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Abstract

Consider transmitting two discrete memoryless correlated sources, consisting of a common and a pri-
vate source, over a discrete memoryless multi-terminal channel with two transmitters and two receivers.
At the transmitter side, the common source is observed by both encoders but the private source can
only be accessed by one encoder. At the receiver side, both decoders need to reconstruct the common
source, but only one decoder needs to reconstruct the private source. We hence refer to this system
by the asymmetric 2-user source-channel system. In this work, we derive a universally achievable joint
source-channel coding (JSCC) error exponent pair for the 2-user system by using a technique which
generalizes Csiszér’s method [8] for the point-to-point (single-user) discrete memoryless source-channel
system. We next investigate the largest convergence rate of asymptotic exponential decay of the system
(overall) probability of erroneous transmission, i.e., the system JSCC error exponent. We obtain lower
and upper bounds for the exponent. As a consequence, we establish the JSCC theorem with single letter
characterization.

Index Terms: discrete memoryless correlated sources, broadcast channel, multiple access channel, common
and private message, joint source-channel coding, error exponent, type packing lemma.
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1 Introduction

Recently, the study of the error exponent (reliability function) for point-to-point (single-user) source-
channel systems (with or without memory) has illustrated substantial superiority of joint source-channel
coding (JSCC) over the traditional tandem coding (i.e., separate source and channel coding) approach (e.g.,
[8], [23], [24]). Tt is of natural interest to study the JSCC error exponent for multi-terminal source-channel
Systems.

In this work we address the asymmetric 2-user source-channel system depicted in Fig. 1. Two discrete
memoryless correlated source messages (s,1) € 8™ x L™ drawn from a joint distribution Qgz : S x L,
consisting of a common source messages s and a private source message 1 of length 7n, are transmitted over
a discrete memoryless asymmetric communication channel described by Wy zipx : U x X — Y x Z with
block codes of length n, where 7 > 0 (measured in source symbol/channel use) is the overall transmission
rate. The common source can be accessed by both encoders, but the private source can only be observed by
one encoder (say, Encoder 1). In this set-up, the goal is to send the common information to both receivers,
and send the private information to only one receiver (say, Decoder 1).

It is worthy to point out that the asymmetric 2-user system can be specialized to the following two

classical asymmetric multi-terminal scenarios.

(i) The CS-AMAC system: If we remove Decoder 2 from Fig. 1, and let |Z] = 1, then the channel
reduces to a multiple-access channel Wy ;yx, and the coding problem reduces to transmitting two

correlated sources (CS) over an asymmetric multiple-access channel (AMAC) with one receiver.

(ii) The CS-ABC system: If we remove Encoder 2 from Fig. 1, and let [¢/| = 1, then the channel reduces
to a broadcast channel Wy z x, and the coding problem reduces to transmitting two CS over an

asymmetric broadcast channel (ABC) with one transmitter.

The sufficient and necessary condition for the reliable transmission of CS over the AMAC — i.e., the
JSCC theorem for the CS-AMAC system — has been derived with single letter characterization in [4]. The
capacity region of the ABC has been determined in [19], and the JSCC theorem for CS-ABC system with
arbitrary transmission rate can also be analogously carried out (e.g., [16]). In this work, we study a refined
version of the JSCC theorem for the general asymmetric 2-user system (depicted in Fig. 1), by investigating
the achievable JSCC error exponent pair (for two receivers) as well as the system JSCC error exponent,
i.e., the largest convergence rate of asymptotic exponential decay of the system (overall) probability of
erroneous transmission. We also apply our results to the CS-AMAC and CS-ABC systems.

We outline our results as follows. We first extend Csiszér’s type packing lemma [8] from a single-letter
(1-dimension) type setting to a joint (2-dimensional) type setting. By employing the joint type packing

lemma and generalized maximum mutual information (MMI) decoders, we establish achievable exponential



upper bounds for the probabilities of erroneous transmission over an augmented 2-user channel Wy z 7y x
for a given triple of n-length sequences (t,u, x); see Theorem 1. Here, the augmented channel Wy z 7y x
is induced from the original 2-user channel Wy z;7x by adding an auxiliary random variable (RV) T such
that T, (UX), and (Y Z), form a Markov chain in this order. We introduce the RV T because we will
employ superposition encoding which maps a source message pair (s,1) to a codeword triplet (t,u,x),
where t is the the auxiliary superposition codeword. For the asymmetric 2-user system, since one of the
encoders has full access to both sources, it knows the output of the other. By properly designing the two
(superposition) encoders, we apply Theorem 1 to establish a universally achievable error exponent pair for
the two receivers (namely, the pair of exponents can be achieved by a sequence of source-channel codes
independent of the statistics of the source and the channel); this generalizes Korner and Sgarro’s exponent
pair for ABC coding (with uniform message sets) [20]. We also employ Theorem 1 to establish a lower
bound for the system JSCC error exponent; see Theorem 2. Note that one consequence of our results is a
sufficient condition (forward part) for the JSCC theorem. In addition, we use Fano’s inequality to prove
a necessary condition (converse part) which coincides with the sufficient condition, and hence completes
the JSCC theorem (Theorem 3). Using an approach analogous to [8], we also obtain an upper bound
for the system JSCC error exponent (Theorem 4). As applications, we then specialize these results to
the CS-AMAC and CS-ABC systems. The computation of the lower and upper bounds for the system
JSCC error exponent is partially studied for the CS-AMAC system when the channel admits a symmetric
conditional distribution.

At this point we pause to mention some related works in the literature on the multi-terminal JSCC
of CS. The JSCC theorem for transmitting two CS over a (symmetric) multiple access channel (each
encoder can only access one source) has been studied in [1, 7, 13, 17, 18, 22], and the JSCC theorem for
transmitting two CS over a (symmetric) broadcast channel (each decoder needs to reconstruct one source)
has been addressed in [5, 16]. These works focus on the case when the overall transmission rate 7 is 1 and
establish some sufficient and /or necessary conditions for which the sources can be reliably transmitted over
the channel. However, for both (symmetric) systems, no matter whether the transmission rate 7 is 1 or
not, the tight sufficient and necessary condition (JSCC theorem) with single-letter characterization is still
unknown.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and some basic
facts regarding the method of types. A generalized joint type packing lemma is presented in Section 3.
In Section 4 we establish a universally achievable error exponent pair for the 2-user system, as well as
a lower and an upper bound for the system JSCC error exponent. A JSCC theorem with single-letter
characterization is given. In Section 5, we apply our results for the CS-AMAC and CS-ABC systems.
Finally, we partially address the computation for the bounds for the system JSCC error exponent in

Section 6.



2 Preliminaries

The following notations and conventions are adopted from [8, 11]. For any finite set (or alphabet) X, the
size of X' is denoted by |X|. The set of all probability distributions on X is denoted by P(X). The type
of an n-length sequence x £ (x1,x2, - ,o,) € X" is the empirical probability distribution Py € P(X)
defined by

Py(a) 2 %N(a\x), a€X,

where N (a|x) is the number of occurrences of a in x. Let P, (X) C P(X) be the collection of all types of
sequences in A™. For any Px € P,(X), the set of all x € X™ with type Px is denoted by Tp,, or simply
by Tx if Px is understood. We also call Tp, or Tx a type class.

Similarly, the joint type of n-length sequences x € X™ and y = (y1,¥2,--- ,¥n) € V" is the empirical
joint probability distribution Pyy € P(X x )) defined by

1
Pyy(a,b) = EN(CL,MX,}’), (a,b) € X x Y.

Let Pp(X x V) C P,(X x )) be the collection of all joint types of sequences in X™ x Y™. The set of all
x € X" and y € V" with joint type Pxy € Pp(X x V) is denoted by Tp,, , or simply by Txy.

For any finite sets X and ), the set of all conditional distributions Vyx : X — } is denoted by
P(Y|X). The conditional type of y € Y™ given x € Tp,, is the empirical conditional probability distribution

Pyx € P(Y|X) defined by

N(a,blx,y)
N(afx)

Let P, (Y|Px) be the collection of all conditional distributions Vyx which are conditional types of y € J"

Pyx(bla) = (a,b) € X x ).

given an x € Tp,. For any conditional type Vy|x € P,(Y|Px), the set of all y € )" for a given x € Tp,
satisfying Py|x = Vy|x is denoted by Ty, ,(x), or simply by Ty x(x), which is also called a conditional
type class (V-shell) with respect to x.

For finite sets X', ), Z with joint distribution Pxyz € P(X x ) x Z), we use Py, Pxy, Py z1x, etc, to
denote the corresponding marginal and conditional probabilities induced by Pxyz. Conversely, Px Py 7| x
denotes a joint distribution on X x Y x Z with marginal distribution Px and conditional distribution
Py z/x. Note that for a given joint type Pxy € Pn(X x Y), Tpy(x) = {y : (x,y) € Tpy, }. Note also
that

{PXVy|X 1 Px € Pp(X), Wy x € Pu(Y|Px)} = Po(X x D).

In addition, we denote

PaYX) 2 | Pu(VIPx) S POIX).

PxePp(X)
To distinguish different distributions (or types) defined on the same alphabet, we use sub-subscript, say, 4, j,

in Px,, Px,y;, Tx,y;, and so on. For example, Ty,y; is the type class of the joint type Px,y, € Pp(X x ).
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For any distribution Pxyz € P(X x Y x Z), we use Hp,,,(-) and Ip,,,(-;-) to denote the entropy
and mutual information under Pxy z, respectively, or simply by H(-) and I(+;-) if Pxyz is understood.
D(Px || Qx) denotes the Kullback-Leibler divergence between distributions Px,Qx € P(X). D(Vy|x ||
Wy x|Px) denotes the Kullback-Leibler divergence between stochastic matrices (conditional distributions)
Vyix, Wy|x € P(Y|X) conditional on distribution Px € P(X). For x € X",y € Y" and z € Z", since the
types Py, Pxy and Pxy, can also be represented as distributions of dummy RV’s, we define the empirical
entropy and mutual information by H(x) £ Hp, (X), I(x;y) £ Ip,(X;Y) and I(x;y|z) £ Ip,,(X;Y|Z).
Given distributions Py € P(X) and Wy |x € P(Y|X), let P)((n) and WX(,T;( be their n-dimension product
distributions. All logarithms and exponentials throughout this paper are in base 2. The following facts

will be widely used throughout this paper.

Lemma 1 [11]
(@) [Pu(O)] < (0 + DI, [Pu(D1X)] < (n + 1P,
(ii) For any Px,Qx € Pp(X), we have
(n+ 1)—|X|2nHPX(X) <|Tpy| < onHry (X)),

and
(n + 1)—\X\2—"D(PX||QX) < Qg?) (Tpy) < 9—nD(Px|Qx)
(iii) For any x € Tpy, y € Ty (%) and Wy x, Vy|x € Pp(V|Px), we have

(n+ 1)_|X||y|2nHPXVY\X(Y‘X) < |TVy\x(X)| < QnHPXVY\X(YIX)’

and hence

(n+ 1)—|X||y|2—nD(Vy\x||WY\X\PX) < WS&(TVY‘X(X”X) < 9—nD(Vy|x Wy x|Px)

3 A Joint Type Packing Lemma

We extend Csiszar’s type packing lemma [8, Theorem. 5] from a (1-dimensional) single-letter type setting
to a (2-dimensional) joint type setting. This lemma plays a key role in deriving an exponentially achievable

upper bound for the probability of erroneous transmission for the asymmetric 2-user channel.

Lemma 2 (Joint Type Packing Lemma) Given finite sets A and B, a sequence of positive integers {m., },

and a sequence of positive integers {m/, } associated with every i = 1,2, ..., m,,, for arbitrary (not necessarily



distinct) types Pa, € Py(A) and conditional types Pp |4, € Pn(B|Pa,), and positive integers N; and M;;,
i=1,2,..,my and j = j(i) = 1,2,...,m}, with

1
and
1
—logy Mij < Hpy, Py 4, (BlA) =6, (2)
where
2
52 2 [|APIBP1oga(n-+ 1)+ ogymy -+ ogs(imaxnty) + log, 12].

there exist m,, disjoint subsets

3 N;
Q; = {am} | CTa 2Tp,
such that
@ —nl|lp, v,, A AN =S
|TVA’\A(a]()))ka| SNk2 [PAZVA \A( ) ], (3)

for every i,k,p and V4 € Pn(A|A), with the exception of the case when both i = k and V4 is the

conditional distribution such that Vs 4(a’|a) is 1 if o’ = a and 0 otherwise; furthermore, for every ug) ey

and every i, there exist m),, disjoint subsets
. . Loy My
ii(af)) = { @i}

such that b},{z € ']I‘Bj‘Ai(ag)) = TPB]»\AZ- (ag)) and

Ny
; . —n|Ip, oov., . (AB;A B')—§
TVA/B/\AB(aJSJ)’bJSJJ,t)J)m U le(a;/)) < N, M2 { Pa;B;Varp!|AB }7 (4)
p'=
L Ni 0 _n[IPA Ve (B;B'|A)_5}
a8 ) [ U Qulay)| < Mgz "Lmmean = (5)
p'=1

for any 1, j,k,l,p,q and Vypap € Pn(A x B|A x B), with the exception of the case when both i = k,
j =1land Vypap is the conditional distribution such that Va p/ap(a’,0']a,b) is 1if (a/,0') = (a,b) and 0

otherwise.

The proof of the packing lemma is lengthy and is deferred to Appendix A. We remark that the
assertion of (3) is Csiszér’s type packing lemma [8, Theorem 5| for a single-letter type setting. Roughly
and intuitively, if (a,b) is a pair of transmitted codewords, then the possible sequences decoded as (a,b)
can be seen as elements in the “sphere” Ty, ., . ,(a,b) “centered” at (a,b) for some Vy pap. Equation

(4) in the packing lemma (similar to (3) and (5)) states that there exist disjoint sets Qg = Ug’;l le(agf))

7



with bounded cardinalities such that the size of intersection between the sphere Ty, , a,b) for every

|AB (
(a,b) € Q;; and every set 2y is “exponentially small” compared with the size of each ;. So the packing
lemma can be used to prove the existence of good codes that have an exponentially small probability of
error.

Note also that the above extended packing lemma is analogous to, but different from the one introduced
by Kérner and Sgarro in [20], which is used to prove a lower bound for the channel coding ABC exponent.

Lemma 2 here is used for the JSCC problem.

4 Transmitting CS over the Asymmetric 2-User Channel

4.1 System

Let {Wy Zux U XX — Y X Z} be a 2-user discrete memoryless channel with finite input alphabet
U x X, finite output alphabet J) x Z, and a transition distribution Wy 2\ x (y, z|u, ) such that the n-tuple
transition probability is
n
Wy vzl ) = TT Wz (i, 2ilus, ),

i=1
whereu cU, x € X,y €Y, 2€ Z,u2 (u1,...,un) EU", X = (T1, .00y, Tn) € X",y = (Y1, ..., Yn) € V", and
z = (21,..., 2n) € Z2". Denote the marginal transition distributions of Wy z|ux at its Y-output (respectively
Z-output) by Wy x 23, Wy ziux (vespectively Wy x 2> Wy zux). The marginal distributions of
(n) (n) (n)
WYZ|UX are denoted by WY‘UX and WZ\UX=
Consider two discrete memoryless CS with a generic joint distribution @ gr,(s,!) defined on the finite

alphabet S x £ such that the k-tuple joint distribution is Q(SkL) (s,1) = Hle Qsr(8,1;), where (s,1) € Sx L,

respectively.

and (s,1) £ ((s1,11), ..., (88, 1x)) € S¥ x LF. For each pair of source messages (s,1) drawn from the above
joint distribution, we need to transmit the common message s over the channel Wy zyx to Receivers Y’
and Z and transmit the private message 1 only to Receiver Y. A joint source-channel (JSC) code with
block length n and transmission rate 7 (source symbol/channel use) for transmitting @ sz, through Wy 2\UX
is a quadruple of mappings, (fn, gn, Pn,¥n), where f, : S™ x LT — X" and g, : S7" — U" are called
encoders, and ¢, : Y* — 8™ x LT and 9, : Z" — 8™ are referred to as Y-decoder and Z-decoder,
respectively; see Fig. 1.

The probabilities of Y- and Z-error are given by
P (Qsr Wyzix, ™) 2Pr({ea(y) # (5.0 =Y Q5 () > WlGlux) (6
s,1 yipn(y)#(s:1)

and

P Qs Wy zpx, 7) 2 Pr({tn(2) #5}) = > Q4 (s, 1) Y. Wi (alu,x) (7)
s,1 z:n (z)#s



where x £ f,(s,1) and u £ g,(s) are the corresponding codewords of the source message pair (s,1) and the
source message s, and y and z are the received codewords at the Receivers Y and Z, respectively. Since we
will study the exponential behavior of these probabilities using the method of types, it might be a better

way to rewrite the probabilities of Y- and Z- error as a sum of probabilities of types

P QseWyzoxT) = Y. QEf(Tsp)Pe(TsL) i=Y,Z, (8)
Ps,€Prn(SXL)

where Tg7, £ Tpg,, and

Pyemm:@ S W lux) (9)

(Svl)GTSL Y:i¥n (y)7é(svl)

and

Pz(Tsz) = Z S Wiz x). (10)

(S DeTs L z:¢n(2)#s
We say that the JSCC error exponent pair (E 4y, E4z) is achievable with respect to 7 > 0 if there exists a
sequence of JSC codes (fy, gn, Pn,¥n) with transmission rate 7 such that the probabilities of Y-error and

Z-error are simultaneously bounded by
Pz(en)(QSL’WYZ\UXvT) <o mBa=dl -y, 7 (11)

for n sufficiently large and any § > 0. As the point-to-point system, we denote the system (overall)
probability of error by

P (@Qsr Wy zjux,7) = Pr({pnly) # (s,1)} U {¢n(2) #s}),

where (s,1) are drawn according to Q(ST ),

Definition 1 Given Qsr, Wy zjyx and 7 > 0, the system JSCC error exponent E;(QsL, Wy zjux, T) is de-
fined as supremum of the set of all numbers E for which there exists a sequence of JSC codes (fn, gn, ©n, ¥n)
with blocklength n and transmission rate 7 such that

E < liminf —= log2 P( (QsL, Wy zjux,T)- (12)

n—0o0

Since the system probability of error must be larger than Px(/z) and Pg;) defined by (6) and (7), and is
also upper bounded by the sum of the two, it follows that for any sequence of JSC codes (fn, gn,¥n, ¥n)

1 1 n
lim inf - logy P (Qsr, Wy ziux,7) = lim inf - log, max <P)(,e), P( )> . (13)

n—0o0



4.2 Superposition Encoding for Asymmetric 2-User Channels

Given an asymmetric 2-user channel Wy 77 x, at the encoder side, we can artificially augment the channel
input alphabet by introducing an auxiliary (arbitrary and finite) alphabet 7, and then look at the channel
as a discrete memoryless channel Wy zryx = Wy zjyx with marginal distributions Wy ryx and Wz iy x
such that Wy z17ux (y, 2|t u, 2) = Wy zjux (y, zlu, ) forany t €e T, u e, r € X,y € Y and z € Z. In
other words, we introduce a dummy RV T € 7 such that T, (U, X), and (Y, Z) form a Markov chain in
this order, i.e., T'— (U, X) — (Y, Z).

The idea of superposition coding is described as follows. The encoder g, first maps the source message
s to a pair of n-length sequences (t,u) € 7" x Y™ with a fixed type, say Pry, and then sends the codeword
u over the channel, i.e., g,(s) = u. The encoder f, first maps each pair (s,1) to a triple of sequences
(t,u,x) € 7" x U™ x X" such that x € Tpy ,,(t,u), then f, sends the codeword x over the channel,
ie., fn(s,1) = x. In other words, g, and f,, map (s,1) to a tuple of sequences (t,u,x) with a joint type
Pry Px 7y, although only u and x are sent to the channel, where t plays the role of a dummy codeword.

Since W}(,HZ)|TUX(y,z|t,u,x) is equal to yZ)WX(y,z]u,x) and is independent of t, transmitting the
codewords (u,x) through the channel Wy zjux can be viewed as transmitting the codewords (t, u, x) over
the augmented channel Wy z 7y x. Here, the common outputs of g, and f,,, (t,u)’s, are called auxiliary
cloud centers according to the traditional superposition coding notion [3]|, which convey the information
of the common message s, and the codewords x’s corresponding to the same (t,u) are called satellite
codewords of (t,u), which contain both the common and private information. At the decoding stage,
Receiver Z only needs to figure out which cloud (t,u) was transmitted, and Receiver Y needs to estimate
not only the cloud but also the satellite codeword x. We employ superposition encoding to derive the

achievable error exponent pair and the lower bound of system JSCC error exponent in Section 4.3.

4.3 Achievable Exponents and a Lower Bound for £

Given arbitrary and finite alphabet 7', for any joint distribution Pryx € P(7 xU x X) and every Ry > 0,
Ry > 0, define

Ey(R1, Ro, Wyrux, Prux) = Dlﬂin [D(VY\TUX | Wy irux|Prux)
Y|TUX

_ + +
+ mn <‘[PTUXVY|TUX (T,U,X;Y) — (R + RZ)‘ ) ‘IPTUXVY|TUX (X;Y[T,U) - RZ‘ >] (19

and

+
Ez(R1, R, Wyrux, Prux) £ v??ii}x [D(VZTUX | Wzirux|Prux) + ‘IPTUXVZ\TUX (1,U;7) — Rl‘ ] ;
T
(15)
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where |z|T = max(0,x), and the outer minimum in (14) (respectively (15)) is taken over all conditional
distributions on P(Y|7 x U x X) (respectively P(Z|7 x U x X)). It immediately follows by definition that

Ey (R, Ry, Wy|TU x, Prux) is zero if and only if at least one of the following is satisfied

Rl +R2 > IPTUXWY\TUX(T’ U7X7Y) = I(UvX,Y)7 (16)
R2 2 IPTUXWY\TUX (X’ Y|T’ U)? (17)

and Ez (R, R2, Wy rux, Prux) is zero if and only if
Rl 2 IPTUXWZ\TUX (T7 U’ Z) (18)

Using Lemma 2 and employing generalized maximum mutual information decoders at the two receivers,

we can prove the following auxiliary bounds.

Theorem 1 Given finite sets 7, U, X, ), Z, a sequence of positive integers {m,}, and a sequence of

positive integers {m}, } associated with every i = 1,2, ..., m,, with

—loggmy, — 0 and — logy, max my,, — 0,

n n 7
for any 0 > 0, n sufficiently large, arbitrary (not necessarily distinct) types Pirpy, € Pn(7 x U) and
conditional types PX],‘(TU)Z. € Pn(X\P(TU)Z_), and positive integers N; and M;;, i = 1,2,...,m, and j =

Jj(@) =1,2,...,m}, with R; < HP(TU).(T7 U)—éand R;; < HP(TU).p}“(TU).(X\T7 U)—6, where R; = %logg N;
7 7 J 7
Ny N
and R;; = %logg M;;, there exist m,, disjoint subsets €); = {(t,u)g) }p:1 C Tirvy,» m/, disjoint subsets

Qi ((6,0))) = {((t’ u)éi)vxz(:{«;)}

with Xg()l € ']I‘Xj‘(TU)i((t,u)l(f)) for every (t,u)l(,i) € Q; and every i, and a pair of mappings (decoding
functions) goslo) YY" — Qand wff) : 2" — Q, where Q = U;; 45, where Q;; = Ué\zl Q45((¢, u)l(,i))7 such that
the probabilities of erroneous transmission of a triplet (t,u,x) € 2 over the augmented channel Wy 77y x

using decoders (goﬁ?), SLO)) are simultaneously bounded by

q=1

P (tu,x) 2 oo Wiy ltux)
ol (y)A((t,0),x)
< 2—”[EY (RhRiijY\TUXvP(TU)Z—PXj\(TU)i)_(S] (19)
and
Péz)(t7u7x) é Z WéT%UX(z]t,u,x)

28 (z)=((t,u)’ x’) such that (t,u)’#(t,u)

< 2—”[EZ(RivRiﬁWZ\TUX’P(TU)iPXj\(TU)i)_‘S] (20)
if ((t,u),x) € Q;; for every 1, j.
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Proof: We apply the packing lemma (Lemma 2) and a generalized MMI decoding rule.! In the sequel of
the proof, we look at the superletter (T, U) (respectively X) as the RV A (respectively B) in Lemma 2. For
the {m,}, {m},}, Prv),» Px,|(rv), given in Theorem 1, according to Lemma 2, there exist pairwise disjoint
subsets €; and Qij((t,u)z(,i)) satisfying (3), (4), and (5) for every 1 <i < m,, 1 <j<m  1<p<N;,
Viruyiru € Pa(T xU|T x U), and Vigyy xirux € Pa(T x U x X|T x U x X), with the exception of the
two cases that i = k and Vipyypp is the conditional distribution such that Vipgypo (¢, w)'[(t,w)) is 1 if
(t,u) = (t,u) and 0 otherwise, and that i =k, j = [ and Viruy x/iTux is the conditional distribution such
that Viroy xrux ((tw), 2|t u, ) is 1if (t,u)" = (t,u), 2 = = and 0 otherwise. Let

N;

Q= J (6t wl) and Q=]

p=1 ]

We shall show that for such €;;, there exists a pair of mappings (@510),1#7(10)) such that (19) and (20) are

satisfied.
We first show that there exists a Y-decoder cpg)) such that (19) holds. For any ((t,u),x) € Q and

y ey let
a((t,u),x;y) £ I((t,u),x;y) — (Ri + Ryj),

where R; = %10g2 N; and R;j = %logz M;; if ((t,u),x) € ;5. Define Y-decoder gogo) :Y" — Q by

O (y) 2 t ;YY)
on’ () arg((tg%eﬂa(( ,u),X35y)

Using the decoder gogo), we can upper bound the probability of error (assuming that ((t,u),x) € §2;; is sent

through the channel) as follows
PED((w),%) = W ({3 0 ) # (6w, %) ] (6, w), %)
= > Wi (T3, o (60,0 N {y 60 ) £ (6.0), )}

VY\TUXEPn(y\P(TU)in)

t,u,x) . (21)

For any particular Vyrpx, since

{y1eP) # (w0} = {y: el y) = (605, (tu) # tw) U {y o) = ((60),%), % #x},

~~

égl é(5'2

we can upper bound

Wy x (TVY‘TUX((%H),X) Ny 2 ) # (6w, %)} £,0,x)
= Z W}(/T;“UX (ylt, u,x) + Z W}(/T\L;“UX (ylt,u,x). (22)
VeI ppx (BWXINE YET, 1y (B2 N E2

!'Note that for the symmetric multiple access channel, it has been shown in [21] that the minimum conditional entropy
(MCE) decoder leads to a larger channel error exponent than the MMI decoder; however, for the asymmetric 2-user channel

with superposition coding, MMI decoding is equivalent to MCE decoding.
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It can be shown by the type packing lemma (Lemma 2) and a standard counting argument (see Appendix

B) that

‘ ‘7Y|TUX ((t7 U), X) m 51‘ S mp <II1§LX m2n> (Tl + 1)\TXU\2\X\2D}|
+

n|H - Y|T,U,X)—|1 - TU,X:Y)—(R;+Ri,;
%9 P(TU)Z-XJ-VY\TUX( | ) P(TU)Z-XJ-VY\TUX( )~ (RitRij) : (23)

and

((t,u),x) ﬂ&( < <m?xmgn> (n + 1)ITUllXPY]

‘ Vy|rux

(X5Y|T,U)—Ri;

(Y\T,U,X)—’I

q . (24)

H S ~
Pruy; x; Vv|Tux Piruy; x; Vvitux

n
X2

Using the identity (cf. Lemma 1) when ((t,u),x) € Q;; C T(pp),x; and y € Ty, ((t,u),x)

Wrux

n|:D<‘7Y|TUX”WY\TUX‘P(TU)Z-XJ-> (Y|T,U7X)}

- tHp oy x. 7
Wl (¥l ), ) = 2 o, Brm 0]

we obtain

Z Wﬁ(/T%UX (y’((t,U),X) € QZ]) <my <mzaxm2n> (Tl + 1)‘T><M|2|X|2D}|

y€eT ((t,u),x)N &

Yy rux

R +
—n D(VY|TUX Wy v x ‘P(TU)in>+ IP(TU)in Py irux (T\U,X5Y)—(Ri+Rij) }
X2 ) (25)

and

S W Ol wn € 0) < (ma, ) (a4 )T

yeT ((tvu)vx) ngz

Yy |1rux

D<‘7Y|TUX||WY|TUX‘P(TU)Z-XJ->+ (XY |T,U)—R;;

—n

X2

1 -

I _
Pruy; x;Vy|Tux

Substituting (25) and (26) back into (22) and (21) successively, noting that [P (Y|Prv),x;)| is polynomial
in n by Lemma 1, we obtain that, for any § > 0, there exists a Y-decoder @510) such that, given ((t,u),x) €
(1;;, the probability of Y-error is bounded by

P (6, ), ) < 27" By (ol Wriross oo, P, ) =9 (27)

for sufficiently large n.

Similarly, we can design a decoder for Receiver Z as follows. For any ((t,u),x) € Q and z € Z", let
B((t,u),x;2) = B((t,u);z) = I((t,u);z) — R,

13



where R; = 1 log, N; if (t,u) € ;. Note that 3((t,u),x;z) is independent of x. Let Q= Yo €. The
Z-decoder 1/1&0) : Z" — Q is defined by

O)(z) = ar max t,u),x;z
() = arg max  B((tu),x;2)

(t.u)' = argmaxq 5 B((t, )i 2),

= ((t,u),x') such that
x’ is arbitrary.

It can be shown in a similar manner by using (3) in Lemma 2 that, under the decoder zpﬁf), the probability

of the Z-error is bounded by
Pén)((t, u), x) < 2—”[EZ (RhRij’WZ\TUX’P(TU)iPXj\(TU)i)_‘S] (28)

for sufficiently large n. Finally, we remark that Lemma 2 ensures that there exist mappings (@510),1/17(10))

such that (28) holds simultaneously with (27). [

Theorem 1 is an auxiliary result for the channel coding problem for the 2-user asymmetric channel.
To apply it to our 2-user source-channel system, we need to design the encoders which can map a pair of
correlated source messages to a particular (t,u,x) with a joint type, so that the total probabilities of error

still vanish exponentially. We hence can establish the following bounds.

Theorem 2 Given arbitrary and finite alphabet 7, for any Pryx € P(T xU x X), the following exponent

pair is universally achievable,
Esy(QsL, Wy zirux, Prux, ) & min [TD(PSL | Qsz) + By (tHp(S), THp(L|S), Wy 1v X ﬁTUX)] :
SL
(29)
and

Eyz(Qst, Wy zjrux. Prux, ) £ Tlglsin [TD(PSL | Qsr) + EZ(THP(S)vTHP(L‘S)vWZ|TUX7ﬁTUX)} » (30)
L

where Wy ryx and Wz rpyx are marginal distributions of Wy 77y x, which is the augmented conditional

distribution from Wy zyx. Furthermore, given Qsr, Wy zjyx, and 7, the system JSCC error exponent

satisfies
Ej(Qsr, Wyzjux,T) > IIglgn [7D(Psr || Qsi) + E-(THp(S), THp(L|S), Wy zjux)] (31)
L
where
Er(Ry, Ry, Wy zjyx) = sup max E,(Ri, Ry, Wy 7170 x, Prux), (32)
7 Prux

where the supremum is taken over all finite alphabets 7, and the maximum is taken over all the joint

distributions on P(7 x U x X) and E,(R1, Ro, Wy zi7vx, Prux) is given by
min { By (R1, R2, Wyrux, Prux), Ez(Ry, Ry, Wy rux, Prux)}

where Fy and E7 are given by (14) and (15), respectively.

14



We remark that (29) and (30) can be achieved by a sequence of codes without the knowledge of Q gy,
and Wy 7 x, but the lower bound (31) is achieved by a sequence of codes that needs to know the statistics
of the channel.

Proof of Theorem 2: We first prove the achievable error exponent pair (29) and (30). We need to show
that, for any given ﬁTUX € P(T xU x X) and § > 0, there exists a sequence of JSC codes such that both
the probabilities of decoding error are upper bounded by

P,gn)(QSL Wy zjux ) < Q—W[EJk(QSLwaZ\TUX7ﬁTUX77')_5] L=Y. 7
e ) ) > ) y 4,y

where Ejy and Ejz are given by (29) and (30).

To apply Theorem 1, set m,, = |P,(S)|. For each type Ps, € Pry(S), i = 1,2,...,m,, denote N; be
the cardinalities of these type classes, N; £ |Tg,|, and set m/ = |P,,(L|Ps,)|. For each conditional type
Pr.s;, € Pra(L|Ps;), = 1,2, ...,

where s is an arbitrary sequence in Tgs,. Note that [Ty |s,(s)| is constant for all s € Tg,. R; and R;; are

m!, , denote M;; be the cardinalities of these type classes, M;; = |T il15:(s )|
respectively given by %log2 N; and %10g2 M;

Now no matter whether the given ]BTU x belongs to P, (7 xU x X') or not, we always can find a sequence
of joint types {Prux € Pn(7T xU x X)}>2; such that Pryx — Pruy uniformly? as n — oo. Thus, we
can choose, by the continuity of Fy(R;, Rij, Wy x, PTUX) with respect to PTUX, foreach 1 =1,2,...,m,,
and j =j(1) =1,2,.. the joint type Py, x; = Prux such that the following are satisfied

zn’

(o9

Ew(Ri, Rij, Wyyrvx. Prux) — Ex(Ri, Rij, Wirux, Prux)| < -, k=Y,Z

W

for n sufficiently large. Since the type Pryx can also be regarded as a joint distribution, let Py, =
Pry € Pp(T x U) be the marginal distribution on 7 x U induced by Pryx for all i = 1,2,...,m,, and let
Px vy, = PX|TU € Pn(X|Pry) be the corresponding conditional distribution for all i = 1,2, ...,m,, and
J=1,2,...,mj,, e, Pxpy(x[t,u) = Pryx(t,u,x)/Pry(t,u) for any (t,u,x) € Tryx.

Without loss of generality, we assume, for the choice of N;, M;j, Py, and Px.|rv): the following

conditions are satisfied for i = 1,2, ...,my, j = 1,2,...,m},,

Ri < Hpy,, (T,U) - i=1,2,..., M (33)

and

o . L N
Z) 1= 1727 coyMpy ] :](7’) = 1727 "'7m;n7

where m,, < m, and m,, < m. Then according to Theorem 1, there exist pairwise disjoint subsets

Rij < HP(TU)Z-XJ- (X|T,U) — (34)

zn’

Qij C T(rvy,x; with Q] = NiM,j, i =1,2,...,my, j = 1,2,...,m},, and a pair of mappings (cpSLO),z/;,(P)),

*We say that a sequence of distributions {Px, € P(X)}52; uniformly converges to P € P(X) if the variational distance

[11] between Px, and Px converges to zero as n — oo.
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such that the probabilities of erroneous transmission of a ((t,u),x) € §;; are simultaneously bounded for

the channel Wy 77y x as

P < 2B (Rt )]

< 2—”[EY(RhRij,WY\TUX7I~JTUX)_5/2] (35)

and

Pg;) (t,u,x) < 97" [Ez (RivRiijz\TUX 7P(TU)in)_6/4]

< 2_n[EZ(RiyRij7WZ\TUX7ISTUX)_6/2]_ (36)

For the N;, Mi;, Pirvy,, and Py, vy, violating (33) or (34) (i.e., for i > m, or j > mj,), (35) and
(36) trivially hold for arbitrary choice of disjoint subsets €;; since Ey (RiaRij7WY|TUX7P(TU)i Xj) or
Ez (RivRij7WZ|TUX7P(TU)in) would be less than §/4. In fact, the functions Fy and Eyz are trivially
bounded by the following linear functions of R; and R;; with slope —1 by definition,

By (Ri,Rij, Wy rux, P, Xj> < min {IPW)Z.XJ.WY‘TUX (T,U,X;Y) - R; — Ry,

(X;Y|T,U) - Rij} (37)

IP(TU)in Wy rux

and

Ez (Ri7Rij7 Wzirux, P(TU)Z-XJ-) < TPy, Wairox (T, U3 2) = Ri. (38)

If R > Hpyy, (T, U)-% 2 1Py, Warox (15 U Z)—%, then by (38) Ey (Ri, Rij, Wzirux, P(TU)Z-XJ-> <3
Similarly, if Rij > Hp,,,  (X|T,U) = 4, then by (37) By (Ri,Rij, Wy rvx P, Xj) <3
Therefore, we may construct the JSC code (fy, gn, Pn,¥n) for CS Qs and the 2-user channel Wy iy x

as follows. Without the loss of generality, we assume that the alphabets & and X contain the element 0.

Encoder gy, : For the message s € Tg, such that i > m,, let g,(s) =0 € U". Denote Q= U, €. For the
s € Tg, such that ¢ < m,, let gﬁll) 1 8™ = Q be a bijection that maps each s € T, to the corresponding
(t,u) € Q;, by noting that |Q;| = |Ts,| = N;. Finally, let g, (s) be the second component u of g,(Ll)(s).

Encoder f,: For the message pair (s,1) € Tg,z; such that i > m,, or j > mj,, let f,(s,1) =0 € &™. For
the (s,1) € Ts,z,; such that i < m, and j < mj,, noting that [T s, (s)] = [Qij(¢n(s))| = My; if s € Tg,,
let ff(Ll)(s, )+ Tp,1s,(8) — 4j(gn(s)) be a bijection such that fT(Ll)(s,l) = (gﬁll)(s),x) € Q;j. Let fu(s,1) be
the third component x of f,(Ll)(s, 1).

Clearly, the JSC encoders (f, gn), although working independently, they map each (s,1) € Tg,z, to a

/

unique pair (u,x) when ¢ <m,, and j < m;,,

and to (-,0) otherwise (in this case an error is declared).
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Y-Decoder ¢, : The Y —decoder is defined by

(s,1) if3 (s,1) € S x £ such that £V (s,1) = oV (y),

pnly) 2 .
(0,0) Otherwise.

Z-Decoder 1, : The Z—decoder is defined by

s’ if3 s’ € 8" such that gg)(s’) is equal to the first two components of 11),(10) (z),

Y (z) £
0 Otherwise.

For such JSC code (fn, gn, ©n, ¥n), the probabilities of Y-error and Z-error are bounded by

P)(,Z)(s,l) < 2—”[EY(Ri,Rij,WY\TUxJBTUX)—5/2] if (s,1) € Tg,1, (39)
and
Py (s,1) < 2Bz (RiRiy Warox Prox) =020 if (s1) € g, (40)

Substituting (39) and (40) into (8) and using the fact (Lemma 1) Q(STLn) (Tsp) < 277PFseliQse) | we obtain,

for n sufficiently large,

P;(!Q(QSL, Wy zux7)
< Z 9N [rD(Ps; 1, 1QsL)+Ey (Ri,Rij,. Wy |rvx - Prux)—5/2]

< Z 9—n n[rD(Psp||QsL)+Ey (rHp(S)—o1(n),mHp(L|S)—o02(n),Wy v x ,Prux ) —05/2]
Psy,

< Z 9—n[rD(Psp||QsL)+Ey (THp(S),rHp(L|S), Wy |rux Prux)—9 (41)
Psr,

and
Pgé)(qu Wy zjux,T)

< Z o= nlrD(Ps; L, 1QsL)+Ez(Ri,Rij, Wz rux Prux)—6/2]

< Z 92— n[rD(Psp||QsL)+Ez(rHp(S)—o01(n),mHp(L|S)—02(n),Wzrux,Prux )—0/2]
Psy,

< Z o=n[rD(PsLllQsL)+Ez(THp(S),rHp(L|S), Wz rux,Prox)— 5]7 (42)

Psr,

where o1(n) = M and og(n) = [SlI£llogx(rnt1) - Ripally, the bounds (29) and (30) follow from

(41) and (42), and the fact that the cardinality of set of joint types Pr,(S x L) is upper bounded by
(rm + 1)IS1E.

To prove the lower bound (31), we slightly modify the above approach by choosing Pz, X; ﬁ(’?rU)i X;
which achieves the maximum and the supremum of E,.(R;, Rij, Wy zjrx) in (32) for every R; and Ry,
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i =1,2,...,my, j = 1,2,...,ml . Then the probabilities of Y-error and Z-error in (39) and (40) are
bounded by

2—"[EY (RivRiijy\TUX ’ﬁ(}U)ixj) —4/2]

PM(s,1) <
< o nlB R Wyzpx) =0t (s,1) € T, (43)
and
P < gl s )5
< 9—n[Er(Ri,Rij,Wy zjux)—6/2] if (s,1) € TSiLj »
for n sufficiently large. The left of the proof is the same as the one for (29) and (30). [ |

By examining the positivity of the lower bound to Ej, we obtain a sufficient condition for reliable
transmissibility for the asymmetric 2-user system. For the sake of completeness, we also prove a converse

by using Fano’s inequality, and hence establish the JSCC theorem for this system. Given Wy zx, define

RWy zux) = U U RWy zirvx: Prux) (45)
T T|<U||X|+1 Prox €P(T xUxX)

where

Ri+ Ry < I(T,U,X;Y) = I(U, X;Y)
RWy zirux: Prux) £ § (R1,R2): Ry < I(T,U; Z) ,
Ry < I(X;Y|T,U)

where the mutual informations are taken under the joint distribution Pryxyz = PruxWy zjux-

Theorem 3 (JSCC Theorem) Given Qsr, Wy zjyx and 7 > 0, the following statements hold.

(1) The sources can be transmitted over the channel with P S 0asn— o if (THgo(S),THg(L|S)) €
R(Wy 21 x);

(2) Conversely, if the sources can be transmitted over the channel with an arbitrarily small probability of

error P\ as n — o0, then (THg(S), 7Hg(L|S)) € R(Wy zrx) with < replaced by < in R(Wy 2z x)-

Proof:
Forward Part (1): Tt follows from (16)-(18) that E,(R1, R2, Wy zi7vx, Prux) > 0 if and only if (Rq, Rg) €
R(WYZ|TUX7PTUX)- It then follows that ET(R17R27WYZ\UX) > 0 if (Rl,Rg) S ,R'(WYZ\UX)' Accord-
)

ing to Theorem 2 and the definition of the system JSCC error exponent, Pe(" — 0 if the lower bound
(31) is positive, which needs E.(rHp(S),THp(L|S), Wy zux) > 0. This means P — 0 if the pair

(TH@(S), 7Hq(L]S)) € RWyzux)-
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Converse Part (2): The proof follows from a similar manner as the converse part of [15, Theorem 1] for
a broadcast channel. For the sake of completeness, we also provide a full proof here since we deal with a
2-user channel. First, we remark that (as shown in [15, Theorem 2]) the region R(Wy z7vx, Prux) can

be equivalently rewritten by

Ri+ Ry < I(U, X:Y)
RWyzirux, Prux) = { (R, Re) : Ry < I(T,U; Z)
Ri+ Ry < I(X:Y|T,U) + I(T,U; 2)

It suffices to show that, for any € > 0, if

max {P)(/Z)(QSLy Wy z1xv,7)s Py (Qst, WYZ\UX7T)} <€ —0

as n goes to infinity, then there exists a RV T satisfying 7' — (U, X) — (Y, Z), i.e., the joint distribution
Pryxy z can be factorized as Pr Py xpWy zjux, such that (1Hg(S), 7Hq(L|S)) € R(Wy zjvx, Prux) with
< replaced by <, i.e.,

THo(S,L) < min{I(U,X;Y),I[(X;Y|T,U)+I(T,U;Z)},
THq(S) < I(T.U;Z).

Fix k = n. Fano’s inequality gives

H(SE, LHY™) < P logy S x £5+ H (BY)) 2 ey, (46)
H(S¥12") < P logy ||+ H (PL)) 2 nean, (47)

where S¥ £ (S1,S,,---,S};); similar definitions apply for the other tuples. It follows from (46)-(47) that

kH(S,L) = H(L*|S*)+ H(SY)
= I(L%Y"S*) + H(LF|S*, Yy™) + 1(S%; Z™) + H(S*|Z™)

< ) IR YSE, YY)+ I(SK; Z,| 2] + H(SK, LFY™) + neay
i=1

Z [I(Lk;Yi|Sk,Yz‘—1,Zi+1) _‘_I(Zi—l—l;Yi|Sk,Yz'—1)

i=1

IN

HI(S*, 27 Y Z) — T(Y'T 2] S, Ziﬂ)] + n(ein + €2n),

where Y1 = (Y1, Y5, ...,Y;_1) and ZF 2 (Z;,1, Zijo, ..., Zy,). Substituting the identity [12, Lemma 7]
Z I(z?,-i—l7 E’Sk, Yi—l) — Z [(Yl_l, ZZ’Sku Zi-l—l)
i=1 =1
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into the above, and setting T; = (S*,Y*~1, Z"™) for 1 < i < n yields
RH(S,L) < 7 [IENYIT) + 1T Z0)| + nlern + e20)
i=1
23 [ YT, U + 1T, U5 20)] + nlern + ean)
i=1
b <
S (X" YTy, Us) + I(T3, Uy Z3)] + nlean + €2n)
i=1

n
(&

= Z L(X; Yi|T3, Us) + 1(T5, Uiy Zi)] + n(ewn + €2n), (48)
i=1

—~
~

where (a) holds since U; is a deterministic function of S* and hence of Tj, (b) follows from the data
processing inequality, and (c) holds since Y; is only determined by U; and X; due to the memoryless
property of the channel. On the other hand, kH (S, L) can also be bounded by
kH(S,L) = H(S* L*)
= I(S*, L5 Y™) + H(S", LF|y™)
< I(X"U™Y™) 4 nery

= ZI(UiaXﬁYD + Ne€lp. (49)
i=1

Likewise, it follows from (47) that
kH(S) = H(S)
= I(S*z™) + H(S"z™)

= YIS Z|ZY) + H(SH 2
=1

n
> I(S*, 2 Zi) + neay,
=1

IN

IN

S I(SH YL ZH U Z) + neay
=1

= > I(T},Ui; Zi) + nean. (50)

i=1
Note also that T; — (U;, X;) — (Y3, Z;) for all 1 < i < n. According to (48), (49), and (50), and
recalling that k = 7n, it is easy to show (e.g., see [12]) that there exists an auxiliary RV T with Pryxyz =

PTPUX|TWYZ|UX such that

TH(S7L) < min{IPUXYZ(U7X;Y)7IPTUXYZ(X;Y’T?U)+IPTUXYZ(T7U;Z)}
TH(S) < T.U; 2),

IPTUXYZ(
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which is equivalent to

TH(S,L)
TH(S) <

IN

IPUXYZ(U7X;Y)7
1,U; Z),

IPTUXYZ(

TH(L|S) < IPTUXYZ (X§ Y|T7 U)'

Finally, by using the Carathéodory theorem (cf. [11, p. 311]) we can show that there exists a RV T with

7| < ]| x|+ 1 such that Ppy vy, = PpFy Wy zjox and

(IPUXYZ (U, X;Y), Ipryxyz (1,U;7), Ipryxyz (X;Y|T,U))

= (Ipyyy, (U, X;Y), Ip.  (T,U;2Z),Ip. _ (X;Y|T,U)).

TUXY Z TUXYZ

This completes the proof of the converse part. |

4.4 The Upper Bound to E;

In [8], Csiszér also established an upper bound for the JSCC error exponent for the point-to-point discrete
memoryless source-channel system in terms of the source and channel error exponents by a simple type
counting argument. He shows that the JSCC error exponent is always less than the infimum of the sum of
the source and channel error exponent, even though the channel error exponent is only partially known for
high rates. This conceptual bound cannot currently be computed as the channel error exponent is not yet
fully known for all achievable coding rates, but it directly implies that any upper bound for the channel
error exponent yields a corresponding upper bound for the JSCC error exponent. For the asymmetric 2-
user channel, it can be shown by using a similar approach based on the method of types that the following
is true.

As a special case of the JSCC system, let the (common and private) message pair (s,1) be uniformly
drawn from the finite set M, x M;, where M, = {1,2,..., My} and M; = {1,2, ..., M;}. An asymmetric 2-
user channel code with block length n for transmitting the uniform message set is a quadruple of mappings,
(fens Gens Pens Yen ), where fo, : Mg x My — X" and g : Mg — U™ are the channel encoders, and ¢, :
V" — Mg x M; and ey, : 2™ — M, are respectively the Y-decoder and Z-decoder. Let Ry = %logg M,
and Ry £ % logy M) be the common and private rates of the code respectively. The probabilities of Y- and

Z-error of the channel coding are respectively given by
n 1 n
Py Ry, R Wyyix) £ Prl(feen¥) # 60N = g 2. 2 Wyxblux) (51
sl yipen(y)#(s))

and

n 1 n
Py (Ri, R, Wy zjux) 2 Pr({ven(2) # ) = sy > 2. Wiik(zlux) (52)
s,l z:tpen(z)#s
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where X = f.u(s,1) and u = g.,(s). Similarly, the probability of the overall asymmetric 2-user channel

coding error is given by

Pe(n)(Rh Ry, WYZ|UX) = Pr ({‘Pcn(y) 7é (Sv 1)} U {wcn(z) 7& S}) ) (53)

where (s, 1) are uniformly drawn from M, x M;.

Definition 2 The asymmetric 2-user channel coding error exponent E(R1, Ra, Wy 71 x), for any Ry > 0
and Rs > 0, is defined by the supremum of the set of all numbers E. for which there exists a sequence of
asymmetric channel codes (fen, gens Yens Yen) with blocklength n, the common rate no less than Rp, and
the private rate no less than Ro, such that

1
E. < liminf ——log, P (Ry, Ry, Wy zix)- (54)

n—oo

Clearly, for any sequence of channel codes (fen, Jens ©ens Yen)s Pe(n) (R1, Ro, Wy 717 x) must be larger
than Pﬁ(f;)(Rl, Ry, Wy x) and Pgé) (R1, Ra, Wz x)) but less than the sum of the two, so we have

1 1 n n
lim inf - logy P (R1, Ry, Wy zj7x) = lim inf - log, max (P)(/e) (R1, Ro, Wy ux), Pée) (R1, Ra, WZ|UX)> -

(55)
Our upper bound for the system JSCC error exponent is stated as follows.
Theorem 4 Given Qsr, Wy zjyx, and 7, the system JSCC error exponent satisfies
Ej(Qsr, Wy zjux,T) < Ii;gf [7D(Pst, || Qs) + E(tHp(S), THp(L|S), Wy zjux)] » (56)
L

where E(-,-, Wy zjyx) is the corresponding channel coding error exponent for the asymmetric 2-user chan-

nel.

Proof: First, from (8) we can write

p 0% > () (T4 ) Py (T =Y. Z 57
e (Qsp, Wy ziux,T) _PSLE%?((SM)QSL( sp)Pie(TsL) i=Y,Z, (57)

where Py¢(Tgr) and Pze(Tgr) are given by (9) and (10), respectively. Comparing (9) with (51), and
comparing (10) with (52), we note that Py.(Tsz) and Pz.(Tsz) can be interpreted as the probabilities
of Y-error and Z-error of the asymmetric 2-user channel coding with (common and private) message sets
Tsy, since (s,1) are uniformly distributed on Tgy. For any Psy € Prn(S X L), let Ps and Ppjg be the

marginal and conditional distributions induced by Pgr. Recall that for each s € Tg = Tpg,

TL\S(S) = TPL\S(S) ={l:(s,]) € Tsr}

22



and that ']I‘L‘S(s) is the same set for all s € Tg. Hence, we can write Tgz by the product of two sets
Tsp = Ts x Trs(s). Setting Ry = 1log, |Ts| and Ry = Llog, ITris(s)], it follows that, by the definition

of asymmetric 2-user channel coding error exponent and (55),

1
lim inf — — log, max Pie(Tsr) < E(liminf Ry, liminf Ry, Wy 71 x)

n—oo n n—oo n—oo

= E(rHp(S),7Hp(L|S), Wy zjux) (58)
for any sequence of JSC codes (f, pn, ¥n), recalling from Lemma 1 that
(T’/l—|— 1)—\8\2nTHp(S) < |TS| < 2nTHp(S)

and
(Tn + 1)—\5\\£|2—HTHP(L|S) < |TL|S(S)| < 9—nTHp(LIS),

According to (13), we write

1
lim inf - logs P (Qs1, Wy zux:T)

n—oo

. 1 n n
— hmlnf—ﬁloggmax <P3(/e)(QSL,Wy|X,T),Pée)(QSL,WZ‘X,T)>

n—oo

1 ™
< liminf —— log, max max )QgL)(TSL)PZ-e(TSL)

n—oo n 1=Y,Z Pgr€Prn(SXL
.. . 1 (tn)
= 1 f ——1 T P, (T
minf omin 7y log2 Qg ( SL)Z,@%}% ie(TsL)
. . 1 (rn) 1
= 1 f ——1 T ——1 P, (T .
im in PsLeglﬂSxﬁ)[ - logy Qg (Tsz) — — logy max e SL)} (59)

By Lemma 1, for any Psy, € Prp(S x L),
1 (tn) 1
——-logy Qgp (Tsr) < D(Psi || @si) + |S|I£]—logy(1 + 7n)

which implies
. 1 ™
lim sup - log, Q(SL)(']I'SL) <7D(Psy || Qsr)- (60)

n—oo

Now assume that

inf  [rD(P E(+Hp(S). 7Hp(L
PereP(SxL) [7D(Psy || Qse) + E(rHp(S), 7THp(L|S), Wy zjyx)]

is finite (the upper bound is trivial if it is infinity) and the infimum actually becomes a minimum. Let

the minimum be achieved by distribution P§; € P(S x L), then there must exists a sequence of types
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[e.e]

{ﬁsL € Prn(S x E)} such that Pgp — P¢; uniformly®. It then follows from (59), (58) and (60) that

n=ne

1
lim inf - logs P™ (Qs1, Wy zjux,T)

. 1 (n) 1
< liminf [—Elogz Qsr (Tpy,) = —logy g%@l%e(TﬁSL)
< 7D(Pg, || @sr) + E(rHp«(S), Hp«(L|S), Wy zjux)- (61)
Since the above bound holds for any sequence of JSC codes, we complete the proof of Theorem 4. |

5 Applications to CS-AMAC and CS-ABC Systems

As pointed out in the introduction, our results obtained in the previous section can be directly applied to

the CS-AMAC and CS-ABC source-channel systems.

5.1 CS-AMAC System

Setting |Z| = 1 and removing the decoder v, the 2-user asymmetric channel Wy zjux reduces to an
AMAC Wy yx. Since the CS-AMAC system is a special case of the 2-user system, the quantities defined
before, including the system (overall) probability of error, the system JSCC error exponent, and the channel
error exponent still hold for the CS-AMAC system. Note that there is only one decoder, so we do not
have “Z-error” and achievable error exponent pair here. The first union in (45) can be removed since the
largest region is given by |7| = 1. In fact, for any 7' — (U, X) — Y, I(T,U,X;Y) = I(U,X;Y) and
I(X;Y|T,U) < I(X;Y|U). Thus Theorem 3 reduces to the same JSCC theorem established in [4] for the
CS-AMAC system. Now if we choose the auxiliary alphabet |7| = 1, we specialize Theorems 2 and 4 to

the following corollary.

Corollary 1 Given Qgsr, Wy yx and 7, the system JSCC error exponent satisfies

Ej(Qsr, Wyx,T) > 1}3151? [7D(Psr || Qsi) + E-(THp(S), THp(LIS), Wy1ux)] (62)
and
Ej(Qsr, Wyjyx,T) < }DI;E [TD(Psr || Qs) + E(THp(S), THp(LIS), Wyjux)] » (63)

where E(THp(S), THp(L|S), Wy yx) is the channel error exponent defined in (54), and
Er(Ry, Ro, Wy yx) = III}aXEY(RhR% Wy ux, Pux) (64)
UX

where By (Ry, Ro, Wy x, Pux) is defined in (14) by setting T' = 1.

-~ oo
3The sequence {PSL € Prn(S x C)} here denotes a sequence for n = no, 2n,, 3No, ..., where n, is the smallest integer
n=ng

such that mn, is also an integer.
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It has been shown in [2] that for any Ry > 0 and Ry > 0, the channel exponent for AMAC Wy ux

satisfies
E(Ry, Ro, Wy zx) < Egp(Ry, Ro, Wy yx),
where
Ey,(R1, Ry, W- £ in D (V5 W- P, , 65
p(R1, R, Wy x) PUXIGI}D%X/Y)WH Wiox | Wywx|Pux) (65)

where the minimum is taken over Vyjyx € P(YU x X) such that Ip, vy, (U, X:Y) < Ry + Ry or
IPUXVY\UX (X;Y|U) < Ra.

As a consequence, we see that

Ej(Qsr, Wyjux,T) < }};i [TD(Pst, || Qsi) + Esp(tHp(S), THp(L|S), Wy |rx)] - (66)

In Section 6 we investigate the lower and upper bounds when the AMAC has a symmetric distribution.

5.2 CS-ABC System

Setting || = 1 and removing the encoder g,, the 2-user asymmetric channel Wy zjux reduces to an ABC
Wy zx. The quantities defined before, including the probabilities of error at Y-decoder and Z-decoder, the
achievable error exponent pair, system (overall) probability of error, the system JSCC error exponent, and
the channel error exponent still hold for the CS-ABC system. Given arbitrary and finite auxiliary alphabet
T, we augment the channel Wy 7/ x to Wy zrx by introducing an RV T' € 7 such that 7' — X — (YZ2).
Similarly, the marginal distributions of the augmented channel are denoted by Wy rx and Wy px. We
then specialize Theorems 2, 3 and 4 to the following corollaries.
Given Wy z|x, R(Wy zjux) reduces to R(Wy z|x) given by
RWyzx) 2 U U  ROWzrx, Prx) (67)
TH|T|<|X|+1 Prx €P(T xX)

where

Ri+ Ry <I(T,X;Y)=1(X;Y)

RWy zirx, Prx) = (R, R2) : Ry < I(T; 2) ,
Ry < I(X;Y|T)

where the mutual informations are taken under the joint distribution Prxyz = PrxWy Z|X- We remark

that the closure of R(Wy z|x) is the capacity region of the ABC Wy z x [19].

Corollary 2 (JSCC Theorem for CS-ABC system) Given Qsr, Wy zjrx and 7 > 0, the following state-
ments hold.

(1) The sources can be transmitted over the channel with PM™ L 0asn — oo if (THg(S),THg(L|S)) €
R(WYZ|X);
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(2) Conversely, if the sources can be transmitted over the channel with an arbitrarily small probability of

error P™ as n — oo, then (THQ(S), THg(L|S)) € R(Wy 2 x with < replaced by < in R(Wyz|x).

Corollary 3 Given arbitrary and finite alphabet 7, for any Pry € P(T x X), the following exponent pair

is universally achievable,

En(Qsr, Wy zirx, Prx,7) £ min [TD(PSL | Qsz) + EY(THP(S)vTHP(L|S)7WY\TX,ﬁTX)] ,  (68)
and

Ejz(QsL. Wy zirx, Prx, ) & 1};151? [TD(PSL | Qsz) + Ez(tHp(S), THp(L|S), WZ|TX7ﬁTX)] ;o (69)

where Ey and Eyz are defined in (14) and (15) by setting U = 1. Furthermore, given Qsr, Wy z|x, and 7,

the system JSCC error exponent satisfies

Ej(Qsr, Wy zx,7) 2 I}glgil [TD(Pst || Qsi) + E-(THp(S), THp(L|S), Wy 7x)] (70)
and
E;(Qsp,Wyzx,7) < IIDI;E [7D(Psy, || Qse) + E(rHp(S), THp(L|S), Wy 1x)] (71)

where E,.(Rq, Ry, Wyz|x) is the same as E.(R1, Ro, Wy zjyx) defined by (32) by setting U = 1, and
E(R1, Rz, Wy z|x) is the channel error exponent defined in (54).

6 Evaluation of the Bounds for F;: CS over Symmetric AMAC

We established the lower and upper bounds for the system JSCC error exponent for asymmetric 2-user
JSCC systems. However, we are not able to simplify these bounds for general 2-user JSCC systems (even
for general CS-AMAC and CS-ABC systems) to a computable parametric form as we did for the point-
to-point systems [23, 24]. In the following we only address a special case of CS-AMAC systems where
the channel admits a symmetric transition probability distribution. We first introduce the parametric
form of the functions E,(R1, Rz, Wy yx) defined in (64) and Ey,(R1, Ro, Wy|pyx) defined in (65). For any
R1, Ry > 0, rewrite

Ey (R1, Re, Wy|yx, Pux) = min {Er(’l)(Rl + Ro, Wy x, Pux), B (Re, Wyux, PUX)}
where

+
EM(R, Wywx, Pux) £ Vmin [D(VYlUX | Wyux|Pux) + ‘IPUXVY\UX(U7X;Y) - R‘ } (72)

Y|UX

and
+
B (R Wy, Pox) = min | DV | Wy o) + [Tossson C6YI0) =R | 79
Ux

Vy|
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Also, rewrite
Egp(Ry, Ro, Wy |ux) = max Egp(R1, R, Wy ux, Pux)
UXx

where

Eyp(R1, Ra, Wy urx, Pyx) = min {Eg,) (R1 + Ro, Wyux, Pux), B2 (Ra, Wy 0, PUX)}
where

Bl (R Wy, Pux) & min (DA | Wyox Pux) s Troxtyox (U X Y) < R) - (74)
and

B (R Wy, Pux) £ min (DA | Wyux Pox) s Troxtaux (GYIU) < R). - (75)

Note that Eﬁl) and ET(,Z) (respectively Eg)) and Eg?))) are the random-coding (respectively sphere-packing)
type exponents expressed in terms of constrained Kullback-Leibler divergences and mutual informations

[11]. In fact, it has been shown in [2] that
Eg;))(Ra WY\UX7PUX) = IPHES([EZ([), WY\UX7PUX) - pR]7 1=1,2,

where

1+p1
1
Ei(p1, Wyrx, Pux) £ —logy ) > Pux(u,n)Wyx (ylu, z) ; (76)
yeY \(u,z)eUxX
and
. 14-p2
B (p2, Wyx, Pux) = —logy Y Py(u) Y <Z Px o (@|uw)Wyux (ylu, x)%) : (77)
uel yeY \zeX

Analogously to [11, Lemma 5.4, Corollary 5.4, p. 168], we can prove the following results; some of them

has been proved in [2].

Lemma 3 Leti =1,2. E,@(R, Wy v x, Pux) coincides with ELE;;,) (R, Wyux, Pux)if R > Rgir)(Wy‘UX,PUX)

where
OFi(p, Wy ux, Pux)

Rg")(WYWXa Pyx) = p

)

p=1

and is a straight line tangent on Eg;)(R, Wy vx, Pux) with slope —1if R < Rgir)(WYWX, Pyx), ie.

Eg;’) (R7 WY|UX7 PUX)7
it R>RYWyux,Pux),

EY) (Rg’)(WﬂUXa Pux), WY\UX’PUX> + R (Wypx Pux) = R,
if 0<R< Rg")(WY|UX7 Pyx).

E{(R, Wyiux, Pux) =
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Furthermore, Eﬁi) (R, Wywx, Pu x) has the parametric form
EY(R, Wyux, Pux) = Orélggl[Ei(pv Wy ux, Pux) — pR]
where E1(p, Wy ux, Pux) and Eax(p, Wy ux, Pux) are given in (76) and (77) respectively.

Therefore, we can write the functions E,(R1, Re, Wy |y x) defined in (64) and Eg,(R1, Ra, Wy yx) de-
fined in (65) as follows.

Er(Ry, Ry, Wy yx) = max min Olgggl[Ei(P, Wy ux, Pux) — pilti] (78)

and

Egp(Ry1, R2, Wy x) = max min max[E;(p;, Wy rx, Pux) — pRi] (79)
PUX Z:1,2 pZO

where ﬁl = Ri + Ry and ]?22 = Rs. Since it is very hard to find the optimized solution Pyx in general

for F, and E, in the above, we confine our attention to multiple access channels with some symmetric

distributions.

Definition 3 [2] We say that the multiple access channel Wy yx is U-symmetric if for every u € U
the transition matrix Wy yx(-|u,-) is symmetric in the sense that the rows (respectively columns) are
permutations of each other. An X-symmetric multiple access channel is defined similarly. We then say

that Wy yx is symmetric if it is both U-symmetric and X-symmetric.

It follows that the multiple access channel with additive noise is symmetric (e.g., see the example

below), where a multiple access channel Wy x with (modulo B) additive noise { Pr : F} is described as

where YV; € Y, X; € X, U; € U and F; € F are the channel’s output, two input and noise symbols at time
i such that Y =U =X =F ={0,1,2,..., B — 1}, and F; is independent of X; and U;, i = 1,2,...,n.

It is shown in [2] that if the multiple access channel Wy iy x is U-symmetric, then the outer maximum
of (78) and (79) would be achieved by a joint distribution with the form Py x(u,x) = Py(u)/|X| for every
x and w. It then follows that for the symmetric multiple access channel, the maximum of (78) and (79)
would be achieved by a uniform joint distribution

Pox(u2) =
|| x|
which is independent of p. Substituting Pj;y in (78) and (79) yields

E.(R1, Re, Wy yx) = iy max, [Ei(p, Wy ux) — pRi] (80)
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and

Esp(Ri, R, Wyyx) = mi 11211138([ Ei(p, Wy|ux) — pRi] (81)

where El = R1 + Ry, ﬁg = Ra,
1+p
- 1
Er(p, Wy rx) = (1 + p) logy([U]|X]) — log, Z Z Wy ux (ylu, z) T+
yeY \(u,x)eEUXX
and
~ 1 1+p
Ea(p, Wyx) = (14 p)logy |X| +log, U] —log, Y (Z WYUX(y|U»$)m> :
(u,y)EUXY \z€EX

We also can prove the following identities using a standard optimization method (cf. [23]).

Lemma 4
. D P g R ES , , 82
PopiB s n (Ps|@sL) ma [ (p,Qs1)] (82)
. D P g R ES , , 83
Pop AR gy D (Porl@st) max [p 2(p, @sL)] (83)
where
1
ESl(p7 QSL) = (1 + p) 10g2 Z QSL(87 l) 1+p
(s,)ESXL
and

Es(p,Qsr) = (1+p) ZQS log2ZQL|S(z|s)¢lp_

seS lel
Clearly, if the marginal distribution Qg(s) is uniform, then (82) and (83) are equal. Using (80) and

(82) we now can write

Iﬁlsif [7D(Pst || Qsi) + Er(THp(S), THp(L|S), Wy 1 x)]

— win {oin | 7D(Pet | Qsu) + s (Ba(or, W) — pir (S, D)
>P1>

Psy, |

min [TD(PSL | Qsr) + 1<11an [EQ(,OQ,WYW)() pgTHp(L\S)]]}

Psp,
= mi i i D(P Ey(p1, W- — mR]|,
min {mptn poeriin T (Psy, || QSL)"‘OISI})?)S{l[ 1(p1, Wyux) — p1 ]]
i i D(P. Es(pa, W — ;R 84
min [PSL:TI?;I(I}JS)zRT (Pst || QSL)+OQHP3>S<1[ 2(p2; Wy ux) — p2 ]]} (84)

and similarly using (81) we have

}31511; [TD(Psy || Qsi) + Esp(tHp(S), 7Hp(L|S), Wy x)]

= min {inf [ min TD(Psy, || Qsr) + 1;11%}5@1(,01, Wyux) — le]} ,
1=

R |Psp:THp(S,L)=R
inf i D(P. Es(pa, W — paR]| V. 85
in |:PSL:TI§I1131(I}/|S):RT (Pse || Qsr) + Elzlgfg[ 2(p2, Wy jux) — p2 ]]} (85)
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Consequently, using an optimization technique based on Fenchel duality [23], we obtain the following

theorem and corollary.

Theorem 5 Given Qsr, a symmetric Wy ;7 x, and the transmission rate 7, the lower bound of the JSCC

error exponent given in (62) and the upper bound given in (66) can be equivalently expressed as

min max [E;(p, Wy|x) — TEsi(p,Qs)] < Ej(Qsr, Wyjux,T)

i=1,20<p<1
< min max[F;(p, Wyux) — mEsi(p, Qsr))- (86)
i=1,2 p>0

Example (Binary CS-AMAC System): Now consider binary CS Q gz, with distribution

2(1 —
Qsu(s=00=0= 200, Qus=1.0=0=],
1—
QSL(SIO,Lzl):g, QSL(S:LL: ):Tq’

where 0 < ¢ < 1/2. Then

Ba(p,Qs1) = (14 p) log, { [(%)_ + @)_] (1-9)™ +2 (g)ﬁ},

2(1—q) T q +p
2(1—q) ¢ —3 2
Eo(p,Qst) = (1+0p) < ( 3 )y §> logy (2(1—5 ) + (2(1—q2) >

q
3 +2

1
1—q T+p q I+p
l—q ¢ 3 2

Consider a binary multiple access channel Wy-;yx with binary additive noise Pp(F =1) =€ (0 <€ < 1/2).

That is, the transition probabilities are given by
Pyipx(Y =0lU =0,X =0) =1—¢, Pyiux(Y =1U =0,X =0) =¢

Pyipx(Y =0[U =0,X =1) =¢, Pyiux

Prpx(Y =0U=1,X=0)=¢  Pypux

Pripx(Y =0U=1,X=1)=1-—¢, Pyox(Y =1U=1,X =

It follows that

- - 1 a1
E(p, Wyux) = E2(p, Wyux) = plogy 2 — (1 + p) log, (6”” +(1—¢) ”") :

In Fig. 2, we plot the lower and upper bounds for the JSCC error exponent E'; for different (g, €) pairs with
transmission rate ¢t = 0.25,0.35. As illustrated, the upper and lower bounds coincide (this can be verified
by checking whether the two outer minimums in (86) are achieved by the same ¢ and the inner maximum
in the upper bound is achieved by p < 1) for many (¢, €) pairs (e.g., when 7 = 0.25,¢ = 0.1, > 0.0205 and
when 7 = 0.35,¢ = 0.1, € > 0.0056), and hence exactly determine the exponent.
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A  Proof of Lemma 2

Although the result (3) of Lemma 2 was already shown in [8], we include its proof here since we need to
show that (3) holds simultaneously with (4) and (5). We employ a random selection argument as used
in [8]. For each i = 1,2,...,m,, we randomly generate a set of 2N; sequences (according to a uniform
distribution) from the type class T4, = Tp,, C & {agi),ag), ...,ag])vi} C Tyu,, ie., each al(,i) is randomly
drawn from the type class T 4, with probability 1/|T4,|, p = 1,2,...,2N;. Each set has 2N, elements rather
than N; because an expurgation operation will be performed later. Also, we denote the set Cp Ci/ { }

Now for each i with associated j = j(i) = 1,2,...,m},, we randomly generate 4N;M;; sequences

(according to a uniform distribution)
{b%), b, by, b5 bG) bF)y, o bR b . bg@h%}
such that the set
ey 2 (a0 oR) (0 5) o (o050, ).

(59.68) . (80 52) . (5810,

(abh, bSN, 1) - (5%, DI, 2)

In other words, each bﬁ,j)] is drawn from Tp)| 4, (az(,i)) with probability 1/ "]I‘ Bj|A; (a;g,i)) ,

(ag/])\fl bé]JQQQM”)} g TAiBj = TPAiPBj‘Ai '

q = 1,2, ceny Mij,

and hence each pair <a1(,), bz(n)z is drawn from T 4,5, with probability 1/ |']I‘ A;B; ‘ Furthermore, we denote

the set Cf]gﬁ U/{(ap , [)1)} For any 1 <4,k <my, 1 <j<m), and 1 <1 <mj,, define

. {VA’|A € Pu(AlP4,) 1 Y Pa,(a)Vayald'|a) = PAk(a/)}
acA

and

Vij,kl £ VA’B’\AB €Pn (“4 X B|PA7;B]’) : Z PAiBj (av b)VA’B’\AB(alv b,|av b) = PAkBl(alv b,)
(a,b)eAxB

Based on the above set-up, the following inequalities hold.
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(i) For any (i,7) # (k,l) and any VarpaB € Viji,

E ‘TVA’B’\AB <a1(>i)’ bI(J{f)1> ﬂ Ckl‘
< E H p Q) <a;() )’b]()’),q’) € TVA/B/\AB <a1(72)’b§7j7‘)1>}‘
= e { (a5 € Ty (a1.06) )
= 4N My ‘TVA’B’\AB <a1(,i),b,(,{[)1>
T,
< AN Mu(n+ 1)‘AHB‘2—7LIPAZ_BJ_ vA,B,‘AB(A’,B’;A,B), (87)

where the above expectation and probability are taken over the uniform distribution

~ 1
Pkl(a('f),b(l,)/)é V 1<k<m, 1<01<my,, 1<p <Ny, 1<¢ <My, (88)
’ P pq ‘TAkBL‘

and (87) follows from the basic facts (Lemma 1) that

NHP, 5V, an(AWB|AB)

7pq

ITa,B,| > (n+ 1)_|A”B|2nHPAkBl (A’,B’)’

noting that the marginal distribution of Pa,p,Varp/jap for RV’s (A’, B') is Pa, B,
(ii) For any (i,7) = (k,l) and any Vi p/jap € Vijij, likewise,

‘TVA’B’\AB ( 1(7 ’bI(JJ,Q> ﬂcpq

where the expectation is taken over the uniform distribution 13” defined by (88).

(n 4+ 1)|A|IB|2 ey p; VA’B’\AB(AI’B/;A’B)y (89)

(iii) For any i and j # [, and any VapaB € Viji, similarly we have

E ‘TVA’B’\AB <a1(>i)’ bg;) ﬂ Ci

Using the identity

< AN; My (n + 1)MAIBIp P4, Vamap BB

Av B/7 Av B) = HPAZ- (A) + IPAiBjVAB’\AB(B/; B|A)

IPAiBj VAB’\AB (

and assumption (1)

1
Elogg N; < Hp, (A) =4,

we obtain another bound

E ‘TVA’B’\AB ( () ’bIEJJQ> ﬂcll

where the expectation is taken over the uniform distribution ]3”

< AMy(n + 1)MAIBlgT nPy;p; VA’B’\AB(BI;B‘A)7 (90)
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(iv) For any i and j = [, and any Vap/ap € Vija

‘TVA’B’\AB <a1(f ) 1(7{ >ﬂcpq

, likewise,

where the expectation is taken over the uniform distribution Pi,j-

(v) For any i # k and any Va4 € Vi,

E[Tv,,, () NC

IN

<

E Hp' : agf) € TVA’\A (ag))}‘

2N, Pr {agi) S TVA’\A (aé”)}

2Ny,

‘TVA'\A (a’(’i)>

‘TAk’

1j(n + 1) AlIBl2” Py, Varpan

(B';B|A)

2Ni(n + 1)—\A\2—"~’PAZ.VA,‘A(A’;A)7

where the above expectation and probability are taken over the uniform distribution

1

P a(]f) s _-
k( P ) ‘TAk’

V 1<k<my,

and (92) follows from the basic facts (Lemma 1) that

Ty, (o

and that

’TAk‘ > (n+ 1)‘A‘277/HPAI€(A’)7

1 <p < Ng,

noting that the marginal distribution of P4,V 4 for the RV A'is Py,.

(vi) For any i =k and any Vy/ 4 € Vi, likewise,

E ‘TVA’\A (aig)) mcf =

where the expectation is taken over the uniform distribution P; defined in (93).

Note also if Varpriap & Vijm

‘TVA’B’\AB (ag
and if Varpiap € Vijij
‘TVA’B’\AB ( :EJZ

Therefore, it follows from (87) and (89) that for any Va pijap € Pn(A x B|A x B),

£ ‘TVA’B’\AB (al(’i)v bg)z) mckl‘

E ‘TVA’B’\AB (ap \ Xp, q> Ny
AN, M;;

)N

) (1w =0

=0.

(n + 1)~ M1~ Y (A54)

)

2

(kD) #(1,)

< my(maxm},)(n + 1)|A||B|2_n1PAiBj Varpap
(2
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(A’,B";A,B)

AN My,

9

(91)

(94)

(95)



Taking the sum over all Vypiap € Pn(A x B|A x B), and using the fact (Lemma 1)
1Pou(A x B|A x B)| < (n + 1)MAPIBP

and |A|?|B|? + | A||B| < 2|A|?|B|?, we obtain
ESZ-‘I <(n+ 1)2|A|2‘B‘2mn(mzax ml,.)

where

1>

SPa

2nIPAiBj VA/B/‘AB(AlvB/;AvB)
ij

VA/B/‘ABE'PH(AXBLAXB)

TV as (a}f ,bgq) nex ‘TVA/B/‘AB <a;(f), bgg) ﬂCkl(

x >
AN M (kD)2 (i) AN M

Immediately, normalizing by 4N;M;; and taking the sum over 1 <i <my, 1 <j<m),,1<p<N;1<

q < M;; yields

in’

My, My 2N; 2M'LJ

2
ZZ4NM ZZSpq< (n + 1)2APBP 02 (max m/, )2, (96)
i=1 j=1 p 1 g=1 !

Similarly, it follows from (90) and (91) that

mn 1,7L 2N1 2Ml]
EY > 4NM > >0 KP < (4 )P i (maxen, ) < (0 4+ 1Pl (maxm],)?,(97)
=1 j=1 p 1 g=1 ¢
where
KP1 A 3 oA, Varryan (B B1A)
ij

VA/B/‘ABG'PTL(.AXB‘.AXB)

‘TVA/B"AB (ap ’ pq) ﬂC ‘TVA’B’\AB (al(?i)vbgt)l) N Ca

ity e T,

and it follows from (92) and (94) that

2N; 2M’LJ
Z Z 4N, M Z Z L < (n+1) A (maxm n) < (n+ 1)2‘A‘2‘B‘2mn(mﬁx mi,)?,  (98)
i=1 j=1 p 1 g=1

where L7 is actually independent of j and ¢ and is given by

A nlpy v, ,(AA)
¥ = 2 Z 2" Fa;Vara
VA/‘AG'Pn (.A|.A)
‘TVA/‘A <az(>l)> Ney ‘TVA/‘A <a1()z)> ﬂck‘

2N; + gﬁ; 2Ny,
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Summing (96), (97) and (98) together, we obtain

2N; 2M;;

ZZ4NM ZZ (Sf’q qu—i-qu) 3(n+1)2‘“4‘ IBI2 (mlaxm L (99)

=1 j=1

Therefore, there exists at least a selection of these sets {C; o and {Czj}z ;n]"’jl ™in such that

2N; 2M;;

ZZ n M >3 (870 4+ K29+ 120 < 3(n + )24 2 (e .

=1 j=1

which implies that for all ¢ = 1,2,...,m,, and j = 1,2,...,m/, the following is satisfied

2N; 2M;;
2
Spq qu+qu) <3n+12|A| B, maxm 2, 100

We next proceed with an expurgation argument. Without loss of generality, we assume

2M;, 2M;;
1q 1q 1q 2q 2q 2q
2M Z( +Kiﬂ'+Lij) = 2M Z( +KU+LU)§”'
q=1 q=1

2Mij

1 2N;, 2Niq | 72N,
< (Sij Ty KN ‘1),
2M;;

q=1
then we must have, for every 1 < p < Nj,

2M;;
Z SP+ KP4 P9 < 6(n + 1)2AF1B 02 (max m], )2,

M

Similarly, suppose for each p =1,2, ..., N;,

M ,2M; ,2M;
KIS KE L s S R
the above implies that for each p = 1,2,..., N; and each ¢ = 1,2, ..., M;;,
SP 4+ KP4 P9 < 12(n + 1)2HPBE, 7 (maxmf, ). (101)

7

We now let for i = 1,2,....m,, p=1,2,,,..N;, ; & {agl),ag), S\Z,Z} Cc G, or £, /{ap } C CP and

for j =1,2,.. q=1,2,..., My, let Q,-j(ag)) = {(al(,z),bg()l)} 31 such that
q:

(2,59, ),

<a§i)7 bg{}%) ,

zn’

' é ZLVJ ZJ a(l {(agi)vb%)> ) <agi)vb%)> )

(a6 (a8, 5% ..

(b o)1) (alBR)s) o (aRBR) 0, )} < G
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and denote also ijq £ Qij/ {(ap , )>} C ézg. Immediately, it follows from (101) that for every
i =1,2,....mp, j = 1,2,.. m, k=1,2,....,my, |l = 1,2,...,m;m, p=12..,N;, q¢g=12,., M;, and
every VA/B/IAB S Pn(.A X B|A X ) and VA’|A S Pn(A‘A)

(i) 1,() [
"]I'V e ap’, by | (ke —n|I A',B";A,B)—6
A'B'|AB ( ) < 2"l PAiijA’B’\AB( ) L (k1) # (i, 7), (102)
Ny My,
.7 pq
‘TVA,B,‘AB (ap » Pp.g > Qij < 2_n_IPAiBjVA’B’\AB(AI7B/;AyB)_6:| (103)
N; M;; o ’
‘TVA’B’\AB (ap , ]7 > m —n_Ip 1% (B’.B|A)—5i|
< o "[PaiBYarpap'T l ; 104
- < . L#7, (104)
J Pq
‘TVA/B/‘AB <ap » POp.q > ﬂQ < 2_n_1PAiBj VAIB!|AB (B/;B|A)_5} (105)
M;; = ’
Tv , (a(l)) n Qk ’.
‘ AllA P S 2_”[1PA1-VA/\A(A ,A)_(S]’ ]{7 # i, (106)
Ny
T , (a(l)> Q;f ’.
‘ Varia ]\;7 ﬂ < 2_"[IPA1-VA/\A(A ,A)—5] 7 (107)

where

5= % [\A\2]B]210g2(n +1) + logy my, + logQ(mZaxmén) +logy 12| .

Thus far, we proved the existence of the sets {2; and €);; with elements selected uniformly from each
Ty, and Ty, p; satisfying the inequalities (102)—(107) for any V44 and Vg 4. It remains to show that
these sets are disjoint and have distinct elements provided assumptions (1) and (2). Indeed, since (106)
and (107) hold for every Va4 € Pn(A|A), they of course hold when V4 is a conditional distribution
such that V7, 4(d'la) is 1if ' = a and 0 otherwise. It then follows from (1)

1
EIOg2Ni <HPAZ~(A) —5—IPA V* (A/,A) )

A’|A

that ‘TVX/\A <a1(,i)> N Qk‘ = Hag)} N Qk‘ < 1 or equivalently, Hag)} N Qk‘ = 0, which means any elements
in ©; does not belong to Qy, for ¢ # k, i.e., Q; and j are disjoint. Likewise, using assumption (1) in (107),

o ()10 - o) -

which means that ; has N; disjoint elements. Similarly, setting V4 p/4p be the conditional distribution

we see that

such that VX’B’\AB(U’/’ b'|a,b) is 1 if a’ = a, b’ = b and 0 otherwise, and using (2)

1
E 10g2 MZ] < HPAiPBj‘Ai (B|A) - 5’
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we see that for any al(f) € Q, Qyj (ag))’s are disjoint and the elements in €2;; (al(f)) are all distinct, i.e.,

\Q”( )\ = M;; for every al) € Q;. Finally, when V4114 is not the conditional distribution such that
Vaya(d'|a) is 1 if ' = a and 0 otherwise, we can write (106) and (107) in the same way as (3), and
when Vg g/ ap is not the conditional distribution such that Vg piap(a’,b'la,b) is 1if ' = a, ¥’ = b and 0

otherwise, we can write (102)—(103) as (4), and write (104)—(105) as (5), since

‘TVA’\A (a(i)) ﬂ Q?
‘TVA’B’\AB ( ay ’bg4> ﬂ qu

‘TVA’B’\AB < P ’ng> ﬂQ

= ‘TVA’\A <a1(f)> Q;
= ‘TVA’B’\AB (a 2 b t)1> ﬂQij

g
) %

9

—~

)

=

—

- ‘TVA’B’\AB <a

S|

B Proof of (23) and (24)

B.1 Upper Bound on "]TVy‘ L), x)N &

If we fix a k =1,2,...,my, and a l = 1,2,...,m,,, then & is the set of all y such that there exist some
((t, ), x') € Qug, (t,0)" # (t,u), ((t,u),x, (t,u),x’,y) admits a joint type P uyx(t,u)yxy € Pn(T? xU? x
X% xY) and

I((t,u),x";y) — (Rk + Ri) > I((t,u),x;y) — (R; + Ryj). (108)

Note that (108) can be represented as for dummy R.V.’s (TU) € T xU, X € X, (TU) € T xU, X' € X,
and Y € Y, the following holds under the joint distribution Piry)x vy xy = Pt,ux(s,u)yx'y

IP gy oy (T, U), X5Y) = (Rie + Ria) 2 Iprysy (T0U), X3 Y) — (Ri + Ryj),

where Piryy xy and Pryxy are the corresponding marginal distributions induced by Py x(ruy x'y -

Thus, ']I“7Y‘TUX ((t,u),x) [ & can be written as a union of subsets

mn mk:n

ﬂ& U U U Fr((t, 1), x, Py x (ruy x1y) (109)

k=1 1=1 Pry)x(ruy xy €Chi((£,1),%)

VY\(TU)X

where

Proyx = Peux = Pruyx;
Pruoyxruyxy Pruyx = Pruyx,:  Priroyx = Vyiru)x,
EPu(T* xUP x X2 x V)t Ipon (TU), X1Y) — (R + Ry)
2 IP(TU)XY((T? U)a X; Y) - (RZ + Rij)

Ck,l((t7 u)v X) =
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where Piryyx, Piruyx and Pyry)x, ete, are the corresponding marginal and conditional distributions
induced by Piry)x vy xry, and
3 ((t7u)/7xl) ((t,U),X, (t,U)/,X/,Y) S P]I‘(TU)X(TU)’X’Y

y: )
such that ((t,u),x") € Qp,  (t,u) # (t,u)

(1>

Fra((6,0), x, Poroyx (ruy xvy)

where T(TU)X(TU)’X’Y =S TP(TU)X(TU)’X’Y' Clearly, given any k, l, and P(TU)X(TU)’X’Y7

| Frea((t,0), %, Py x (roy xvy) |

((t,u),x, (t,u),x",y) € T(royx vy xy

< t,u),x,y):
S N EWEIE e o ey £ ()

((t,u),x, (t,u)',x') € T(rv)x vy x”

= t,u),x'):
(& u)',x) ((t,u),x") € Qp,  (t,u) # (t,u)

X |Ty|rv)x oy x ((t,0),%, (t,u), x')|

(T,U),X;(T,U)’,X’)—n] % nHp (Y|(T,U),X,(T,U),X")

< NkMle_n[IP(TU)X(TU)’X’( 9" Pruyx (TUY XY ’ (110)

where the last inequality follows from Lemma 2. Meanwhile, when ((t,u),x) € €;;, the following simple
bound also holds

. nH o Y|(T,U),X)
| Frea((6,0), %, Proyxcroy xy)| < Ty oy x (8, 0),x)| < 2 ey VDY) _ o7 awyx; rirw)x

(111)
since for each T (pyyx(ruyxy € Cri((t,u),x), we have Pipyyx = Prvyx;» Priroyx = ?Y\(TU)X and
hence Piruyxy = P(rv)).x, Vy|(rv)x- Now substituting the following inequality (cf. [8, Eq. (28)])

HP(TU)X(TU)’X’Y (Y‘(Tv U)7 X, (T, U)/7 X,)
= HP(TU)XY (Y|(T,U), X)
HP(TU)XY(Y‘(T? U)7X)

- IP(TU)X(TU)’X’ ((T7 U)7 X7 (T7 U),7 X,)
TPy oy (TUY, X' (TU), X,Y)
(1,U), X"Y) (112)

IN

- IP(TU)’X’Y
into (110), combining with (111) together, we obtain

(I X)-|1p () X¥)- (Rt R

H ~
oy x; Yy (Tu)x (TU)'X'Y

| Frea (6, 0), %, Peronyx ruy xoyv )| < 2 {
(113)

Again recall that for Pry)xruyxy € Cri((t,0),%x), Pruyxy = P(rvy),x; ?y‘(TU)X, and note that

(T.U), X"Y) = (B + Rit) 2 Ipipyy) ey (T,U), X5Y) — (B; + Ryj).

IP(TU)’X’Y

This implies when Py x vy xry € Cru((t, u),x)

+
n|H v (Y|(T7U)7X)— 1 v ((TvU)v*XvY)_(Rl'i‘Rl]) :|
Poruy),; x; Vv i(ru)x Pruyy;x; Vy |(Tu)x
| Frea((t,0), %, Pernyx(roy xy)| <2 L (77 o) (O YITD ,
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and hence

((t,u),x) ﬂ&‘ <my, <mlaxm;n> (n+ 1)\7XU\2\X\2D7|

‘ ?Y\(TU)X

+

H 5 Y|(T,U),X)—|({ 5 T XY )—(Ri+Rij
in P((TU))inVY\(TU)X( ‘( )U)» ) (P((TU)),L-XjVY\(TU)X(( 7U)7 ) ) (R +RJ)) :|
)

since by Lemma 1

|Ck,l((tau)ax)| < ‘Pn(T2 X L{2 x X2 x y)| < (n+ 1)‘T|2|U‘Q‘X‘2|y“

B.2 Upper Bound on "JI‘A ((t,u),x) ﬂ&}

W (rvyx

!/

If we fixan ¢ = 1,2,...,m, and an | = 1,2,...,m;, , then & is the set of all y such that there exist some

((t,u),x') € Qup, X' #x, ((t,u),x,x,y) admits a joint type Py wyxry € Pn(T XU x X? x ) and
I((t,w), x5 y) = (Ri + Ry) = I((t,u),x5y) — (R + Rij). (114)

Using the identity
I(T,U), X;Y) =I(T,U;Y) + I(X; YT, U),

on both sides of (114) we see it is equivalent to
I(x';ylt,u) — Ry > I(x;y[t, u) — Rij. (115)

Note that (115) can be represented as for dummy R.V.’s (TU) € 7 xU, X € X, X' € X, and Y € ), the

following holds under the joint distribution Piry)xx'y = Pt u)xx'y>

IP(TU)X’Y(X,5 Y[T,U) = Rit 2 1Py (X5 Y |T,U) — Ry,

where Piri)xy and Piry)xry are the corresponding marginal distributions induced by Py x x7y- Thus,

((t,u),x) [ &2 can be written as a union of subsets

Vy|(rv)x
TVY\(TU)X((JC’ u),x) ﬂ52 - Un U Fi((t,u), x, Broyxxry) (116)
=1 Pipyyx xry €C((8,1),x)
where
Pruyx = Pewx = Pruyx;
Cl(6.u).x) 2 Pruyxxry Pruvyx: = Pavyx,,  Prirox = Wirux |

EPH(TXUXX2 Xy) : IP(TU)X,Y(X/;Y‘T,U)—RZ'[

2 IP(TU)XY (X’ Y|T’ U) - RZ]
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where Pryyx, Piruvyx: and Pyyru)x, ete, are the corresponding marginal and conditional distributions

induced by Piry)xx1y, and

v 3 ((t,u),x)  ((t,u),x,x",y) € Trryxxry
such that ((t,u),x") € Qy, x #x 7

1>

Fi((t,w), x, Proyxxry)

where Ty xxy = ']I‘p(TU) «xry- Using a similar counting argument, and applying Lemma 2, we can

bound, for any I = 1,2, ...,m;, and Pryyxxry € G((t,u),x),

N
"|:Hp % Y|(T.U),X)—|1p % (XY |T\U)— Ry }

(Tv))x; W |(Tv)x () x; Y |(Tv)x
|Fi((t,w),x, Proyx xy)| <2 I B ;

and finally, we obtain,

2

Y|(T,U),X)—

(X5Y|T,U)—R;j

|

since |Ci((t,u),x)| < (n + 1)|T||MHX|2IJJ\. -

H > I ~
Plrvy;x; Yy iru) x Plroyx; Yy iro)x

n
X2
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Figure 1: Transmitting two CS over the asymmetric 2-user communication channel.
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Figure 2: The lower bound (solid line) and the upper bound (dash line) for the system JSCC error exponent

for transmitting binary CS over the binary AMAC with binary additive noise.
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