)
ω hb

[

ω
ε

M − 1 + α
+ (1 − ε)p

]

−
M
∑

ω=1

(

M − 1

ω − 1

)

L(M)
ω hb

[

(ω + α − 1)
ε

M − 1 + α
+ (1 − ε)p

]

, (10)

where

L(M)
ω =

∏M−1−ω
j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏ω−1

j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] ,

hb(x)
△
=−x log2 x− (1−x) log2(1−x) is the binary entropy function and

∏a
j=0(·)

△
=1 for a < 0. Finally, it should

be noted that the FMMC channel of [32] is a special case of the QBC: by settingα = 1, the QBC reduces to the

FMMC (for identical BER, Cor and memory). Hence, the QBC is a more flexible channel model than the FMMC

due to an additional degree of freedom.

III. F ITTING RICIAN FADING CHANNELS VIA THE QBC

We next consider the problem of fitting discretized Rayleighand Rician fading channels via the QBC model. For

the sake of comparison, we also model the fading channels viathe GEC (which has the same number of parameters

as the QBC) according to the parameterization method of Pimentel et. al. in [46]. The accuracy of both methods

is evaluated in terms of ACF and capacity.

A. Fading Channel Model

We consider a discrete (binary-input, binary-output) communication system, referred to as the discrete channel

with Clarke’s autocorrelation (DCCA) model, that employs binary frequency-shift keying (FSK) modulation, a

time-correlated Rician flat-fading channel, and a hard quantized noncoherent demodulation [46]. As in [6], [46],

[50], we consider non-coherent FSK modulation; however anyother modulation/demodulation scheme, for which

the expression of the probability of length-n error sequences is available (as in (11) below), can also be studied

by our model. The complex envelope of the received signal at the input to the demodulator is corrupted by a

multiplicative Rician fading and by an additive white Gaussian noise, i.e.,

R̃(t) =
√

2EsG̃(t)S̃(t) + Ñ(t),
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whereEs is the symbol energy.̃S(t) is the complex envelope of the symbol which can be expressed as S̃(t) =

∑∞
k=1 pak

(t − kT ), where the binary information bearing symbolsak are embedded in the signalspi(t), i = 0, 1,

which are equally probable orthogonal signals with unit energy. T is the symbol interval and̃N(t) is the complex

envelope of the white Gaussian noise with autocorrelation function given by1
2E[Ñ(t + τ)Ñ∗(t)] = N0δ(τ), where

N0 is the variance ofÑ(t) [7]. The complex envelope of the fading processG̃(t) = G̃I(t) + jG̃Q(t) is a complex,

wide sense stationary, Gaussian process with meanη, j =
√
−1, and the quadrature componentsG̃I(t) andG̃Q(t)

are mutually independent Gaussian processes with the same covariance function Cov(τ) which, adopting Clarke’s

fading model [51], [52], can be expressed as

Cov(τ) =
1

2
E
[

(G̃(t + τ) − η)(G̃∗(t) − η)
]

= σ2
gJ0(2πfDτ),

where

J0(x) =

∞
∑

k=0

(−1)k(
xk

2kk!
)2

is the zero-order Bessel function of the first kind,fD is the maximum Doppler frequency experienced by the moving

vehicle, andσ2
g is the variance of̃G(t). At each signaling interval of lengthT , the demodulator forms two decision

variables{0, 1} and decides which signal was more likely to have been transmitted. A general block diagram for

visualizing the behavior of such systems is given in Fig. 1.

The combination of digital modulator, fading channel, and digital demodulator yields the equivalent DCCA

model. The study and analysis of the statistical behavior ofthe DCCA model is important since the design and

construction of effective error control schemes for this simplified (binary-input, binary-output) model helps us better

exploit the system memory and achieve reliable communication over the underlying correlated fading channel.

The DCCA is represented as an additive noise channel with binary error process{Zn}∞n=1, where

Zn =











0 if the nth transmitted symbol is correctly received,

1 if the nth transmitted symbol is incorrectly received.

The probability of an error sequence of lengthn, zn = (z1, z2, · · · , zn), can be obtained directly from [46, Eq. (3)

with Ω = 1]:

PDCCA(z
n)

△
= Pr{Zn = zn}

=
1
∑

l1=z1

· · ·
1
∑

ln=zn

(

n
∏

k=1

(−1)lk+zk

lk + 1

)

×
exp{−Es

N0
KR1

T
F
(

(KR + 1)I + Es

N0
C̄F

)−1
1}

det(I + Es

N0
(1 + KR)−1C̄F )

, (11)
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whereF is a diagonal matrix defined as

F = diag

(

l1
l1 + 1

, · · · ,
ln

ln + 1

)

,

I is the identity matrix,KR = η/2σ2
g is the Rician factor, and̄C is the normalized covariance matrix with entries

C̄ij = (1/σ2
g)Cov(|i − j|) = J0(2πfDT |i − j|), 1 ≤ i, j ≤ n.

The QBC is next used to model the equivalent binary error sequence of the DCCA, which represents the successes

and failures that result from the transmission of symbols over the above fading channel.

B. Estimation of Channel Parameters

1) QBC Parameter Estimation: For a given DCCA, we construct a QBC whose noise or error process is

statistically “close” in the Kullback-Leibler sense to thenoise process generated by the DCCA. The Kullback-

Leibler distance or divergence is an approximation qualitymeasure widely used to determine the statistical closeness

between two sources (e.g., see [49], [6], [11]). Specifically, given a DCCA with fixed average signal-to-noise ratio

(SNR) Es/N0, normalized Doppler frequencyfDT and Rician factorKR resulting in bit error rate BERDCCA and

correlation coefficient CorDCCA, we estimate the QBC parametersM , p, ε, andα that minimize the Kullback-Leibler

divergence rate (KLDR),

lim
n→∞

1

n
Dn(PDCCA ‖ P(M)

QBC ),

subject to the constraints

BERQBC = BERDCCA and CorQBC = CorDCCA,

whereDn(PDCCA ‖ P(M)
QBC ) is the Kullback-Leibler divergence between then-fold DCCA and QBC noise distributions,

PDCCA and P(M)
QBC , respectively:

Dn(PDCCA ‖ P(M)
QBC ) =

∑

zn∈{0,1}n

PDCCA(z
n) log2

PDCCA(z
n)

P(M)
QBC (zn)

,

where P(M)
QBC is given in closed form by (4) and (5) and PDCCA is given by (11). Note that we focus on minimizing

the KLDR, which is an asymptotic quantity (as opposed to minimizing the normalized divergence(1/n)Dn(PDCCA ‖

P(M)
QBC ) for finite n), since it is vital to have identical statistical behavior on both channels for large blocklengths (as

large blocklengths are required to achieve reliable communication by the channel coding theorem [49]).
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It can be shown (e.g., see [53]) that the KLDR between the DCCAnoise process (which is stationary) and the

QBC noise process (which is Markovian) does exist and can be expressed as

lim
n→∞

1

n
Dn(PDCCA ‖ P(M)

QBC ) = −HDCCA(Z) − EPDCCA
[log2 P(M)

QBC (ZM+1|ZM )], (12)

whereH(Z)
△
= limn→∞(1/n)H(Zn) denotes the entropy rate [49],

EPDCCA
[log2 P(M)

QBC (ZM+1|ZM )]
△
=
∑

zM+1

PDCCA(z
M+1)[log2 P(M)

QBC (zM+1|zM )],

and P(M)
QBC (zM+1|zM ) is the QBC conditional error probability of symbolM+1 given the previousM symbols. Then

the above minimization reduces to maximizing the second term in (12) (which is independent ofn) over the QBC

parameters. Note that in our approximation, we match BER andCor of both channels to guarantee identical noise

marginal distributions and identical probabilities of twoconsecutive errors (ones). Hence, given these constraints,

the above optimization problem reduces to an optimization over only two QBC parameters:M and ε. This is

achieved numerically by sequentially incrementingM ≥ 1 and varying0.0001 ≤ ε ≤ 0.9999 for each givenM .

2) GEC Parameter Estimation: We next briefly describe the method of modeling the DCCA via the GEC

introduced by Pimentelet. al. in [46]. For a given DCCA, the parameterization of the GEC is based on the

following lemma.

Lemma 1: [46] The probability of any observed sequencezn generated by the GEC satisfies the following

recurrence equation:

PGEC(z
nςκ) = c(ς, κ)PGEC(z

nς) + d(ς, κ)PGEC(z
n), (13)

wherePGEC(z
nςκ)

△
= Pr{Z1 = z1, · · · , Zn = zn, Zn+1 = ς, Zn+2 = κ}, ς andκ are binary symbols,

c(0, 0) = (1 − pG)(1 − b) + (1 − pB)(1 − g), c(1, 1) = pG(1 − b) + pB(1 − g), (14)

d(0, 0) = −(1 − g − b)(1 − pG)(1 − pB), d(1, 1) = −(1 − g − b)pG)pB , (15)

c(1, 0) = 1 − c(1, 1), c(0, 1) = 1 − c(0, 0), d(0, 1) = −d(0, 0), andd(1, 0) = −d(1, 1).

Lemma 1 shows that the parametersc(ς, κ) andd(ς, κ) can be calculated via a linear system of equations. For

example, settingzn = φ, whereφ is an empty sequence, PGEC(φ) = 1, andzn = ς in (13), c(ς, κ) andd(ς, κ) can

be determined by the probabilities of error sequences of length at most 3:

c(ς, κ) =
PGEC(ςςκ) − PGEC(ςκ)PGEC(ς)

PGEC(ςς) − P2
GEC(ς)

, (16)



13

and

d(ς, κ) =
PGEC(ςκ)PGEC(ςς) − PGEC(ςςκ)PGEC(ς)

PGEC(ςς) − P2
GEC(ς)

. (17)

The GEC parameters follow by solving the nonlinear equations in (14)-(15) as follows.

Proposition 1: [46] If PGEC(01) 6= PGEC(0)PGEC(1), the parameters of the GEC are uniquely determined by the

four probabilities PGEC(0), PGEC(00), PGEC(000) and PGEC(111). The four parametersb, g, pG, andpB are given by

the following: pG andpB are the roots of the quadratic equation

[−1 + c(1, 1) + c(0, 0)]x2 + [1 − c(1, 1) − c(0, 0) + d(1, 1) − d(0, 0)]x − d(1, 1) = 0,

and

b =
c(0, 0)pB − c(1, 1)(1 − pB) + (pG − pB)

pG − pB

,

g =
c(0, 0)pG − c(1, 1)(1 − pG) + (pB − pG)

pB − pG

,

Hence, if PDCCA(0), PDCCA(00), PDCCA(000) and PDCCA(111) are known, where PDCCA(z
n) is the probability of error

sequences generated by the DCCA (see (11)), the parameters of the GEC can be obtained by (16), (17) and

Proposition 1 by setting PGEC(z
n) = PDCCA(z

n), n = 1, 2, 3.

IV. M ODELING RESULTS AND DISCUSSIONS

We evaluate how well the QBC model fits or approximates the DCCA according to two criteria: ACF and channel

capacity. The QBC ACF and capacity expressions are providedin Section II-B. The ACF of the DCCA can be

obtained directly from (11):

RDCCA[m] =
(1 + KR)2

(

2 + 2KR + Es

N0

)2
−
(

Es

N0
ρ(m)

)2 × exp

{

−
2KR

Es

N0

2 + 2KR + ES

N0

(

ρ(m) + 1
)

}

,

whereρ(m) = J0(2πmfDT ).

As in (9), the capacity of the DCCA is given by

CDCCA = lim
n→∞

sup
Xn

1

n
I(Xn;Y n) = 1 −HDCCA(Z).

The entropy rateHDCCA(Z) of the (stationary ergodic) DCCA error process is not known in closed form. However,

we can approximate it by calculating the normalized block noise entropy(1/n)H(Zn) for large values ofn and

thus obtain a lower bound onCDCCA, given by:

CDCCA ≥ CDCCA, n

△
=1 − 1

n
HDCCA(Z

n).
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In our calculations, we used values ofn as large as 21.

For the sake of comparison, we also present modeling resultsvia the GEC using the method of Pimentelet. al. in

[46] (which we briefly described in Section III-B.2). Note that in [46], the authors also employ arbitraryKth order

Markov noise models to approximate the fading channels. However, unlike our QBC model which has only four

parameters (as the GEC) and allows large values for its memory orderM (since its noise is a specially structured

M th order Markov process generated by our queue scheme), theKth order Markov models of [46] are unstructured

and hence suffer from the limitation of having a number of parameters that grows exponentially3 with K. Therefore,

with the exception of a brief comparison with the Markov model of [46] (see Fig. 2), we herein mainly compare

our QBC-based modeling method with the GEC-based modeling method of [46] since both channels have identical

number of parameters, hence identical degrees of freedom and complexity.

The capacity of the GEC is obtained via the algorithm in [30].The ACF of the GEC can also be obtained directly

from (1):

RGEC[m] = π
T
P (1)

(

m−1
∏

k=1

P

)

P (1)1, (18)

whereπ, P (1), andP are defined in Section II-A.

A wide range of DCCA channel parameters is investigated withSNR = 15 dB and 25 dB,fDT = 0.001, 0.005,

0.01 and 0.1 for Rayleigh fading (KR = −∞ dB), and SNR = 15 dB andfDT = 0.001, 0.005, 0.01 and 0.05 for

Rician fading (KR = 5 dB). The SNR,fDT andKR values (except forfDT = 0.005) were chosen to match the

conditions of the correlated Rician and Rayleigh fading channels studied in [46, Fig. 6, Fig. 7, Fig. 9 and Fig. 11].

The QBC and GEC parameters, obtained as explained in Sections III-B.1 and III-B.2, respectively, are provided in

Tables I-III.

A subset of the modeling results in terms of the ACF for the DCCA, its QBC approximation and its GEC

approximation is shown in Figs. 2-5 (the complete results are available in [45]). We observe a strong ACF agreement

between the QBC and the DCCA in these figures.4 This behavior is indeed observed for all computations, especially

for fDT = 0.1, where the ACF curves of the DCCA and its QBC approximation are identical [45]. For slow and

3As a result, only models with memory order up to 6 are studied in [46]. Such models are shown to approximate well channels with fast

and medium fading rates (fDT > 0.02); but they are inadequate for slow fading rates. As we later show in this section, the QBC model

can accommodate large values of the memory order; thus, it can provide a good approximation of channels with slow fading (fDT < 0.02)

in addition to medium and fast fading.
4Note that the ACF of the QBCRQBC[m] is equal to a constant form ≤ M − 1 as indicated by (8).
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medium fading (e.g., see Fig. 2, and [45]), the ACF curve for the GEC takes a longer span ofm before eventually

converging, which indicates that the GEC (as fitted in [46]) might not be adequate for modeling very slow Rayleigh

fading (fDT = 0.001) and very slow to medium Rician fading (fDT = 0.001, 0.005 and 0.01). We observe that

the QBC has a better performance than the Markov models in [46] (see Fig. 2), but with significantly smaller

complexity since it is fully described by four parameters and allows us closed-form expressions for various fading

characteristics. Compared with [46, Fig. 7.(a)], the QBC has similar performance as the Markov models of [46]

with order 4 or 5, but with smaller complexity.

Note that since the QBC noise is a homogeneous Markov process, the KLDR between the DCCA and the QBC

error processes exists and admits a simple expression givenby (12). Hence, it is practical to minimize this KLDR

by maximizing the expected value in (12) over the QBC parameters which is independent ofn (see Section III-B.1).

However, this approach is not easily applicable to the GEC since the KLDR between the DCCA and the GEC noise

processes does not admit a simple expression in general (as the GEC noise is hidden Markovian). The method of

parameterization of the GEC of Section III-B.2 is simple, but it only takes into account error sequences no longer

than 3, which implies that this method is not appropriate forapproximating slow fading.

Our results show that the largest Markovian memoryM for the QBC model that best fits the DCCA is 20,

while the largest Markovian memoryK for the (unstructured) Markov noise channel models considered in [46] is

6 (higher order unstructured models could not be obtained in[46] due to their prohibitive exponential complexity).

This explains why the QBC is more suitable for fitting slow fading with large memory than the Markov noise

model considered in [46].

Modeling results in terms of capacity are shown in Figs. 6-7,where the lower bound for the capacity of the

DCCA and the capacities of the QBC approximation and the GEC approximation are shown for different SNR

values andfDT values. We clearly observe from the figures that the capacitycurves of the QBC and the lower

bound curves for the capacity of the DCCA match quite well, and the capacities forfDT = 0.1 (fast Rayleigh

fading) are almost identical. The last observation can be explained by the fact that the DCCA has low memory at

fDT = 0.1 (fast fading); hence the lower bound for its capacity is tight (since (1/n)H(Zn) = H(Z1) if Zn is

memoryless). Overall, we observe a strong match in capacitybetween the DCCA and its QBC approximation. In

terms of capacity, the GEC has nearly as good a performance asthe QBC in fitting the DCCA.
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V. SUMMARY

In this work, we approximate hard-decision demodulated correlated Rician fading channels (represented by the

DCCA model) via the QBC model. Numerical results show a strong agreement between the ACF and capacity

curves of the QBC and the DCCA. This leads us to conclude that the QBC provides a very good approximation of

the DCCA under a variety of channel conditions. The QBC provides a much better performance in terms of ACF

for fitting the DCCA than the GEC and the Markov models of [46] for the range of slow and very slow fading.

An important feature of this queue-based channel model is that it is valuable for characterizing a wide class of

communication channels with memory, while remaining mathematically simple and flexible.

One possible direction for future work is the modeling and analysis of wired/wireless Internet traffic and channel

coding, as an extension and application of this work. Sanneck and Carle [54] used anM th order Markov chain

process to describe the dependencies between packet losses. However, their models have a complexity (number of

parameters) that grows exponentially withM , rendering it impractical for the modeling of packet loss processes

with large memory. The QBC model, on the other hand, does not suffer from this limitation as it is fully described

by only four parameters and allows single-letter analysis.The QBC can hence be employed to characterize the

packet-loss patterns introduced by the Internet, especially to capture loss burstiness and distances between loss

bursts. Another topic of future interest is the design, construction and analysis of channel codes for the QBC. One

important objective in this problem is the judicious designof the powerful channel codes in order to fully exploit

the channel memory. Some results in this direction involving low density parity check (LDPC) codes are reported

in [55].
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Model fDT

0.001 0.005 0.01 0.1

M = 20 M = 11 M = 7 M = 2

QBC ε = 0.8593 ε = 0.7602 ε = 0.6556 ε = 0.0893

p = 0.0297 p = 0.0297 p = 0.0297 p = 0.0297

α = 0.8959 α = 0.3828 α = 0.3387 α = 0.131

b = 0.0000339 b = 0.000841 b = 0.00329 b = 0.0324

GEC g = 0.000479 g = 0.0118 g = 0.045 g = 0.7466

pB = 0.3393 pB = 0.3393 pB = 0.3395 pB = 0.5199

pG = 0.00783 pG = 0.00766 pG = 0.00713 pG = 0.00849

TABLE I

QBC AND GECMODELING PARAMETERS FORKR = −∞ DB (RAYLEIGH ) AND SNR = 15DB.

Model fDT

0.001 0.005 0.01 0.1

M = 18 M = 6 M = 4 M = 2

QBC ε = 0.8506 ε = 0.6226 ε = 0.4666 ε = 0.0145

p = 0.00314 p = 0.00314 p = 0.00314 p = 0.00314

α = 0.2607 α = 0.2525 α = 0.2019 α = 0.1054

b = 0.0000333 b = 0.000773 b = 0.0025 b = 0.00103

GEC g = 0.00466 g = 0.1014 g = 0.2887 g = 0.8338

pB = 0.3339 pB = 0.334 pB = 0.3343 pB = 0.4523

pG = 0.000783 pG = 0.000622 pG = 0.000279 pG = 0.00259

TABLE II

QBC AND GECMODELING PARAMETERS FORKR = −∞ DB (RAYLEIGH ) AND SNR = 25DB.

Model fDT

0.001 0.005 0.01 0.05

M = 18 M = 17 M = 11 M = 3

QBC ε = 0.8195 ε = 0.8054 ε = 0.7219 ε = 0.3426

p = 0.00853 p = 0.00853 p = 0.00853 p = 0.00853

α = 0.9619 α = 0.3971 α = 0.3299 α = 0.3726

b = 0.00000259 b = 0.0000646 b = 0.000257 b = 0.00542

GEC g = 0.000139 g = 0.00347 g = 0.0137 g = 0.2533

pB = 0.3112 pB = 0.3113 pB = 0.3115 pB = 0.3185

pG = 0.00289 pG = 0.00288 pG = 0.00284 pG = 0.0019

TABLE III

QBC AND GEC MODELING PARAMETERS FORKR = 5 DB (RICIAN ) AND SNR = 15DB.
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Fig. 4. DCCA fitting via the QBC: ACF vsm for fDT = 0.001, SNR = 15 dB andKR = 5 dB (Rician).
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Fig. 5. DCCA fitting via the QBC: ACF vsm for fDT = 0.05, SNR = 15 dB andKR = 5 dB (Rician).
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Fig. 6. DCCA fitting via the QBC: Capacity (in bits/channel use) vs normalized Doppler frequencyfDT for Rayleigh fading.
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Fig. 7. DCCA fitting via the QBC: Capacity (in bits/channel use) vs normalized Doppler frequencyfDT for Rician fading.


