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Abstract

We study the problem of approximating the family of hardidien frequency-shift keying demodulated corre-
lated flat Rician fading channels via a recently introducedwe-based channel (QBC) model for binary communi-
cation channels with memory. For a given “discretized” fgdchannel, we construct a QBC whose noise process
is statistically “close” in the Kullback-Leibler sense toeterror or noise process generated by the fading channel
and the modeling accuracy is evaluated in terms of noisecautelation function (ACF) and channel capacity.
Numerical results indicate that the QBC provides a good @ppration of the fading channels for a wide range of
channel conditions. Furthermore, it estimates the nois€& Are accurately than the finite-state Markov models
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. INTRODUCTION

In recent years, there has been an increasing interestrisnitting voice, data, image and video signals over
wireless communication channels. However, wireless chlanmdergo a variety of time-varying signal impairments
caused by propagation loss, shadowing, multipath fadimgl, taermal noise. In particular, it is important to
understand the deleterious effects of fading on wirelemsstmission. A common feature of many fading channels
is that they cause symbol errors to occur in clusters or ®(ip§t

In the presence of error bursts, interleaving is usuallyiagpo destroy or mitigate the memory because most
coding systems and protocols are designed under the agsangftmemoryless error processes. With perfect
or ideal interleaving, it is possible to model the fading m@ls as memoryless channels. However, the use of
interleaving introduces extra delay and complexity, andegot interleavers do not exist in any practical system.
In real-time personal communication systems, data is mnéted in short blocks and fairly strict delay constraints
must be obeyed (e.g., see [3]). Non-interleaved or finiteri@aved packet transmission over fading channels has
received significant attention recently [4], [5].

Therefore, in this work we start with the premise that theeheimt memory of fading communication channels
cannot be neglected. Actually, an advantageous featureeafary is that the channel quality in the near future
can be forecast based on the knowledge of previous channditioms due to the statistical dependence of errors.
In order to obtain highly reliable data transmission ovearotels with memory, we should take advantage of the
channel memory by constructing effective error control ingdstrategies. For this reason, it is critical to fully
understand the error structure of such channels. This ieweth via channel modeling, where the main objective
is to provide a model whose properties are both complex e@maoglosely capture the real channel statistical
characteristics, and simple enough to allow mathemayidedictable system analysis. In this work, we employ a
binary additive channel model with memory based on a finiteuguthat reliably and tractably describes a family
of correlated fading channels.

During the past several decades, a variety of channel mbaels been proposed and studied for the modeling
of wireless fading channels (e.g., see [6], [7], [8] and thaeis therein). A finite-state Markov channel (FSMC) is
a discrete valued channel with a finite set of possible stakexse transition is governed by an underlying Markov

chain and with a probability assignment that is independdntime [9], [2], [10]. FSMCs have been widely



adopted for the description of the correlation structured success/failure processes of wireless channels with
bursty behavior [11] because they are efficient in quick $athens, system performance evaluations and protocol
investigations. Two of the earliest FSMC models for repnéisg the “discretized” version (under hard-decision
demodulation) of binary-input fading channels with memarg the Gilbert-Elliott channel (GEC) [12], [13] and
the Fritchman channel (FC) [14]. They were for example eygdioto model high-frequency channels [15], mobile
radio channels [16], [17], [18], low earth orbit satellitbamnels [19] and magnetic tape recorders [20]. The GEC
model also has been used to evaluate the performance ofgcadihdecoding schemes over bursty channels [21],
[22], [3].

Many FSMC models, including the above mentioned works, leaen proposed to fit realistic wireless channels.
In [23], Wang and Moayeri proposed an FSMC based on the ipaitig of the received signal-to-noise ratio
(SNR) into a finite number of states to model Rayleigh fadihgrmmels. The same approach was also presented
independently in [4] and used in [24], [25]. The model pragmbén [23] attracted much attention because it has a
good balance between accuracy and complexity. It was apaithe evaluation of system-related channel properties
(such as the correlation properties of the fading mobiléoratiannel) in [26], [27] by modeling the channel as a
first-order Markov process whose transition probabilitees a function of the channel characteristics. In [28], an
analytical model was used to evaluate the effect of mobilecity on the performance of a communication system
operating in a multi-path fading channel.

FSMCs are often generated via finite-state hidden Markoveiso(HMMs)! General HMMs were studied in
[29] to model flat fading channels. Due to their HMM structusach channels can be difficult to mathematically
analyze (e.g., they do not admit an exact closed-form expmedor their capacity and/or their block transition
distribution is not transparently expressed in terms of ¢hannel parameters), particularly when incorporated
within an overall source and/or channel coded system. Thig partly explain why to date, few coding techniques
that effectively exploit the noise memory have been sudogxonstructed for HMM-based channel models and
for channels with memory in general. Instead, most curreinéless communication systems are designed for
memoryless channels and employ channel interleaving inttempt to disperse the channel memory and make

the channel appear memoryless (even burst-error corgectdes such as Reed Solomon codes operating on a

A description of a large class of finite or infinite state HMMskd channel models is provided in [2].



HMM-based channel perform best when interleaving is usey, see [5]). However, in addition to the increased
complexity/delay caused by interleaving, the failure tpleit the channel's memory at the encoder and/or decoder
leads to a waste of channel capacity since it is well known mheamory increases capacity? for a wide class of
channels (the class of information stable channels [32])[3t is therefore vital to construct channel models which
can well represent the behavior of real-world channelsevtgimaining analytically tractable for design purposes.

In [32, Section VI], Alajaji and Fuja proposed a simple byadditive noise channel with memory, referred to as
the finite memory contagion channel (FMCC), where the noisegss is generated via a finite-memory version of
Polya’s urn scheme for the spread of a contagious diseasegih@a population [33]. In such a channel, every error
(or “infection”, if we use the contagion interpretation¥egftively increases the probability of future errors ([33]
and hence may lead to a clustering or burst of errors (i.egpitlemic” in the population). The resulting channel,
which is fully described by only three parameters, has aostaty ergodicMth order Markov noise source and
admits single-letter analytical expressions for its blaeksition distribution and capacity. This model was addpt
in several source-channel and channel coding studies [843-[42]) where the channel statistics are incorporated
into the system design in order to exploit the noise memory.

The queue-based channel (QBC), recently introduced in [438], [45], is a binary additive noise channel with
memory based on a finite queue. The QBC is a more general muateltihhe FMCC as it subsumes the later as a
special case. It also features a stationary ergddib order Markov noise source and it is fully characterized by
four parameterse( «, p and M), thus having one more degree of freedom than the FMCC (hinget = 1, the
QBC reduces to the FMCC for the same bit error rate, cormlatbefficient and memory order). It is important
to point out that Pimentel, Falk and Lisbba recently showeaé numerical study [46] that the class of binary
channel models with additivé&th order Markov noise (to which the QBC belongs) is a good axipration, in
terms of the autocorrelation function (ACF) and variatiodestance, to the family of hard-decision frequency-
shift keying demodulated time-correlated flat Rayleigh #&idian fading channels for a good range of fading
environments, particularly for medium and fast fading satéote however, that the genefgath order Markov noise
channels considered in [46] have a complexity (number cdipaters) that grows exponentially witti, rendering

it impractical for the modeling of channels with large megnsuch as very slow Rayleigh fading channels (e.g.,

%In other words, the capacity of the “equivalent” memorylebannel achieved by ideal interleaving (with infinite ildewing span) is

smaller than the capacity of the original channel (e.g.,[368.



see Fig. 2 or [46, Fig. 11]). The QBC model, on the other hamasdiot suffer from this limitation as it has a

fixed number of parameters (four parameters) and it can aooolate very large values of the memavy. Like

the FMMC, it enjoys a transparent formula for itsfold statistics and a closed form formula for its capacity,
which are appealing features as they provide powerful @igalytools for code design and system analysis. In a
recent related work [47], the problem of modeling the GEGhgghe QBC was investigated, and it was shown
(numerically) that the QBC provides a good approximatiorihef GEC for various channel conditions.

In this work, we investigate the problem of approximating #ame class of Rician fading channels studied in [46]
via the QBC. Specifically, for a given hard-decision dematkd fading channel, we construct a QBC whose error
(i.e., noise) process is statistically as close as possibilee error process generated by the fading channel. This is
achieved by selecting the QBC parameters that minimize thtb&ck Leibler divergence rate between both noise
processes for identical bit error rates and correlatiorfficients. Since the QBC model has a simple Markovian
structure and low complexity as it is fully described by ofdyr parameters (while still allowing for large memory
values), the optimization problem involves only two paréengand can be efficiently solved numerically. Modeling
results indicate that the QBC is a good fit for fading chanaslst accurately models (in terms of autocorrelation
function and capacity) their burst-error behaviour for aeviange of channel environments, including slow fading.
The QBC is thus an interesting alternative to existing medet channels with memory (such as HMMs) which
tend to be either too complex for tractable analysis and amsign that exploits the channel’s memory, or too
limiting for realistic modeling.

The rest of this paper is organized as follows. Prelimirsade the GEC and QBC channel models are presented
in Section Il. In Section lll, we investigate the modelingtbé Rician fading channels via the QBC. In Section IV,
we provide the numerical fitting results. For the sake of carnigon, we also model the fading channels via the
GEC (which has the same number of parameters as the QBC) tgngarameterization method of Pimengel
al. in [46]. The accuracy of both methods is evaluated in termA&@F and capacity. In Section V, we conclude

with a summary along with several directions for future work

Il. THE GECAND QBC BINARY CHANNEL MODELS

Hereafter, a discrete-time binary additive noise commatioa channel refers to a channel with common input,

noise and output alphab&t = Z = Y = {0, 1}, described by, = X,,® Z,,, forn = 1,2,3,-- -, where® denotes



addition modulo 2, and wher¥,, Z,,, andY,, denote, respectively, the channel’s input, noise, anduttptime
n. Hence a transmission error occurs at timavheneverZ, = 1. It is assumed that the input and noise sequences
are independent of each other. In this work, a given noiseqa®{Z,,}°° , will be generated according to one of

the GEC, the QBC and the discretized Rician fading channel.

A. Gilbert-Elliott Channel

The GEC model [12], [13], [30] is driven by an underlying siatry ergodic Markov chaif{ .Sy} with two
states: a good state and a bad state, denote@ lggr state 0) andB (or state 1). In a fixed state, the channel
behaves like a binary symmetric channel (BSC). The GEC is thtime-varying BSC, wherg; andpp are the
crossover probabilities in the good and bad states, rasphc{the Gilbert channel (GC) [12] is obtained when
pa = 0; i.e., it behaves like a noiseless BSC in the good stateprAgvery channel transmission, the chain makes
a state transition according to the transition probabitistrix

pL Pr{Sy =0|Sx—1 =0} Pr{Sk=1|Sx-1 =0} 1-b b
Pr{Sr =0|Sxk—1 =1} Pr{Sp =1|Sx_1 =1} g 1l—g
where0 < b < 1 and0 < g < 1. A useful approach for calculating the probability of anoeror noise sequence
for the GEC is discussed in [6]. The probability of a noiseusstce of lengthn, 2™ = (21,22, -+, 2,), Can be

expressed as

Poec(2") £ Paecl 2" = 2"} = o7 (f[ P(zk)> 1, )
k=1

where-T denotes transpositiol?(z;) is a2 x 2 matrix whoseg(4, j)th entry is the probability that the output symbol

is z; when the chain makes a transition from st&je; =i to S, = 7, i.e.,

P(0) = (1-0)(1—pc) b(1 —pp) Py = (1-"b)pc bpn | 2

g1-pc) (1-9)(1—pB) gpc (1 —9g)ps

1 is the 2-dimensional vector with all ones and the veetoindicates the stationary distribution vector of the

underlying Markov chain

A
7T0:P7° Sk =0 7L
7= ¢ . . 3)
WléPr{Sk =1} .



B. Queue-Based Channel with Memory

The additive noise process of the queue-based binary chaithanemory [43], [44], [45] is generated according

to a sampling mechanism involving the following two parcels

o Parced 1is a queue of lengtid/ that contains initiallyM balls, either red or black.
o Parcd 2 is an urn that contains a very large number of balls where tbhpgstion of black balls is — p and

the proportion of red balls ig, wherep € (0,1), p < 1/2.

We assume that the probability of selecting parcel 1 (theugyés e, while the probability of selecting parcel
2 (the urn) is1 — e ande € [0,1). Notice that the channel is actually a BSC with crossovebabdity p when
e = 0; in this case we experiment on the urn only.

The noise proces§Z, }52 , is generated according to the following procedure. By fligpa biased coin (with
Pr(Head)=), we select one of the two parcels (select the queue if Headstlee urn if Tails). If parcel 2 (the
urn) is selected, a pointer randomly points at a ball, andtities its color. If parcel 1 (the queue) is selected, the
procedure is determined by the length of the queud/ I 2, a pointer points at the ball in cell with probability
1/(M—1+a),fork=1,2,--- ,M—1anda > 0, and points at the ball in cell/ with probabilitya/(M —1+«),
and identifies its color. IfAf = 1, a pointer points at the ball in the only cell of the queue vptiobability 1;
in this case we set: = 1. If the selected ball from either parcel is red (respecyivdhck), we introduce a red
(respectively black) ball in cell of the queue, pushing the last ball in céll out. The noise processZ,, }52 , is
then modeled as follows:

1, if the nth experiment points at a red ball,

Iy =
0, if the nth experiment points at a black ball

It can be shown that the resulting channel noise pro¢£s3°>2 , is a stationary ergodic (irreducibl@yth order
Markov process. Moreover, various statistical and infdiomatheoretic quantities of the QBC, such as the channel
block transition probability, capacity and ACF, can be d®aiaed (in closed-form) in terms a¥/, p, €, anda [43],

[44], [45]. The expressions for these quantities are hesaimmarized.

Block Transition Probability: For a given input blockX™ = (X;,---,X,) and a given output block™ =

(Yy,---,Y,), wheren is the blocklength, the channel block transition probapit

Pa (¥ = 4 X" = o) = PRl (2" = ") 2P0 ("),



wherez; = x; @ y;, fori =1,2,--- ,n, and the noisex-fold distribution is as follows.

« For blocklengthn < M,
n—dy— . dy— .
P(M)( ") Hj:o ' [JM%HOC + (1 -9 —p)] Hj:Ol [Jm +(1—e)p @)
Qec \#) = _ ’ )
[0 30— |1~ (0 + ) 357

whered,, = z, + z_1 + -+~ + 24 (d = 0 if a > b), and][%_(-)21 if a < 0.

« For blocklengthn > M + 1,

n o e Zi
A0 = 200 T (@b + o) =+ 0 <)
i=M+1
1—Zi
i €
{[(M—l—di_}\ﬂ_l)+Oé(1—zi—M)]m+(1—5)(1—p)} ) (5)

where
M—1-dM . P
LM = 1= [jm +-9aa _p)} I;%o []ﬁm +(1— E)P]
I15" 1 - (o + ) aries

Note that the channel’s bit error rate (BER) and noise catiat coefficient are given by

BERgsc = P {Zi = 1} = P {21 = 1} = p, 6)
and
E[ZyZ1] — E[Z3|E[Z:] M-iia
C = = 7
N T2 e ®

respectively, wherd<[-] denotes expectation, and Yais the variance.

Autocorrelation Function (ACF): The ACF of a binary stationary proce§s,}5° , is defined byR[m| =

ElZiZiin] = Péﬁ@{zi =1,Z;+m = 1}. It can be shown that the ACF of the QBC satisfies the following.

P if m=0;

_ ———4(1—¢
Rogc[m] = M?—WI”(*‘" »
M—-1+4a«

(1 —e)p* + 3=1ra (Z?an_Mﬂ Rogcli] + aRgsc[m — M]) if m > M.

if1<m<M-—1; (8)

€

Capacity: Since the QBC is a channel with stationary ergodic additieesey it is information stable, and its

(operational) capacitﬁéﬁ@, is given by the familiar mutual information rate formulade [48]):

D = lim sup lI(X";Y“), 9)

n—oo xn M



where!(-;-) denotes mutual information [49]. It can be shown that inpaiiples X ™ that are uniformly distributed

over{0,1}" maximizeI(X™;Y™); this yields the following expression fc(ﬁ'éévé).

M-1
o = 1= (M) oy - o)

w=0 w M-1+4+a«a
M
M-1 c
- (M) N
where
con _ IS s + 0 =90 = p T (e + (1= 9]
) IG5 1= (e + /) 3]
hy(2)2 — 2 logy  — (1 — 2) log,(1 — 2 is the binary entropy function anﬂ?:o(')él for a < 0. Finally, it should

be noted that the FMMC channel of [32] is a special case of tBE€ by settinga = 1, the QBC reduces to the
FMMC (for identical BER, Cor and memory). Hence, the QBC is arenflexible channel model than the FMMC

due to an additional degree of freedom.

[1l. FITTING RICIAN FADING CHANNELS VIA THE QBC

We next consider the problem of fitting discretized Rayledgldl Rician fading channels via the QBC model. For
the sake of comparison, we also model the fading channelkh&i&EC (which has the same number of parameters
as the QBC) according to the parameterization method of ®tghet. al. in [46]. The accuracy of both methods

is evaluated in terms of ACF and capacity.

A. Fading Channel Model

We consider a discrete (binary-input, binary-output) camioation system, referred to as the discrete channel
with Clarke’s autocorrelation (DCCA) model, that employimary frequency-shift keying (FSK) modulation, a
time-correlated Rician flat-fading channel, and a hard tmed noncoherent demodulation [46]. As in [6], [46],
[50], we consider non-coherent FSK modulation; however atmer modulation/demodulation scheme, for which
the expression of the probability of lengtherror sequences is available (as in (11) below), can alsduukes
by our model. The complex envelope of the received signahatimput to the demodulator is corrupted by a

multiplicative Rician fading and by an additive white Gaassnoise, i.e.,

R(t) = \/2E,G(t)S(t) + N(t),
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where E; is the symbol energyS(t) is the complex envelope of the symbol which can be expresset{ta =
> req Pa,(t — KT'), where the binary information bearing symbals are embedded in the signalgt), i = 0, 1,
which are equally probable orthogonal signals with unitrgpnel” is the symbol interval andV (¢) is the complex
envelope of the white Gaussian noise with autocorrelatimetion given by%E[N(t-i-T)N*(t)] = Nod(7), where
Ny is the variance ofV (t) [7]. The complex envelope of the fading proc&sg) = G(t) + jGo(t) is a complex,
wide sense stationary, Gaussian process with megn= /—1, and the quadrature componenits(t) and G (t)
are mutually independent Gaussian processes with the savaeiance function Caw) which, adopting Clarke’s

fading model [51], [52], can be expressed as

Cou(r) = 5B [(G(t +7) ~ )G (1) — )] = o2 (2 for),

where
00 I'k
Jo(z) = Z(—l)k(m)2
k=0

is the zero-order Bessel function of the first kirf@, is the maximum Doppler frequency experienced by the moving
vehicle, andyg is the variance ofi(t). At each signaling interval of length, the demodulator forms two decision
variables{0, 1} and decides which signal was more likely to have been tratesiniA general block diagram for
visualizing the behavior of such systems is given in Fig. 1.

The combination of digital modulator, fading channel, angitdl demodulator yields the equivalent DCCA
model. The study and analysis of the statistical behaviathefDCCA model is important since the design and
construction of effective error control schemes for thmmified (binary-input, binary-output) model helps us bett
exploit the system memory and achieve reliable commuminativer the underlying correlated fading channel.

The DCCA is represented as an additive noise channel withrypierror proces$Z,, }°° ;, where

0 if the nth transmitted symbol is correctly received,

Zp =
1 if the nth transmitted symbol is incorrectly received.
The probability of an error sequence of lengthz" = (21, 22, -+ , z,,), can be obtained directly from [46, Eq. (3)
with Q = 1]:
Pocca(2") = Pr{Z" = 2"}

_ Z Z (H <—1>lk+2k> PR KR E(Kn+ DI+ RCF) 'Y

I +1 det(I + (14 Kr)~'CF)
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where F' is a diagonal matrix defined as

. ll ln
F_d'ag<ll+1”” ’ln+1>’

I is the identity matrix,Kg = 77/203 is the Rician factor, and is the normalized covariance matrix with entries

Cij = (1/a§)Cov(|z' — ) = Jo@rfpTli — j|), 1<i,j<n.

The QBC is next used to model the equivalent binary error secgiof the DCCA, which represents the successes

and failures that result from the transmission of symbolsrdkie above fading channel.

B. Estimation of Channel Parameters

1) QBC Parameter Estimation: For a given DCCA, we construct a QBC whose noise or error m®ods
statistically “close” in the Kullback-Leibler sense to theise process generated by the DCCA. The Kullback-
Leibler distance or divergence is an approximation quatigasure widely used to determine the statistical closeness
between two sources (e.g., see [49], [6], [11]). Specifjcgliiven a DCCA with fixed average signal-to-noise ratio
(SNR) E; /Ny, normalized Doppler frequencfpT and Rician factorK i resulting in bit error rate BERc, and
correlation coefficient Cggc., we estimate the QBC parametérs p, €, anda that minimize the Kullback-Leibler
divergence rate (KLDR),

1
lim — Dy, (Pocea || P2,

n—oo N
subject to the constraints
BERQBC = BERDCCA and COBBC = CorDCCA7

whereD,, (Pocea || PQ]EYé ) is the Kullback-Leibler divergence between thidold DCCA and QBC noise distributions,

Pocca and Fg:?, respectively:

Pocea(2"
D, (Pocea H PQ]BV(I:)) = Z PDCCA ") log, %()’
znef0,1}n Poac (2)

where Fg]gé) is given in closed form by (4) and (5) andg, is given by (11). Note that we focus on minimizing
the KLDR, which is an asymptotic quantity (as opposed to mining the normalized divergence/n)D,, (Pocca ||
éBC)) for finite n), since it is vital to have identical statistical behavior lmoth channels for large blocklengths (as

large blocklengths are required to achieve reliable comeation by the channel coding theorem [49]).
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It can be shown (e.g., see [53]) that the KLDR between the D@GKe process (which is stationary) and the

QBC noise process (which is Markovian) does exist and carnxpeessed as
.1 M M
Jim —~ Dy, (Poces | Pose)) = —Hocea(Z) — Ep,__, logy PSeC (Zar1|12M)), (12)
WhereH(Z)élimn_,oo(l/n)H(Z”) denotes the entropy rate [49],

A
EPDCCA[Ing P((JJBV?(ZMH’ZM)]: Z Pocea(" 1) log, Pé]é/é)(ZMJrl‘ZM)]a

ZM+1

and FéJBVQ(zMJrﬂzM) is the QBC conditional error probability of symbdl +1 given the previousg/ symbols. Then
the above minimization reduces to maximizing the secom far(12) (which is independent af) over the QBC
parameters. Note that in our approximation, we match BERGuidof both channels to guarantee identical noise
marginal distributions and identical probabilities of twonsecutive errors (ones). Hence, given these constraints
the above optimization problem reduces to an optimizatieer @nly two QBC parameterst/ ande. This is
achieved numerically by sequentially incrementiig> 1 and varying0.0001 < e < 0.9999 for each giveni/.

2) GEC Parameter Estimation: We next briefly describe the method of modeling the DCCA via GBEC
introduced by Pimenteét. al. in [46]. For a given DCCA, the parameterization of the GEC &sdd on the

following lemma.
Lemma 1: [46] The probability of any observed sequence generated by the GEC satisfies the following

recurrence equation:

PGEC(anﬁ) = C(% H)PGEC(an) + d(% H)PGEC(Zn)a (13)

WherePGEC(zngm)é Pr{Zi =21, ,Zn = 2n, Zn+1 =, Znt+2 = K}, ¢ andk are binary symbols,
C(Ov 0) = (1 —pg)(l - b) + (1 - pB)(l - g)v C(lv 1) = pG(l - b) +pB(1 - 9)7 (14)
d(0,0) = —(1 —g = b)(1 —pg)(1 = pp), d(1,1) = —(1 —g—b)pc)ps, (15)

¢(1,0) =1 —¢(1,1), ¢(0,1) = 1 — ¢(0,0), d(0,1) = —d(0,0), andd(1,0) = —d(1,1).
Lemma 1 shows that the paramete(s, <) andd(s, x) can be calculated via a linear system of equations. For
example, setting™ = ¢, where¢ is an empty sequencegR(¢) = 1, andz" =< in (13), ¢(s, k) andd(s, k) can
be determined by the probabilities of error sequences aftteat most 3:

PGEC(CCK) - PGEC(gK/) PGEC(g)

Poec(ss) — F%Ec(g) ’ (16)

c(s, k) =



13

and

- PGEc(gﬁ)PGEC(gg) - PGEC(§§"€)PGEC(§)
T T ) P 4

The GEC parameters follow by solving the nonlinear equation(14)-(15) as follows.
Proposition 1: [46] If Peec(01) # Peec(0)Peec(1), the parameters of the GEC are uniquely determined by the
four probabilities Rec(0), Psec(00), Psec(000) and Rec(111). The four parameters, g, pg, andpp are given by

the following: p andpg are the roots of the quadratic equation
[—1 4 ¢(1,1) 4 ¢(0,0)]a + [1 — ¢(1,1) — ¢(0,0) + d(1,1) — d(0,0)]z — d(1,1) = 0,

and

b= 0(07 0)pB - C(l7 1)(1 - pB) + (pG - pB)

bG — PB

g = c(0,0)pg — c(1,1)(1 — pe) + (pB — PG)
PB — PG
Hence, if Reca(0), Pocca(00), Pocca(000) and Reca(111) are known, where Rca(2™) is the probability of error

)

sequences generated by the DCCA (see (11)), the paramdt¢he GEC can be obtained by (16), (17) and

Proposition 1 by setting &2.(z") = Pocca(2™), n = 1,2, 3.

IV. MODELING RESULTS AND DISCUSSIONS

We evaluate how well the QBC model fits or approximates the RB@€cording to two criteria: ACF and channel
capacity. The QBC ACF and capacity expressions are proviesection [I-B. The ACF of the DCCA can be

obtained directly from (11):

1+ Kg)? 2K p L
Rocealm] = ( 23) 7 X XD {_2 2K Es]\(fo( )+1) [
(2+2KR+ &) — (Folm) +2Kp + 55 (p(m) +

wherep(m) = Jo(2rmfpT).

As in (9), the capacity of the DCCA is given by

: 1 n n
Cheea = lim sup —I(X™; V") =1 — Hpcea(Z).-

n—oo xn N
The entropy raté{cca(Z) of the (stationary ergodic) DCCA error process is not knowlosed form. However,
we can approximate it by calculating the normalized blocls@e@ntropy(1/n)H (Z") for large values of. and

thus obtain a lower bound ofiycc, given by:

A 1
CDCCA > CDCCA, n:1 - EHDCCA(ZH)'
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In our calculations, we used values iofas large as 21.

For the sake of comparison, we also present modeling regalthe GEC using the method of Pimengelal. in
[46] (which we briefly described in Section I11-B.2). Noteathin [46], the authors also employ arbitraf§th order
Markov noise models to approximate the fading channels. é¥ew unlike our QBC model which has only four
parameters (as the GEC) and allows large values for its meproer M (since its noise is a specially structured
Mth order Markov process generated by our queue schemely ttherder Markov models of [46] are unstructured
and hence suffer from the limitation of having a number obpagters that grows exponentidliyith &. Therefore,
with the exception of a brief comparison with the Markov mioo[46] (see Fig. 2), we herein mainly compare
our QBC-based modeling method with the GEC-based modeletpod of [46] since both channels have identical
number of parameters, hence identical degrees of freedoht@mplexity.

The capacity of the GEC is obtained via the algorithm in [J0je ACF of the GEC can also be obtained directly

from (1):

m—1
Reecm] = 7' P(1) (H P) P(1)1, (18)
k=1

wheren, P(1), and P are defined in Section II-A.

A wide range of DCCA channel parameters is investigated &R = 15 dB and 25 dBfpT = 0.001, 0.005,
0.01 and 0.1 for Rayleigh fading<(r = —oco dB), and SNR = 15 dB andp7 = 0.001, 0.005, 0.01 and 0.05 for
Rician fading gz = 5 dB). The SNR,fpT and K values (except foifpT' = 0.005) were chosen to match the
conditions of the correlated Rician and Rayleigh fadingneteds studied in [46, Fig. 6, Fig. 7, Fig. 9 and Fig. 11].
The QBC and GEC parameters, obtained as explained in Sedtle®.1 and 11I-B.2, respectively, are provided in
Tables I-111.

A subset of the modeling results in terms of the ACF for the BC@s QBC approximation and its GEC
approximation is shown in Figs. 2-5 (the complete resuksaamilable in [45]). We observe a strong ACF agreement
between the QBC and the DCCA in these figut@his behavior is indeed observed for all computations, espig

for fpT = 0.1, where the ACF curves of the DCCA and its QBC approximatianidentical [45]. For slow and

3As a result, only models with memory order up to 6 are studieffl6]. Such models are shown to approximate well channetlls faist
and medium fading ratesf6T > 0.02); but they are inadequate for slow fading rates. As we latemwsin this section, the QBC model
can accommodate large values of the memory order; thusnipravide a good approximation of channels with slow fadifig{’ < 0.02)

in addition to medium and fast fading.
“Note that the ACF of the QBQRqsc[m] is equal to a constant fon, < M — 1 as indicated by (8).
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medium fading (e.g., see Fig. 2, and [45]), the ACF curve lier GEC takes a longer span f before eventually
converging, which indicates that the GEC (as fitted in [46ijlmhnot be adequate for modeling very slow Rayleigh
fading (fpT = 0.001) and very slow to medium Rician fading47" = 0.001, 0.005 and 0.01). We observe that
the QBC has a better performance than the Markov models ih (Bt& Fig. 2), but with significantly smaller
complexity since it is fully described by four parametersl atlows us closed-form expressions for various fading
characteristics. Compared with [46, Fig. 7.(a)], the QBG bemilar performance as the Markov models of [46]
with order 4 or 5, but with smaller complexity.

Note that since the QBC noise is a homogeneous Markov protes&LDR between the DCCA and the QBC
error processes exists and admits a simple expression gwét2). Hence, it is practical to minimize this KLDR
by maximizing the expected value in (12) over the QBC paramsathich is independent af (see Section IlI-B.1).
However, this approach is not easily applicable to the GEBECesthe KLDR between the DCCA and the GEC noise
processes does not admit a simple expression in generdlgaSEC noise is hidden Markovian). The method of
parameterization of the GEC of Section I1I-B.2 is simplet ibwonly takes into account error sequences no longer
than 3, which implies that this method is not appropriatedpproximating slow fading.

Our results show that the largest Markovian mema#yfor the QBC model that best fits the DCCA is 20,
while the largest Markovian memork for the (unstructured) Markov noise channel models comsitin [46] is
6 (higher order unstructured models could not be obtaindd8hdue to their prohibitive exponential complexity).
This explains why the QBC is more suitable for fitting slow ifeg with large memory than the Markov noise
model considered in [46].

Modeling results in terms of capacity are shown in Figs. @vliere the lower bound for the capacity of the
DCCA and the capacities of the QBC approximation and the GR@aximation are shown for different SNR
values andfpT" values. We clearly observe from the figures that the capacityes of the QBC and the lower
bound curves for the capacity of the DCCA match quite weld #me capacities fofp7T = 0.1 (fast Rayleigh
fading) are almost identical. The last observation can lpa@xed by the fact that the DCCA has low memory at
fpT = 0.1 (fast fading); hence the lower bound for its capacity is ti¢dince (1/n)H(Z™) = H(Z,) if Z" is
memoryless). Overall, we observe a strong match in capaeityyeen the DCCA and its QBC approximation. In

terms of capacity, the GEC has nearly as good a performanteed@BC in fitting the DCCA.
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V. SUMMARY

In this work, we approximate hard-decision demodulatedetated Rician fading channels (represented by the
DCCA model) via the QBC model. Numerical results show a gfragreement between the ACF and capacity
curves of the QBC and the DCCA. This leads us to conclude H@a@QBC provides a very good approximation of
the DCCA under a variety of channel conditions. The QBC piesia much better performance in terms of ACF
for fitting the DCCA than the GEC and the Markov models of [46t the range of slow and very slow fading.
An important feature of this queue-based channel modelds ithis valuable for characterizing a wide class of
communication channels with memory, while remaining mathtcally simple and flexible.

One possible direction for future work is the modeling andlgsis of wired/wireless Internet traffic and channel
coding, as an extension and application of this work. Sanmaac Carle [54] used an/th order Markov chain
process to describe the dependencies between packet. Iblssesver, their models have a complexity (number of
parameters) that grows exponentially withi, rendering it impractical for the modeling of packet lossqasses
with large memory. The QBC model, on the other hand, doesuftérsfrom this limitation as it is fully described
by only four parameters and allows single-letter analySlsee QBC can hence be employed to characterize the
packet-loss patterns introduced by the Internet, espgd@lcapture loss burstiness and distances between loss
bursts. Another topic of future interest is the design, tmesion and analysis of channel codes for the QBC. One
important objective in this problem is the judicious desafrthe powerful channel codes in order to fully exploit
the channel memory. Some results in this direction invgMow density parity check (LDPC) codes are reported
in [55].
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QBCAND GECMODELING PARAMETERS FORKr = —oo DB (RAYLEIGH) AND SNR = 15DB.

Model foT
0.001 0.005 0.01 0.1
M =20 M =11 M=7 M =2
QBC | € =0.8593 e = 0.7602 e = 0.6556 e = 0.0893
p = 0.0297 p = 0.0297 p = 0.0297 p = 0.0297
a = 0.8959 a = 0.3828 a = 0.3387 a=0.131
= 0.0000339 | b= 0.000841 b =0.00329 b =0.0324
GEC | g =0.000479 g =0.0118 g = 0.045 g = 0.7466
ps = 0.3393 pp = 0.3393 pB = 0.3395 ps = 0.5199
pe = 0.00783 | pg = 0.00766 | pg = 0.00713 | pg = 0.00849
TABLE |

QBCAND GECMODELING PARAMETERS FORKr = —oo DB (RAYLEIGH) AND SNR = 25DB.

Model foT
0.001 0.005 0.01 0.1
M =18 M =6 M =4 M=2
QBC | € =0.8506 e = 0.6226 e = 0.4666 e = 0.0145
p = 0.00314 p = 0.00314 p = 0.00314 p = 0.00314
a = 0.2607 a = 0.2525 a = 0.2019 a = 0.1054
b =0.0000333 | b =0.000773 b = 0.0025 b =0.00103
GEC | g = 0.00466 g =0.1014 g = 0.2887 g = 0.8338
pp = 0.3339 pp = 0.334 pp = 0.3343 pp = 0.4523
pa = 0.000783 | pe = 0.000622 | pg = 0.000279 | pe = 0.00259
TABLE I

QBCAND GECMODELING PARAMETERS FORKr = 5 DB (RICIAN) AND SNR = 15DB.

Model foT
0.001 0.005 0.01 0.05
M =18 M =17 M =11 M =3
QBC | ¢ =0.8195 e = 0.8054 e =0.7219 e = 0.3426
p = 0.00853 p = 0.00853 p=0.00853 | p=0.00853
o = 0.9619 o =0.3971 o = 0.3299 o =0.3726
b =0.00000259 || b= 0.0000646 | b= 0.000257 | b= 0.00542
GEC | g =0.000139 g = 0.00347 g = 0.0137 g = 0.2533
pp = 0.3112 pp = 0.3113 pp = 0.3115 | pp =0.3185
pa = 0.00289 pa = 0.00288 | pe = 0.00284 | pe = 0.0019
TABLE Il
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Fig. 2. DCCA fitting via the QBC: ACF vsn for fpT = 0.001, SNR = 15 dB andKr = —oco dB (Rayleigh).
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Fig. 3. DCCA fitting via the QBC: ACF vsn for fpT = 0.01, SNR = 15 dB andKr = —co dB (Rayleigh).
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Fig. 4. DCCA fitting via the QBC: ACF vsn for fpT = 0.001, SNR = 15 dB andX'rz = 5 dB (Rician).
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Fig. 5. DCCA fitting via the QBC: ACF van for fpT = 0.05, SNR = 15 dB andXr = 5 dB (Rician).
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Fig. 6. DCCA fitting via the QBC: Capacity (in bits/channekelvs normalized Doppler frequengip T for Rayleigh fading.
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Fig. 7. DCCA fitting via the QBC: Capacity (in bits/channekelvs normalized Doppler frequengipT' for Rician fading.



