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Abstract. We show that the axis bundle of a nongeometric fully irreducible outer automorphism admits

a canonical “cubist” decomposition into branched cubes that fit together with special combinatorics. From

this structure, we locate a canonical finite collection of periodic fold lines in each axis bundle. This gives
a solution to the conjugacy problem in Out(Fr) for fully irreducible outer automorphisms. This can be

considered as an analogue of results of Hamenstädt and Agol from the surface setting, which state that
the set of trivalent train tracks carrying the unstable lamination of a pseudo-Anosov map can be given the

structure of a CAT(0) cube complex, and that there is a canonical periodic fold line in this cube complex.

1. Introduction

Let Fr be the free group of rank r ≥ 2 and Out(Fr) its outer automorphism group. The outer space
associated to Fr, defined in [CV86] and denoted here by CVr, is the projectivized space of marked metric
graphs with fundamental group isomorphic to Fr (§2.1). Equivalently, CVr is the projectivized space of free,
properly discontinuous Fr-actions on R-trees. One can compactify CVr by taking CVr to be the projectivized
space of very small Fr-actions on R-trees [BF94, CL95].

An outer automorphism of Fr is fully irreducible if none of its powers preserve the conjugacy class of
a nontrivial proper free factor. Each fully irreducible φ acts on CVr with north-south dynamics [LL03], i.e.
there is an attracting tree T+ ∈ ∂CVr and a repelling tree T− ∈ ∂CVr such that φk(CVr\T−) converges to
T+, uniformly on compact sets, as k → ∞. We call φ geometric if it is induced by a homeomorphism of a
surface. In this paper, we will be solely concerned with nongeometric fully irreducible outer automorphisms.

A fold line for φ is a bi-infinite path in CVr which underlies a family of folding maps hrs : Tr → Ts and
which limits to T+ in forward time and T− in backward time. Morally, fold lines are a version of axes for the
action of φ, but defined purely in terms of the combinatorics of graphs and without reference to a metric on
CVr. The axis bundle of φ, introduced in [HM11] and denoted here by Aφ, is the union of fold lines for φ.

The coarse topology of Aφ was classified in [HM11], where it is shown that the inclusion of any fold line is
a proper homotopy equivalence. The finer combinatorics of Aφ has remained mysterious. For example, the
‘tripod fold’ and ‘singularity merging’ in [Pfa24] and [AKKP19] seem to suggest certain non-homogeneity
along and among axis bundles respectively, although these phenomena are not yet well understood.

In this paper, we aim to initiate a new framework for studying the axis bundle by showing that it admits
a specific type of combinatorial structure (explained in detail in §3-4):

Theorem 1.1. Let φ be a nongeometric fully irreducible outer automorphism. Then Aφ admits a canonical
structure of a cubist complex. From the cubist complex structure, there is a canonically defined directed graph
cAφ

embedded in Aφ, we call the cardiovascular system, satisfying the following properties:

(i) There is a finite set of bi-infinite directed lines on which φ acts periodically. We call each line in
this collection an artery.

(ii) Each vertex of cAφ
has a unique outgoing edge, thus has a well-defined forward trajectory. Each

forward trajectory eventually enters an artery.
(iii) Any two arteries are related by sweeping across finitely many 2-dimensional branched cubes.
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Here, the notion of a cubist complex is based off that of a cube complex, with the key differences being:

(1) A cube complex is a space decomposed into cubes, whereas a cubist complex is a space decomposed
into branched cubes, which are unions of cubes glued along certain affine slices. See the figure
below for a 2-dimensional branched cube formed by gluing three 2-dimensional cubes.

splitting vertex

folding vertex

folding direction
(2) A cubist complex is inherently directed: Each

branched cube is equipped with a splitting
vertex and an ‘antipodal’ folding vertex. In-
tuitively, the folding direction refers to paths
from the splitting vertex to the folding ver-
tex, whereas the splitting direction is the
opposite direction. The branched cubes in a
cubist complex must intersect in a manner preserving this directionality.

(3) When two cubes intersect in a cube complex, their intersection is a (complete) face of each of the
two cubes, whereas when two branched cubes intersect in a cubist complex, their intersection is a
(complete) face in the splitting side of one branched cube and a subset of a face in the folding side
of the other branched cube. Morally, this causes the branched cubes to get ‘finer’, resembling a
‘Zenotic’ division, in the folding direction. See Figure 1, the black squares, for an example.

Property (2) follows directly from how we defined the branched cubes. For property (1), the branching of

the branched cubes arises when the turns share directions. For exam-
ple, if three directions lie in a single gate, then there are three edges in
the branched cube that come from the three ways of choosing a pair
of directions out of the three to fold, but folding two of the pairs will
force the remaining pair to be folded as well, resulting in a branched
cube depicted in the image accompanying (2) above.

For property (3), the Zenotic division in the folding direction arises
if folding some of the pairs of directions causes vertices to appear in
the path of the remaining folds (some folds are longer than others), so
that in the process of carrying out these remaining folds, one passes
through multiple fully preprincipal train tracks. To the right is an example.

We give an outline of how the cubist complex structure arises for an axis bundle Aφ: For each graph
T ∈ Aφ, there is a map T → T+ that respects the Fr-actions and restricts to an isometry on each leaf of
the attracting lamination Λ [BFH97] determined by the repelling tree. In general, there is an interval’s
worth of such maps, but by taking the rightmost one, we associate a canonical Λ-isometry to each T . We
say a pair of directions at a vertex of T is an illegal turn if they are identified in T+ under the Λ-isometry.
A gate is an equivalence class of directions, under the equivalence relation generated by illegal turns.

Figure 1. A cubist complex (in black) and its cardiovascular system (in red).
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The branched cubes in the cubist complex structure are defined as follows. The nodes of the cubist
complex structure, i.e. the 0-dimensional cubes, in Aφ are the fully preprincipal weak train tracks.
These are the graphs in CVr that have at least three gates at each vertex, as introduced by the first author
in [Pfa24]. The edges, i.e. the 1-dimensional cubes, are obtained by folding illegal turns. The higher
dimensional branched cubes are obtained by folding illegal turns by various amounts.

From this cubist structure, the cardiovascular system cAφ is defined by connecting, via directed segments,
the nodes of Aφ in the splitting direction. See the Figure 1 red graph, for an example, and see §4.4 for the
precise definition. The refinement of X in the folding direction implies that each node in cAφ

has precisely
one outgoing edge but possibly many incoming edges. Thus each node has a unique forward trajectory, and
intuitively these trajectories (which go in the splitting direction) tend to converge together. The portion
of a forward trajectory from the point it converges into a translate on then lies on an artery. This shows
Theorem 1.1(i)-(ii). Item (iii) follows from a more intricate analysis of the combinatorics of cubist complexes.

The nodes and edges of each artery determine a periodic folding sequence for φ, i.e. P,N ∈ Z and
a sequence of folding maps hn : τn+1 → τn for each n ∈ Z satisfying that τn+P = φN (τn), defined up to a
translation of the indexing. By varying over the arteries, we obtain as such a canonical finite collection sφ
of periodic folding sequences for φ. Moreover, Theorem 1.1(iii) states that the different sequences in this
collection differ in a highly controlled way.

We can use this collection to provide one solution to the conjugacy problem:

Theorem 1.2. Two nongeometric fully irreducible φ,φ′ ∈ Out(Fr) are conjugate if and only if the collections
sφ and sφ′ share a common periodic folding sequence (up to a translation on the indexing).

Finally, we highlight that the cubist complex structure and cardiovascular system on Aφ are very com-
putable objects, as demonstrated in Section 5 via some examples, that also showcase a variety of phenomena.

1.1. Geometry of the axis bundle. Handel and Mosher, via a list of questions in [HM11], and Bridson
and Vogtmann [BV06, Question 3], more directly, ask: Describe the geometry of Aφ for a fully irreducible
φ ∈ Out(Fr) acting on CVr. The cubist complex structure gives some new perspective on this question.

Each node of the cardiovascular system cAφ
determines a directed ray. These directed rays converge

together into a finite collection of periodic bi-infinite lines.
We draw a parallel between this situation and the dynamics of geodesics in hyperbolic space Hn: For a

fixed boundary point ξ ∈ ∂Hn, consider the collection of geodesics that limit onto ξ. The geodesics in this
collection converge together in forward time, and if φ is a loxodromic isometry of Hn fixing ξ, then one can
extract from this collection a geodesic that is invariant under φ.

This is, however, not a perfect analogy since the axis bundle can have multiple arteries. In the case of
multiple arteries, Theorem 1.1(iii) states that any two arteries are related by sweeping across finitely many
2-dimensional branched cubes. One can morally regard the union of the 2-dimensional branched cubes as a
flat strip, see the shaded region of Figure 2 left, and we can revise the analogy by ‘blowing up’ the invariant
geodesic in Hn by inserting a Euclidean strip, see Figure 2 right.

1.2. Motivation from surfaces. Recall that a train track on a surface S is an embedded graph τ where
the half-edges at each vertex are tangent to a common tangent line. In [Ham09], Hamenstädt showed that
the set of trivalent train tracks on S can be realized as the vertex set of a cube complex T T S by taking the
edges to be splitting moves, and the higher-dimensional cubes to be spanned by commuting splitting moves.
We regard T T S as an analogue of outer space in the surface setting.

Let f be a pseudo-Anosov map on S, and let ℓ+ be the attracting lamination of f . The results of [Ham09]
imply that the set of trivalent train tracks that carry ℓ+ determines a CAT(0) subcomplex of T T S . We
denote this subcomplex as Af and regard it as an analogue of the axis bundle. This analogy is justified by
the fact that the axis bundle Aφ admits a similar description as the set of graphs Γ that carry the expanding

lamination Λ, in the sense that there is a Λ-isometry from Γ̃ to the attracting tree T+.
In this perspective, the first statement in Theorem 1.1 that Aφ is a cubist complex is an analogue of the

fact that Af is a cube complex. However, the vertices of Af are trivalent train tracks, which are the ‘most
generic’ type of train track, in the sense that they form an open subset of the set of all train tracks carrying
ℓ+. On the other hand, the vertices of Aφ are fully preprincipal train tracks, which are the ‘least generic’
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Figure 2. The dynamics of the cardiovascular system resembles that of geodesics in hyper-
bolic space that limit onto a fixed boundary point ξ−, possibly with the invariant geodesic
being blown-up into a flat Euclidean strip (region in red).

type of train track since they are the cubes with the highest possible codimension. Hence it might be more
accurate to say that our cubist complex structure on Aφ is an analogue of a sort of ‘dual complex’ of Af .

We also mention an unfinished monograph of Mosher [Mos03] that explores similar ideas of constructing
complexes out of train tracks and splitting moves (albeit of a more general type than those in [Ham09]).

In [Ago11], Agol showed that there is a canonical axis of the action of f on Af . The corresponding periodic
splitting sequence gives a complete conjugacy invariant of the pseudo-Anosov map f . Theorem 1.1(i) and
Theorem 1.2 can be considered as analogues of these facts.

Note that our methods differ from those of Agol. In [Ago11], Agol considers the maximal splitting
operation, which means splitting the branches of a train track that have maximal weight (measured by
the transverse measure on ℓ+), while the operation underlying our cardiovascular system is, in some sense,
performing all possible splits.

Question 1.3. Is there a meaningful version of Agol’s maximal splitting operation in the free group setting?

There are some inherent difficulties in a näıve generalization. For example, while a natural choice of
weights can be assigned to branches via studying the incidence matrices, there is no guarantee that a branch
with maximal weight can be split or that branches of maximal weight are disjoint. The latter fact is in part
due to our train tracks not being trivalent - some arguments in [Ago11] break down because of this.

Nevertheless, a positive answer to Question 1.3 would suggest a positive answer to the following question.

Question 1.4. Is it possible to upgrade Theorem 1.1(i) from a finite canonical collection of fold lines to a
single canonical fold line?

One motivation for Question 1.4 is that pseudo-Anosov maps have a unique axis in Teichmüller space. By
contrast, fully irreducible outer automorphisms have, in general, uncountably many fold lines. Theorem 1.1(i)
extracts a finite canonical collection of fold lines out of these, but it would be more satisfying if one could
take things a step further and extract a single canonical fold line.

1.3. Generalization to cut decomposition axis bundles. A (weak) periodic Nielsen path (PNP)
in a T ∈ Aφ is a homotopically nontrivial path in T whose endpoints are principal points with the same
image in T+. Each PNP can be written as a concatenation of indivisible PNPs, which are paths of the form
α−1
1 ∗ α2, with α1 and α2 mapped to the same interval in T+. We refer to [BH92, HM11] for details.
Intuitively, a PNP represents some redundancy of T : Given an indivisible periodic Nielsen path α−1

1 ∗α2,

one can fold T by identifying α1 and α2 and get a ‘reduced’ element T of Aφ with a naturally induced

Λ-isometry T → T+.
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For this reason, it is sometimes convenient to consider instead the stable axis bundle SAφ, which is
the subset of Aφ that consists of elements without PNPs. See, for example, [HM11, MP16]. The machinery
developed in this paper fully carries over to this stable category.

To be even more general, we define the cut decomposition axis bundles: The possible PNPs in trees in
Aφ correspond to the cut vertices of IW (φ), see [HM11, §4]. Fixing a subset of possible PNPs is equivalent
to choosing a cut decomposition G of IW (φ). For each cut decomposition G, we define the G-axis bundle
GAφ to be the subset of Aφ that consists of elements whose PNPs determine the cut decomposition G.
Theorem 1.5. Let φ be a nongeometric fully irreducible outer automorphism. Let G be a cut decomposition
of IW (φ). The G-axis bundle GAφ of φ admits a canonical structure of a cubist complex which makes it
a subcubist complex of Aφ. From the cubist complex structure, there is a canonically defined directed graph
cGAφ

embedded in GAφ, which we call the cardiovascular system, satisfying the following properties:

(i) There is a finite set of bi-infinite directed lines on which φ acts periodically. We call each line in
this collection an artery.

(ii) Each vertex of cGAφ
has a unique outgoing edge, thus has a well-defined forward trajectory. Each

forward trajectory eventually enters an artery.
(iii) Any two arteries are related by sweeping across finitely many 2-dimensional branched cubes.

We expect that the cubist complex machinery can be used to study the following problem.

Question 1.6. How do the cut decomposition axis bundles GAφ sit inside the full axis bundle Aφ?

As a final remark, we note that even though GAφ is a subcubist complex of Aφ, the arteries in GAφ and
Aφ can be completely different. We demonstrate an example of this in Example 5.4.

2. Preliminary definitions and notation

Throughout this paper, we write Fr for the rank r free group and Out(Fr) for its outer automorphism
group. We will always assume that r ≥ 3. Finally, φ ∈ Out(Fr) will denote a nongeometric fully irreducible
outer automorphism. Recall from the introduction that this means no power of φ preserves the conjugacy
class of a nontrivial proper free factor and φ is not induced by a homeomorphism of a surface.

2.1. Culler-Vogtmann Outer Space. Outer space was introduced by Culler and Vogtmann in [CV86] as
an Out(Fr) analogue to Teichmüller space.

Let Rr be the r-petaled rose, i.e. the graph with precisely r edges and one vertex. Recall from [BH92]
that a marked graph of rank r is a connected finite graph Γ, with no valence 1 or 2 vertices, together with
an isomorphism π1(Γ) ∼= Fr defined via a homotopy equivalence (called the marking) ρ : Γ → Rr. Marked
graphs ρ : Γ → Rr and ρ′ : Γ′ → Rr are considered equivalent when there exists a homeomorphism h : Γ → Γ′

such that ρ′ ◦ h is homotopic to ρ. We denote the edge set by EΓ and the vertex set by V Γ.
A metric on Γ is the path metric determined by choosing for each edge e of Γ a length ℓ(e) and a charac-

teristic map je : [0, l(e)] → e, in the sense of CW complexes. A metric is determined, up to homeomorphism
isotopic to the identity, by the assignment of lengths ℓ(e). The volume of Γ is defined as vol(Γ) :=

∑
e∈E(Γ)

ℓ(e).

The unprojectivized outer space ĈVr is the space of all metric marked graphs of rank r modulo

marking-preserving isometry. The outer space CVr itself is the projectivization of ĈVr, i.e. the quotient

of ĈVr by homothety. By instead viewing the points in CVr as those Γ with vol(Γ) = 1, one can see its
decomposition into disjoint open simplices, one for each marked graph.

Lifting to the universal covers, one obtains an alternative definition of CVr: Given a marked graph (Γ,m)
in CVr, by lifting to the universal cover, one obtains a simplicial tree with a free π1(Γ) ∼= Fr-action by deck
transformations. The compactified outer space CVr = CVr ∪ ∂CVr is the space of minimal, very small
Fr-actions on R-trees, known as Fr-trees, modulo Fr-equivariant homothety.

Throughout this paper we often pass between the perspective of CVr as a space of marked graphs or a
space of Fr-trees without comment.

A direction at a point p in an R-tree T is a connected component of T\{p} and if there are ≥ 3 directions
at p it is a branch point. A turn at p is an unordered pair of directions at p. Let DpT denote the set
of directions at p, or D(p) if T is clear. Define DT := ∪p∈TDpT . Given a locally injective continuous map
f : T → T ′ of R-trees, define a direction map Df : DpT → Df(p)T

′ by sending a direction to its f -image.
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2.2. Train track representatives. A homotopy equivalence g : Γ → Γ of a marked graph Γ is a train
track representative for φ ∈ Out(Fr) if it maps vertices to vertices, φ = g∗ : π1(Γ) → π1(Γ), and gk |int(e)
is locally injective for each e ∈ EΓ and k > 0. Many of the definitions and notation for discussing train track
representatives were established in [BH92] and [BFH00]. We recall some here.

We denote the vertex set by V Γ and edge set by EΓ. A direction at v ∈ V Γ is a germ of initial segments
of directed edges emanating from v. The set of directions at v is denoted D(v) and Dg will denote the
direction map induced by g. We call a point v periodic if there exists a j ≥ 1 such that gj(v) = v and
a direction d at a periodic point v periodic if Dgk(d) = d for some k > 0. We call an unordered pair of
directions {di, dj}, based at the same point, a turn.

We call a locally injective path tight. Recall from [BH92] that a nontrivial tight path ρ in Γ is a periodic
Nielsen path (PNP) for g if gk(ρ) ≃ ρ rel endpoints for some k ∈ Z>0, a Nielsen path (NP) if the
period is one, and an indivisible Nielsen path (iNP) if it further cannot be written as a concatenation
ρ = ρ1ρ2, where ρ1 and ρ2 are also NPs for g. [BH92] gives an algorithm for finding a representative with
the minimal number of Nielsen paths, such a representative is called a stable representative.

As in [HM11], we call a periodic point v ∈ Γ principal that either has at least three periodic directions
or is an endpoint of a periodic Nielsen path.

A train track representative is called rotationless if every principal point is fixed and every periodic
direction at each principal point is fixed. We use from [FH11, Corollary 4.43] that rotationless powers exist,
depend only on the rank r, and fix all PNPs.

2.3. Attracting tree T+ and lamination Λ. Each fully irreducible φ ∈ Out(Fr) acts on CVr with an
attracting tree T+

φ ∈ ∂CVr and a repelling tree T−
φ ∈ ∂CVr [LL03]. Dual to T+

φ and T−
φ , we have the repelling

and attracting laminations respectively. In this paper we only concern ourselves with the attracting tree and
lamination, which we thus write succinctly as T+ and Λ when φ is clear. In this subsection, we provide a
description of these objects in terms of train track representatives.

Construction 2.1 (Attracting tree T+). Let g : Γ → Γ be a train track representative of φ and Γ̃ the

universal cover of Γ equipped with a distance function d̃ lifted from Γ. Then π1(Γ) ∼= Fr acts by deck

transformations, hence isometries, on Γ̃. A lift g̃ of g corresponds to a unique automorphism Φ representing

φ. For each w ∈ Fr and x ∈ Γ̃, we have Φ(w)g̃(x) = g̃(wx). Define the pseudo-distance d∞, for each x, y ∈ Γ̃,

by d∞(x, y) = limk→∞
1
λk d(g̃

k(x), g̃k(y)). Then T+ is the quotient of Γ̃ under x ∼ y when d∞(x, y) = 0.

To describe the attracting lamination we need the following: Let Γ be a marked graph with universal

cover Γ̃ and projection map p : Γ̃ → Γ. By a line in Γ̃ we mean a proper embedding of the real line

λ̃ : R → Γ̃, modulo reparametrization. We denote by B̃(Γ) the space of lines in Γ̃ with the compact-open

topology (generated by the open sets Ũ(γ̃) := {L ∈ B̃(Γ) | γ̃ is a finite subpath of L}). A line in Γ is then the

projection p◦ λ̃ : R → Γ of a line λ̃ in Γ̃. We denote by B(Γ) the space of lines in Γ with the quotient topology

induced by the natural projection map from B̃(Γ) to B(Γ). One can then define U(γ) := {L ∈ B(Γ) | γ is
a finite subpath of L}, which generate the topology on B. For a marked graph Γ, we say a line γ in Γ is
birecurrent if each finite subpath of γ occurs infinitely often as an unoriented subpath in each end of γ.

Construction 2.2 (Attracting lamination Λ). Fix a fully irreducible φ ∈ Out(Fr) and consider any train
track representative g : Γ → Γ for φ. Given any edge e in Γ, there exists a k > 0 such that the following is a
sequence of nested open sets: U(e) ⊃ U(gk(e)) ⊃ U(g2k(e)) . . . The attracting lamination Λ is the set of

birecurrent lines in the intersection. We often use the same notation for the total lift Λ̃ of Λ to the universal
cover. The meaning should be clear from context.

Remark 2.3 (Viewing Λ in trees T ∈ CVr). The definition of Λ is well-defined, independent of the choice

of train track representative; see [BFH97, Lemma 1.12] for proof. Once a basepoint lift is chosen in Γ̃,

one can identify ∂Γ̃ with the hyperbolic boundary ∂Fr of Fr. This allows identification of Λ̃ with a set of

unordered pairs of points in ∂Fr, so Λ̃ is also well-defined. Then define the realization of Λ in a general

point of CVr represented by a marked graph Γ′ with universal cover Γ̃′ and a chosen basepoint in Γ̃′: Use

the identifications ∂Γ̃ ∼= ∂Fr
∼= ∂Γ̃′, to obtain B̃(Γ) ∼= B̃(Γ′), identifying Λ̃ ⊂ B̃(Γ) with a subset of B̃(Γ′)

called the realization of Λ̃ in Γ̃′. Via the projection B̃(Γ′) → B(Γ′), we obtain the realization of Λ̃ in Γ′.
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2.4. Folds and splits. Throughout this subsection, I will denote a (possibly infinite) interval.
A fold path in CVr is a continuous, injective, proper function F : I → CVr defined by

1. a continuous 1-parameter family of marked graphs t → Γt and
2. a family of homotopy equivalences hts : Γs → Γt defined for s ≤ t ∈ I, each marking-preserving, satisfying:
• (Train track property): hts is a local isometry on each edge for all s ≤ t ∈ I and
• (Semiflow property): hut ◦ hts = hus for all s ≤ t ≤ u ∈ I and hss : Γs → Γs is the identity for all s ∈ I.

We call F a fold line when I = R. When I = [a, b] for some a < b and hsa(Γa) is homeomorphic to
hta(Γa) for each a < s < t < b, we call F a fold. In an abuse of notation, sometimes we use the same
terminology for the quotient map hba as for F . A fold with only 2 edges in the support is simple.

For a free, simplicial Fr-tree T , a Λ-isometry on T is an Fr-equivariant map Ft : T → T+ such that, for
each leaf L of Λ realized in T , the restriction of Ft to L is an isometry onto a bi-infinite geodesic in T+.
Since Ft is continuous, there is a well-defined map of directions DFt, with a restriction DpFt to the set of
directions at p for each p ∈ T . A fold F is Λ-legal if hts is a Λ-isometry for each t, s. Note that a Λ-legal
fold cannot identify the directions in a Λ-legal turn.

Viewed as a quotient map, a fold induces a map on directions and a gate structure in which gates are
defined as equivalence classes of directions identified by the fold. We call this structure weighted, as each
turn {d1, d2} in a gate has an associated length ℓ({d1, d2}) that is the length of the initial segments of the
edges e1 and e2, in the directions d1 and d2, identified by the fold. In particular ℓ({d1, d2}) ≤ ℓ(e1), ℓ(e2).

Lemma 2.4. Suppose that Ft is a Λ-isometry. Let d0, ..., dm be directions in a gate. Then

(1) min
i=1,...,m

{ℓ({di−1, di})} ≤ ℓ({d0, dm}).

Proof. By induction, it suffices to show the lemma when m = 2. In this case, the initial segments of d0 and
d1 of length ℓ({d0, d1}) ≤ min{ℓ({d0, d1}), ℓ({d1, d2})} have the same Ft-image, and the initial segments of
d1 and d2 of length ℓ({d1, d2}) ≤ min{ℓ({d0, d1}), ℓ({d1, d2})} have the same Ft-image. Hence, at least the
initial segments of d0 and d2 of at least length min{ℓ({d0, d1}), ℓ({d1, d2})} have the same Ft-image. □

We call a continuous, injective, proper function F ′ : I → CVr defined by a continuous 1-parameter family
of marked graphs t → Γt a split path if F(t) = F ′(a + b − t) is a fold path. We call F ′ a split if F is a
fold, Λ-legal if F is, and simple if F is. Note that, since a Λ-legal fold must be a Λ-isometry, a Λ-legal
split must also restrict to an isometry on each leaf L of Λ.

2.5. Weak train tracks. A normalized weak train track for φ is a T ∈ ĈVr on which a Λ-isometry
exists. A weak train track is an element of CVr represented by a normalized weak train track.

As explained in [HM11, Theorem 5.8], the choices of Λ-isometry on a fixed normalized weak train track T
can be nonunique, and are parametrized by a closed interval (that is possibly a single point). In [HM11, §6.2],
Handel and Mosher define a right-most isometry k+T and [HM11, Lemma 6.3] provides that this assignment

of k+T is continuous (further explanation is provided in the remark following the lemma in [HM11]). In this
paper, we always equip a normalized weak train track with its right-most Λ-isometry.

Having a canonical choice of a Λ-isometry ensures having a unique fold between elements of the axis
bundle where one exists.

Lemma 2.5. Let T, T ′ be normalized weak train tracks. If there is a fold f : T → T ′ such that k+T ′f = k+T ,
then f is unique.

Proof. Suppose f ′ : T → T ′ is another fold such that k+T ′f ′ = k+T . Since k+T and k+T ′ are Λ-isometries, f and
f ′ must be Λ-legal. This implies that for each leaf L of Λ, we have f(L) = f ′(L) = L, as realized in T ′.

Now let x be a point in T and L a leaf of Λ passing through x. Then f(x) and f ′(x) lie on the realization
of L in T ′. But f(x) and f ′(x) map to the same point k+T (x) under k+T ′ , so we must have f(x) = f ′(x)

otherwise k+T ′ would not be a Λ-isometry. □

As with folds, there is a weighted induced gate structure on T for each Λ-isometry Ft : T → T+.

Definition 2.6 (Fully preprincipal). A (normalized) weak train track is fully preprincipal if, in the
induced gate structure from its rightmost Λ-isometry, each vertex has ≥ 3 gates. This generalizes the [Pfa24]
notion, by leaving out PNPs restrictions.
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2.6. Axis bundle. The axis bundle Aφ for a nongeometric fully irreducible φ ∈ Out(Fr) was first introduced
in [HM11], where 3 equivalent definitions were given, with proof of their equivalence found in [HM11, Theorem
1.1]. Further description is given in [MP16]. We give here the only one of the three definitions we use: Fix
a normalization of T+. Then:

Âφ = {free simplicial Fr-trees T ∈ ĈVr | ∃ Λ-isometry fT : T → T+}.

In other words, Âφ is the set of normalized weak train tracks in ĈVr. The axis bundle Aφ is the set of

weak train tracks in CVr for φ, i.e. Aφ is the image of Âφ under the projectivization of ĈVr.
By [HM11, Lemma 5.1], each weak train track in CVr is represented by a unique normalized weak train

track in ĈVr; equivalently, the projection ĈVr → CVr restricts to a bijection Âφ → Aφ. As such, we may
occasionally blur the distinction between weak train tracks and normalized weak train tracks.

We note that Aφ is also the union of the images of all fold lines F : R → CVr such that F(t) converges in

CVr to Tφ
− as t → −∞ and to Tφ

+ as t → +∞. An important example of such a fold line is a periodic fold
line for a Stallings fold decomposition of a train track representative g : Γ → Γ: At an illegal turn for g,
fold two maximal initial segments with the same image to obtain a map g1 : Γ1 → Γ of the quotient graph
Γ1. Repeated the process for g1 and recursively. If some gk : Γk−1 → Γ has no illegal turn, then gk is a
homeomorphism and the fold sequence is complete. Taking a rotationless power avoids the homeomorphism.

Several crucial properties of the axis bundle are recorded in [HM11, Theorem 6.1, Lemma 6.2]. We
summarize a few here as Proposition 2.7.

Proposition 2.7 ([HM11]). Let φ ∈ Out(Fr) be nongeometric fully irreducible. Then the map vol : Âφ →
(0,∞) is a surjective, φ-equivariant homotopy equivalence, where φ acts on (0,+∞) by multiplication by 1

λ .

The φ-action gives a means to decompose Aφ into compact fundamental domains.

Lemma 2.8. Suppose that φ ∈ Out(Fr) is nongeometric fully irreducible. Then each fundamental domain
of the φ-action on Aφ contains only finitely many preprincipal train tracks.

Proof. First note that, since the fundamental domain is compact, it can intersect only finitely many simplices.
So it suffices to show that each simplex contains only finitely many preprincipal train tracks of φ.

Since each vertex of each preprincipal train track T contains ≥ 3 gates, each vertex must be mapped by
the Λ-isometry Ft to a branch point. Further, Ft, as a Λ-isometry, is an isometry on each edge. Since T+

has only finitely many orbits of branch points, this gives a finite list of possible edge lengths in T . Together
with the domain containing only finitely many simplices, this gives only finitely many possibilities for T . □

We use the following construction, allowing us to connect the axis bundle to train track representatives.

Construction 2.9 (Train tracks). Weak train tracks can be constructed from train track representatives:
Let g : Γ → Γ be a train track representative of a nongeometric fully irreducible φ ∈ Out(Fr). Recall

Construction 2.1 and let Tk denote the simplicial Fr-tree obtained from Γ̃ by assigning the metric dk(x, y) =
1
λk d(g̃

k(x), g̃k(y)), identifying each x, y ∈ Γ̃ with dk(x, y) = 0, and then equipping the quotient graph with
the metric induced by dk. Then, for each i, a basepoint-preserving lift of g induces a basepoint-preserving
Fr-equivariant map g̃i+1,i : Ti → Ti+1 restricting to an isometry on each edge. Define a direct system

g̃j,i : Ti → Tj inductively by g̃j,i = g̃j,j−1 ◦ g̃j−1,i. Then Γ̃ is a weak train track where the Λ-isometry

g∞ : Γ̃ → T+ is the direct limit map. Γ̃ is called a train track. TT (φ) denotes the set of train tracks for φ.

Γ̃ = T0
g̃1,0

//

g∞

��
T1

g̃2,1

//

g1,∞

��
T2

g̃3,2

//

g2,∞

  
. . . T+
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Figure 3. The cut decompositions of the top graph, arranged in the partial ordering of fineness.

2.7. Ideal Whitehead graphs. The ideal Whitehead graph of a nongeometric fully irreducible φ ∈ Out(Fr)
is first defined in [HM11]. One can reference [Pfa12] and [HM11] for alternative definitions and its outer
automorphism invariance. Further explanation yet can be found in [MP16, §2.8, §2.10].

Definition 2.10 (Ideal Whitehead graph IW (φ)). Let φ ∈ Out(Fr) be nongeometric fully irreducible with

lifted attracting lamination Λ̃ realized in T+. ĨW (φ) is the union of the components with at least three
vertices of the graph that has a vertex for each distinct leaf endpoint and an edge connecting the vertices
for the endpoints of each leaf. Fr acts freely, properly discontinuously, and cocompactly in such a way that

the restriction to each component of ĨW (φ) has trivial stabilizer. The ideal Whitehead graph IW (φ) is
the quotient under this action. It has only finitely many components.

Using Remark 2.3, one can view ĨW (φ) in any Fr-tree T ∈ TT (φk).

Definition 2.11 (Principal points). Given a branch point b of T+, the lifted ideal Whitehead graph ĨW (φ)

has one component, denoted ĨWb(φ), whose edges, realized as lines in T+, all contain b. This relationship

gives a one-to-one correspondence between components of ĨW (φ) and branch points of T+. Given a branch

point b of T+, let ĨW b(φ;T ) denote the realization of ĨW b(φ) in T . This makes sense by viewing the ideal
Whitehead graph in terms of the lamination leaves, as in Definition 2.10. We call a point v in T principal

for f if there exists a branch point b of T+ such that f(v) = b and v lies in come leaf of ĨW b(φ;T ).
It is shown in [HM11], and can be ascertained from the alternative IW (φ) definitions given there (and in

[Pfa12]) that a principal point downstairs either has 3 periodic directions or is the endpoint of a PNP.

2.8. Cut Decompositions. Suppose φ ∈ Out(Fr) is nongeometric fully irreducible. In this subsection we
describe a methodology developed by Handel and Mosher in [HM11, §4] for using cut vertices in IW (φ) to
obtain train track representatives with varied numbers of PNPs. We use the methodology in Proposition 2.17
to construct fully preprincipal train track representatives of φ that realize all possible “cut decompositions”
of IW (φ).

Suppose that G is a graph that can be written as a union of two nontrivial subgraphs of G intersecting
in a single vertex v ∈ V G, then we call v a cut vertex of G. By a cut decomposition of G, we mean a
collection of nontrivial connected subgraphs {G1, . . . , Gk} of G satisfying that

(1) G = ∪ Gj and
(2) Gi ∩Gj is either empty or a vertex for each i ̸= j.

As an example, we have listed out the cut decompositions of the graph at the top of Figure 3 in the figure.
The cut decompositions are arranged in the partial order of fineness.

The ideal Whitehead graph has another interpretation in terms of singular leaves of Λ̃. Here, a leaf of Λ̃
is singular if it shares a ray with another leaf.

Definition 2.12 ( LW (ṽ, T ), SW (ṽ, T )). Let T be a weak train track and ṽ a principal point of T . The
local Whitehead graph LW (ṽ;T ) has a vertex for each direction at ṽ and an edge connecting the vertices
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representing a pair of directions {d1, d2} if the turn {d1, d2} is taken by the realization in T of a leaf of Λ̃.
The stable Whitehead graph SW (ṽ;T ) at ṽ is the subgraph of LW (ṽ;T ) obtained by restricting to the
principal directions, i.e. those containing singular rays emanating from ṽ.

Each SW (ṽ;T ) sits inside ĨW (φ) as follows: A vertex of SW (ṽ;T ) corresponds to a singular leaf ray

R̃ emanating from ṽ. The endpoint of this ray corresponds to a vertex of ĨW (φ). An edge of SW (ṽ;T )

corresponds to a singular leaf based at ṽ (as in Definition 2.11). This leaf also gives an edge of ĨW (φ).
The following is a restatement of [HM11, Lemma 5.2], focused on our purposes.

Lemma 2.13 ([HM11]). Suppose that T is a weak train track and FT : T → T+ a Λ-isometry. Suppose that
b is a branch point of T+ and {w̃i} ⊂ T is the set of principal vertices mapped by FT to b. Then

(1) ĨW b(φ;T ) = ∪SW (w̃i;T ).
(2) For each i ̸= j, the intersection SW (w̃i;T ) ∩ SW (w̃j ;T ) is at most one vertex. In the case where

there is a vertex P in the intersection, we have that P is a cut point of ĨW (φ), separating SW (w̃i;T )

from SW (w̃j ;T ) in ĨW (φ).

Definition 2.14 (Local decomposition). The cut decomposition in Lemma 2.13 is the local decomposition
of T .

Let T, T ′ be weak train tracks. As in [HM11], one says T is split at least as much as T ′ if the local

decomposition ĨW (φ) =
⋃
SW (vj ;T ) is at least as fine as the local decomposition ĨW (φ) =

⋃
SW (wi;T

′).
That is, for each principal vertex vj of T , there exists a principal vertex wi of T ′ such that SW (vj ;T ) ⊂
SW (wi;T ), where the inclusion takes place in ĨW (φ), realized as a decomposition, as above.

Suppose φ ∈ Out(Fr) is a rotationless nongeometric fully irreducible outer automorphism and G is a cut
decomposition of IW (φ). [HM11, Lemma 4.3] provides a method to obtain a train track representative g of φ

so that Γ̃ has local decomposition G. More specifically, g is obtained from a stable train track representative
h of φ via iteratively “splitting open” at cut vertices of the stable Whitehead graphs, as follows.

Construction 2.15 (Splitting open a cut vertex). Suppose w is a cut vertex of a stable Whitehead graph
SW (f, u) of a train track representative f : Γ → Γ of φ and G1, G2 are nontrivial subgraphs of SW (f, u)
meeting only at w and with SW (f, u) = G1 ∪G2. Then w is represented by a fixed direction d0 at u, as well
as a collection d1, . . . , dN of directions mapped to d0 by powers of Df . Let E0 be the edge in the direction of
d0. See Figure 4 left. In the top row of the figure, we have drawn the graph Γ. In the bottom row, we draw
a ‘blown-up’ view where we insert the local Whitehead graph LW (v, T ) at each vertex v, with the purple
edges lying in SW (v, T ) and the red edges lying in LW (v, T ) but not SW (v, T ).

We explain how to form an NP via splitting open at E0. The same procedure should simultaneously be
applied to the edge in the direction of each of d1, . . . , dN .

G1 and G2 correspond to a bipartition of D(u)\{d0} satisfying that the directions of each f -taken turn
are in the same partition element. Create from Γ a new graph Γ′ where

• V Γ′ = (V Γ\{u}) ∪ {u1, u2}, and
• each edge ej = [v′j , u] is replaced with [v′j , u1], and
• each edge e′j = [v′′j , u] is replaced with [v′j , u2], and
• E0 = [u, v] is replaced by the 2 edges [u1, v] and [u2, v], and
• all other edges remain the same.

See the middle image of Figure 4.
The map f ′ is the same as f except that E0 is replaced by E1 in the image of any edge when u was passed

through via G1 and by E2 when u was passed through via G2, and analogous alterations occur for the edges
in the directions of d1, . . . , dN . The images of E1 and E2 are that of E, but that the image of E1 now starts
with E1 and that of E2 with E2. Note that E0 was a fixed direction, as it was represented by a vertex in
SW (f, u), so that this map of the Ej makes sense. In the cases of d1, . . . , dN , instead of the image of E1, E2

starting with respectively E1, E2, the f -image of e would start with Df(e).
We call this procedure splitting u open along E.
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G1

G2

u
u1 u2

E0 E1 E2

Γ Γ′

Figure 4. Splitting open a cut vertex. In the top row, we have drawn the graph Γ. In
the bottom row, we draw a ‘blown-up’ view where we insert the local Whitehead graph
LW (v, T ) at each vertex v, with the purple edges lying in the stable Whitehead graph
SW (v, T ) and the red edges lying in LW (v, T ) but not SW (v, T ).

Lemma 2.16. Suppose that g is a fully preprincipal train track representative of a rotationless nongeometric
fully irreducible φ ∈ Out(Fr). Then splitting open at a cut vertex yields a train track representative of φ that
can be Λ-legal split to obtain a fully preprincipal train track representative of φ.

Proof. Suppose g is fully preprincipal and u was split open along E = [u, v]. Note that v still has ≥ 3 gates.
Our concern is that either u1 or u2 has only 2 gates. Without loss of generality we assume u1 has only 2
gates and that the directed edges at u are E1, e1, . . . , en. Then the only possible Λ-taken turns at u are of
the form {E1, ej}. So it is possible to split open u1 to replace {E1, e1, . . . , en} with {Ē1e1, . . . , Ē1en}. See
Figure 4 right. The process can be repeated at u2, if necessary. □

Proposition 2.17. Suppose φ ∈ Out(Fr) is rotationless nongeometric fully irreducible. Then each cut
decomposition of IW (φ) is realized by a fully preprincipal train track representative of φ.

Proof. By [Pfa24, Proposition 7.1], φ has a fully preprincipal train track representative with the minimal
number of PNPs (this is explicitly stated in the ageometric case, but follows the same argumentation in the
parageometric case). Repeated application of Lemma 2.16 yields a train track representative whose stable
Whitehead graphs give the desired cut decomposition. □

The stable axis bundle was introduced in [HM11, §6.5] as an object of interest and was used extensively
in [MP16]. We expand upon the notion of the stable axis bundle to define an axis bundle for each cut
decomposition of the ideal Whitehead graph.

Definition 2.18 (G-axis bundle GAφ). Suppose φ ∈ Out(Fr) is nongeometric fully irreducible and G is
a cut decomposition of IW (φ). The G-axis bundle GAφ is the set of all weak train tracks whose local
decomposition is at most as coarse as G. Under this terminology, the stable axis bundle is the G-axis
bundle where G is the coarsest possible local decomposition {IW (φ)}.

The partial ordering of fineness will be important for us because of the role it plays in [HM11, Proposition
5.4], which we record here as Proposition 2.19. We will use this proposition to ensure that each weak
train track is contained in the branched cube determined by a fully preprincipal train track with local
decomposition as split as its own (Proposition 3.14).

Proposition 2.19 ([HM11]). Let φ ∈ Out(Fr) be nongeometric fully irreducible. Then for any train track

representative g : Γ → Γ for φ with associated Λ-isometry g∞ : Γ̃ → T+, there exists an ε > 0 so that, if
11



f : T → T+ is any Λ-isometry, if g∞ splits at least as much as f , and if Len(T ) ≤ ε, then there exists a

unique equivariant edge-isometry h : Γ̃ → T such that g∞ = f ◦ h. Moreover, h is a Λ-isometry.

Proposition 2.20. Let φ ∈ Out(Fr) be nongeometric fully irreducible and let G be a cut decomposition of
IW (φ). Then the G axis bundle GAφ is connected.

Proof. Suppose S1, S2 ∈ GAφ. By Proposition 2.17, there is a fully preprincipal T ∈ Aφ with local decompo-
sition G. Using Proposition 2.7, we shift S1 and S2 so that the ε requirement in Proposition 2.19 is satisfied
and then use Proposition 2.19 to know that both S1 and S2 can be obtained from T by folding. In other
words, both S1 and S2 can be connected to T by a fold path, thus by a path. □

3. Branched cubes in the axis bundle

In this section we start building a cubist complex structure on the axis bundle Aφ by describing the
branched cubes. We then show some combinatorial properties of the interaction between these branched
cubes. Unless otherwise indicated, we assume throughout this section that φ ∈ Out(Fr) is nongeometric
fully irreducible, T ∈ Aφ is a fully preprincipal weak train track endowed with the weighted gate structure
induced by its rightmost Λ-isometry Ft : T → T+, and T0 is the set of illegal turns in T .

3.1. Description of the branched cubes. For each (ℓτ ) ∈
∏

τ∈T0
[0, ℓ(τ)], let T(ℓτ ) ∈ ĈVr denote the

metric graph obtained from T by folding each turn τ ∈ T0 along initial segments of length ℓτ .

Definition 3.1. Let T ∈ Aφ be fully preprincipal. The branched cube at T is the set

BT =

{
T(ℓτ ) | (ℓτ ) ∈

∏
τ∈T0

[0, ℓ(τ)]

}
⊂ ĈVr.

For future reference, note that for each T(ℓτ ) ∈ BT there is a canonical fold h : T → T(ℓτ ).

Lemma 3.2. Each branched cube BT is a subset of Aφ. Further, if T ∈ GAφ, then BT is a subset of GAφ.

Proof. Suppose T ′ ∈ BT . To show the first statement, it suffices to show that there exists a Λ-isometry
FT ′ : T ′ → T+. Consider the natural fold f : T → T ′. Since f folds along illegal turns, we know both that f
restricts to an isometry on each leaf of Λ and that, if f(x) = f(y), then FT (x) = FT (y). Thus, we can define
FT ′ as the quotient of FT induced by the quotient map f .

Now suppose in addition that T ∈ GAφ. The second statement follows from the fact that folding cannot
increase the number of PNPs and a cut decomposition is determined by PNPs. □

One drawback to the notation T(ℓτ ) is that we can have T(ℓτ ) = T(ℓ′τ )
for (ℓτ ) ̸= (ℓ′τ ). To overcome this,

we define functions capturing how much folding we actually do, as opposed to how much folding we were
instructed to do: Let {d1, d2} be a turn in T . Let di denoted the initial direction of the oriented edge ei. For
each T ′ ∈ BT , we define x{d1,d2}(T

′) to be the length of the largest initial segments in e1 and e2 identified
by the fold T → T ′. For example, if d1 and d2 do not lie in the same gate, then x{d1,d2}(T

′) = 0.

Lemma 3.3. Suppose T ∈ Aφ is fully preprincipal and d0, ..., dm is a sequence of directions in T . Then

(2) min
i=1,...,m

{x{di−1,di}} ≤ x{d0,dm}.

Proof. The proof of this is exactly the same as Lemma 2.4. □

Together with a decomposition of BT into cubes as will be described in Section 3.3, the functions xτ will
serve as a kind of coordinate system.

3.2. Examples of branched cubes. Before analyzing the structure of the branched cubes in general, we
take a moment to go through some examples. For simplicity, let us assume that only one gate, G, of T has
more than one direction.

Example 3.4. Suppose G has exactly 2 directions, which we denote as d1, d2. The set of train tracks B
that can be obtained from T by folding the unique turn {d1, d2} in G is homeomorphic to an interval. The
coordinate x{d1,d2} on B is the length folded.
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Example 3.5. Suppose G has exactly 3 directions, which we denote as d1, d2, d3 (top left in the figure).
Then the set of illegal turns is T0 = {{d1, d2}, {d1, d3}, {d2, d3}}.

d1

d3

d2

d1

d3

d2

d1

d3

d2

T

T

T
T

T

T ′

T ′

T ′

T ′′
T ′′

T ′ T ′′

x12x23

For each subset T ⊂ T0 containing at most
two of the three turns, let CT denote the set
of train tracks obtained by folding T along the
turns in T . Then CT is homeomorphic to a |T |-
dimensional cube for each T . The coordinates
of the cube are the lengths xτ we folded the
turns τ ∈ T . If T ′ ⊂ T , then CT ′ is a splitting
face of CT and consists of all points where the
coordinates xτ for τ ∈ T \ T ′ are zero.

The interaction between CT and CT ′ is more
interesting when neither T nor T ′ is a subset of
the other. Let T ′ be a train track obtained from
T by folding {d1, d2} by x12 and {d2, d3} by x23, where x12 ≥ x23. Then, by definition, T ′ ∈ C{{d1,d2},{d2,d3}}.
However, T ′ can also be obtained from T by folding {d1, d2} by x12 and {d1, d3} by x13. This is because
along the interval in which we are identifying d1 and d3, we have already identified d1 and d2. Thus
T ′ ∈ C{{d1,d2},{d1,d3}} as well. Now let T ′′ be a train track obtained from T by folding {d1, d2} by x12 and
{d2, d3} by x23, where x12 < x23. Then T ′′ ∈ C{{d1,d2},{d2,d3}} but T ′′ ̸∈ C{{d1,d2},{d1,d3}}. This argument
reveals that C{{d1,d2},{d2,d3}} meets C{{d1,d2},{d1,d3}} along the slice {(x12, x23) | x12 ≥ x23}.

A similar argument holds for any pair CT and CT ′ where T and T ′ are 2-element sets. Thus the set of train
tracks B that can be obtained by folding T , being C{{d1,d2},{d1,d3}} ∪C{{d1,d2},{d2,d3}} ∪C{{d1,d3},{d2,d3}}, is
a branched cube as shown in the bottom right of the image.

Example 3.6. In general, a subset T of T0 specifies a cube CT of train tracks obtained by folding T along
the turns in T if and only if the turns in T can be folded independently of one another. For example,
if T contains a triplet of the form {{d1, d2}, {d1, d3}, {d2, d3}}, then folding {d1, d2} and {d1, d3} will also
force folding {d2, d3}. On the other hand, if T is of the form {{d1, d2}, {d2, d3}, {d3, d4}}, then independent
folding is possible. We formalize this idea later by considering the elements of T0 as edges of a graph on the
elements of G. The set of train tracks B that can be obtained by folding T is the union of the CT as T
ranges over such independent subsets of T0.

The possible intersections between the cubes CT also get more complicated as the number of elements in G
grows. For example, suppose T = {{d1, d2}, {d2, d3}, {d3, d4}, {d4, d5}} and T ′ = {{d1, d2}, {d3, d4}, {d1, d4}}.
Then, using the coordinates (x12, x23, x34, x45) on CT given by the fold lengths, we claim that CT meets CT ′

along the slice ST ,T ′ = {(x12, x23, x34, x45) | x23 ≤ min{x12, x34} & x45 = 0}.
For the ST ,T ′ ⊆ CT ∩ CT ′ direction, consider a train track T ∈ CT satisfying x23 ≤ min{x12, x34} and

x45 = 0. We can also reach T by first folding {d1, d2} for x12 and {d3, d4} for x34, then folding {d1, d4} for
x23. See Figure 5, top middle. The point is that since x23 ≤ min{x12, x34}, along the folded segments of d1
and d4, we have d1 is already folded with d2, as is d3 with d4. So folding {d1, d4} or {d2, d3} is the same.

For ⊇, consider a train track T ∈ CT ∩CT ′ . Then necessarily x45 = 0 since the direction d5 is not folded at
all for train tracks in CT ′ . Meanwhile, for all train tracks in CT ′ , the turn {d2, d3} must be folded at most as
much as {d1, d4}. Under the coordinates (x12, x23, x34, x45), the amount of folding for the former is x23 while
that of the latter is min{x12, x23, x34}. Thus x23 ≤ min{x12, x23, x34}, or equivalently, x23 ≤ min{x12, x34}.

One can similarly verify that using the coordinates (x12, x34, x14) on CT ′ given by lengths of folding, CT ′

meets CT along the slice ST ′,T = {(x12, x34, x14) | x14 ≤ min{x12, x34}}.
In general, the slices of intersection will be given by inequalities determined from a graph on the elements

of G, with edges T0, as described above.

3.3. The decomposition into cubes. We view T0 as a set of possible edges in a (simple, undirected) graph
whose vertex set is D(T ). In particular, every subset T ⊂ T0 determines such a graph GT that is the graph
with an edge for each turn in T . We say T is independent if GT has no cycles.
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d3

T
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T ′′
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T

T ′T ′′

CT CT ′
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T

T ′
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C3

d1

d2d5

d3d4

Figure 5. An example where T has exactly one gate G of more than one direction and G
has exactly 5 directions. The folded train track T ′ is in CT ∩ CT ′ . The folded train track
T ′′ is in CT but not CT ′ . Bottom right is the graph for determining the relevant inequalities.

Definition 3.7 (Cubes). Let T ⊂ T0 be an independent subset. The cube CT,T is defined as

CT,T =

{
T(xτ ,0) | (xτ ) ∈

∏
τ∈T

[0, ℓ(τ)]

}
,

where (xτ , 0) is the element of
∏

τ∈T0
[0, ℓ(τ)] with coordinate xτ for τ ∈ T and 0 for τ ∈ T0\T .

By definition, we have CT,T ⊂ BT . Further, for each τ ∈ T , we have xτ (T(xτ ,0)) = xτ . The following
lemma states that the functions xτ parametrize CT,T as a cube.

Lemma 3.8. The map
∏

τ∈T [0, ℓ(τ)] → CT,T defined by (xτ ) 7→ T(xτ ,0) is a homeomorphism.

Proof. The map is continuous and surjective by definition. Since
∏

τ∈T [0, ℓ(τ)] is compact, it suffices to show
injectivity. From the proof of Lemma 3.2, the natural fold f : T → T ′ satisfies FT ′f = FT . By Lemma 2.5,
f is the unique fold satisfying this property. Injectivity thus follows since each xτ is defined as the length of
the largest initial segments with the same f -image. □

The functions x{d1,d2}, for {d1, d2} ̸∈ T , are PL functions on CT,T in the coordinates xτ , for the τ ∈ T :

Lemma 3.9. Suppose x ∈ CT,T and {d1, d2} ̸∈ T . Recall the graph GT corresponding to T .

(a) If there is a path in GT connecting d1 and d2, let p be the shortest such path. Then

(3) x{d1,d2} = min
τ∈p

xτ .

(b) If there is no path in GT connecting d1 and d2, then x{d1,d2} is identically zero.

Proof. We first show (b). If there is no path in GT connecting d1 and d2, then either d1 and d2 are not
directions at the same gate, or they lie in the same gate but are not folded. In both cases, x{d1,d2} = 0.

For (a), we have x{d1,d2} ≥ minτ∈p xτ since the initial segments of length minτ∈p xτ of each direction in p,
including d1 and d2, are all identified together. Conversely, let τ0 ∈ p ⊂ T be such that minτ∈p xτ = xτ0 and
let T ′ be the element of CT,T with the same coordinates xτ , for τ ∈ T , as x except xτ0 = 0. Then T ′ ∈ CT,T ′

for T ′ = T \{τ0}. Since T was independent, there is no path in GT ′ connecting d1 and d2. Hence, by (2),
x{d1,d2}(T

′) = 0. But x is obtained from T ′ by folding τ0 for xτ0 , so x{d1,d2} ≤ xτ0 = minτ∈p xτ . □

The branched cube BT is the union of the cubes CT,T for the independent sets of turns T ⊂ T0:

Proposition 3.10. Let T be a fully preprincipal train track. Then

BT =
⋃

independent T ⊂ T0

CT,T .
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Proof. Again, each CT,T ⊂ BT by the definitions. So we consider T(ℓt) ∈ BT and show T(ℓt) ∈ CT,T for some
T . Define an independent T ⊂ T0 inductively as follows: Start with T = ∅. At each stage, consider the
turns τ ∈ T0 such that T ∪ {τ} is independent. Among such τ , pick one such that ℓτ is maximal, and add
that turn to T . Since T0 is finite, this process terminates eventually and we have an independent subset T .

We claim T(ℓτ ) = T(ℓτ ,0). First observe that we can obtain T(ℓτ ) from T by first folding the τ ∈ T by
ℓτ , to get T(ℓτ ,0), then folding the remaining τ ̸∈ T by ℓτ . But for each remaining turn {d1, d2}, we have
x{d1,d2}(T(ℓτ ,0)) is the minimum of the ℓτ as τ ranges over edges in T connecting d1 to d2. The value ℓ{d1,d2}
cannot exceed this value, or we would have chosen {d1, d2} to be in T . That is, the amount of folding we have
to do on {d1, d2} was already done in T(ℓτ ,0), so there is no extra folding to be done, and T(ℓτ ) = T(ℓτ ,0). □

Our next task is to compute the intersections between the cubes CT,T in BT . Let T and T ′ be two
independent subsets of T0. Let the components of the graph GT ∩T ′ be C1, ..., Ck. Note that a single
disconnected vertex is also a component. We define the slice ST ,T ′ to be the subset of CT consisting of all
points satisfying the following inequalities for each i, j = 1, ..., k:

(4)

{
x{di,dj} ≤ min{x{di,d′

i}, x{dj ,d′
j}} if ∃ {di, dj} ∈ T and {d′i, d′j} ∈ T ′ connecting Ci & Cj

x{di,dj} = 0 if ∃ {di, dj} ∈ T connecting Ci & Cj , but no such τ ′ ∈ T ′.

Once can verify that this gives the correct set of inequalities for an example in Example 3.6, using the graph
in Figure 5 bottom right.

Lemma 3.11. Let T and T ′ be two independent subsets of T0. The subset of points in CT,T that also lie in
CT,T ′ is the slice ST ,T ′ .

Proof. Suppose T ′ = (xτ ) ∈ CT,T lies in the slice ST ,T ′ , i.e. the inequalities of Equation (4) are satisfied for
each i, j = 1, ..., k. Think of T ′ as obtained from T by (1) folding the τ ∈ T ∩ T ′ for xτ , then (2) folding the
{di, dj} ∈ T \T ′ for x{di,dj}. For the folds done in step (2), since x{di,dj} = 0 if there is no τ ′ ∈ T ′ connecting
Ci to Cj , we only fold {di, dj} for values of i, j for which there exists a {d′i, d′j} ∈ T ′ connecting Ci to Cj .

Since x{di,dj} ≤ min{x{di,d′
i}, x{dj ,d′

j}}, by the time we do the step (2) folds, we are folding initial segments

of di and dj identified with d′i and d′j , so we could have equivalently folded {d′i, d′j} by x{di,dj}. That is,
T ′ ∈ CT,T ∩ CT,T ′ .

Conversely, suppose T ′ ∈ CT,T ∩CT,T ′ . Then for each {di, dj} ∈ T \T ′, considering T ′ as a point in CT,T ′ ,

x{di,dj} =

{
min{x{di,d′

i}, x{d′
i,d

′
j}, x{d′

j ,dj}} if ∃ {d′i, d′j} ∈ T ′ connecting Ci & Cj

0 otherwise

≤

{
min{x{di,d′

i}, x{d′
j ,dj}} if ∃ {d′i, d′j} ∈ T ′ connecting Ci & Cj

0 otherwise
.

□

3.4. Splitting and folding faces. In this subsection we define the splitting and folding faces of a branched
cube. We use this terminology when analyzing the combinatorics of how branched cubes intersect each other.

Let T be a fully preprincipal train track and T ⊂ T0 an independent subset. The splitting face of CT,T
associated to T ′ ⊂ T is the subset of CT,T defined by xτ = 0 for all τ ∈ T ′. Note that this is the same set
as CT,T ′ . The splitting vertex of CT,T is the splitting face associated to T itself, i.e. the point {T}. The
folding face of CT,T associated to T ′ ⊂ T is the subset of CT,T defined by xτ = ℓ(τ) for all τ ∈ T ′.

The splitting/folding faces of BT will be unions of the splitting/folding faces of the CT,T : The splitting
face of BT associated to a choice of partition G = ⊔Gi for each gate G of T is the subspace of BT defined
by xτ = 0 whenever τ ̸⊂ Gi for all i. The splitting vertex of BT is the splitting face associated to the
partition of each gate into one-element sets, so is defined by xτ = 0 for all τ , and is just the point {T}. A
splitting face of BT is a proper subset of BT if and only if at least one of the gate partitions is a nontrivial
partition. The folding face of BT associated to a subset T ⊂ T0 is the subspace of BT defined by xτ = ℓ(τ)
for each τ ∈ T . Such a folding face is a proper subset of BT if and only if T is a nonempty subset of T0.

Lemma 3.12. A branched cube BT is the union of its proper folding faces and the interiors of its splitting
faces.
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Proof. Suppose x ∈ BT does not lie in the interior of BT , nor of any proper folding face of BT . Then xτ = 0
for some τ ∈ T0. Declare two directions d1, d2 equivalent if x{d1,d2} > 0. It is clear this relation is reflexive
and symmetric. It is transitive by Equation (2). Further, two directions can only be equivalent if they lie
in the same gate. Thus, the equivalence classes partition the gates. The partition is nontrivial since xτ = 0
for some τ . By definition, xτ = 0 if and only if τ does not lie in an element of this partition. And xτ < ℓ(τ)
for each τ , or x would lie on a proper folding face of BT . Thus x lies in the interior of the splitting face
associated to this partition. □

3.5. Union of the branched cubes. The goal now is to show the branched cubes BT cover Aφ. We first
show the following lemma, providing that, as a cube, the vertices of each CT,T are fully preprincipal points.

Lemma 3.13. The vertices of CT,T , i.e. the points where each xτ is either 0 or ℓ(τ), are fully preprincipal.

Proof. Let T ′ be a vertex of CT,T . Then T ′ is obtained from T by folding some collection of illegal turns in
T fully. Since each turn folded is folded fully (and by a Λ-sometry), any new vertex created by the fold has
at least 3 gates. Further, since each turn folded was illegal, the number of gates at a vertex could not have
decreased. Since T was fully preprincipal, each vertex of T has at least 3 gates, and so each vertex of T ′ has
at least 3 gates, and thus T ′ is also fully preprincipal. □

Proposition 3.14. Let S ∈ Aφ. Then there is a fully preprincipal T ∈ Aφ with S ∈ BT . In fact, we can
choose T to have the same local decomposition as S, and so that S is not on a proper folding face of BT .

In particular, by Lemma 3.12, for each G, we have that GAφ is the union of the interiors of the splitting
faces of BT , as T ranges over all fully preprincipal weak train tracks whose local decomposition is G.
Proof. Let R be the rotationless power of φ and G the local decomposition of S. By Proposition 2.17, there

is a fully preprincipal train track representative g : Γ → Γ for φ such that T = Γ̃ has local decomposition G.
Using Proposition 2.7, we can shift T so that the ε requirement in Proposition 2.19 is satisfied and then

we can use Proposition 2.19 to know that S can be obtained from T by folding. However, we are not done
yet because the fold path α from T to S may pass through multiple branched cubes.

We modify the fold path inductively as follows: If α does not meet a proper folding face of BT , then α
stays inside BT . Otherwise, if α meets a proper folding face of BT , then α must meet a folding face of some
cube CT,T at some point S′. We can choose a vertex T ′ ̸= T of CT,T so that there is a fold path from T ′ to
S′. We then modify α by replacing its initial segment from T to S′ by the fold path from T ′ to S′.

Since there is a fold path from T to T ′ and from T ′ to S, the local decomposition of T ′ is also G. For the
same reason, vol(T ′) < vol(T ) and vol(T ′) ≥ vol(S). By Lemma 2.8, this shows the process terminates. □

3.6. Intersections of the branched cubes. The goal of this subsection is to analyze the intersection of
the branched cubes BT . The following construction will play a large role.

Construction 3.15 (Peel-off). Let T be an element of Aφ and v ∈ V T . Suppose there is a d0 ∈ D(v) and
disjoint nonempty subsets D1, D2 ⊂ D(v) such that:

a. D(v) = {d0} ∪D1 ∪D2.
b. All Λ-leaves that pass through v by entering at d0 exit through D1 or D2.
c. No Λ-leaves pass through v by entering at D1 and exiting through D2.
d. All Λ-leaves that pass through v by entering at D1 and exiting through d0 travel along the same

segment I before meeting a vertex w with ≥ 3 gates.

See Figure 6, where the purple lines are Λ-leaves.
In this case, we say (D1, D2, I) is a possible peel. Note that, by irreducibility, (c)-(d) imply there are

Λ-leaves entering at each of D1 and D1 before passing through I.
We can define a fully preprincipal train track TI by detaching the directions in D1 at v, attaching them

to an endpoint of a copy of I, and attaching the other endpoint of the copy of I to w. We say that TI is
obtained from T by peeling off D1 from D2 at v along I. Note that there is a folding map hI : TI → T
and the preimage of I is the union of two segments I1 and I2 that meet at w.

The special case when v is a two-gate vertex will be particularly important in the following. In this case,
note that we decrease the valence at a two-gate vertex when splitting from T to TI .

We say that a fully preprincipal train track T ′ is obtained by completely peeling T if there is a sequence
of peel-offs T = T0 → T1 → ... → Tm = T ′ at two-gate vertices.
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I

T

D1
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w

I1

I2

TI

peel

Figure 6. Left: A possible peel (D1, D2, I). Right: Peeling off D1 from D2 at v along I.

Example 3.16. Let T be a point in a branched cube BT ′ . Then T lies in a cube CT ′,T . Let τ = {d1, d2} ∈ T
be a turn such that xτ (T ) > 0. Let T1 be the point with the same coordinates as T except that xτ (T1) = 0.

Then T can be obtained by first folding T ′ to T1 along the turns in T \{τ} then folding initial segments
I1 ⊂ d1 and I2 ⊂ d2 of length xτ . Let h : T ′ → T be that folding map and v1, v2 the terminal points of I1,
I2 respectively. Let I ⊂ T be the common image of I1 and I2. Let v = h(v1) = h(v2) be the endpoint of I
other than w, and let d0 be the direction at v determined by I. Let D1 be the h-image of the directions at
v1 other than I1, and let D2 = D(v)\({d0} ∪D1). Then (D1, D2, I) is a possible peel and TI = T1.

We have a criterion for determining whether we are in the situation of the example.

Lemma 3.17. Suppose T ∈ BT ′ . Recall from Definition 3.1 that there is a canonical fold h : T ′ → T . A
split train track TI lies in BT ′ if and only if there exists no possible peel (D′

1, D
′
2, I

′) where h(I ′) ⊃ I, and
h(D′

1) ⊂ D1, and h(D′
2) ⊂ D2. If TI ∈ BT ′ , then TI lies in a splitting face of BT ′ .

Proof. Suppose TI lies in BT ′ and suppose there is a possible peel (D′
1, D

′
2, I

′) as in the lemma. Let h′ be
the fold h′ : T ′ → TI and hI the fold hI : TI → T . Then the h′-image of the segment I ′ has to be mapped
via hI over I. But since there are Λ-leaves passing through D′

1 and I ′, and hI is a Λ-isometry, h′(I ′) must
pass through I1. Similarly, h′(I ′) must pass through I2. This contradicts h : T ′ → T from being an isometry
on I ′. This argument shows that if a possible peel (D′

1, D
′
2, I

′) exists, then TI does not lie in BT ′ .
Conversely, suppose TI /∈ BT ′ . Then the preimage h−1(I) must be a union of edge segments, or since

T ′ is fully preprincipal, there would be a ≥ 3-gate vertex in the interior of h−1(I), mapping to a ≥ 3-gate
vertex in the interior of I. Consider the edge segments J in h−1(I), having endpoints vJ , wJ mapped to v,
w respectively. For each J , consider the leaves that pass through vJ by entering through J . There are three
cases (indicated in the upper left image of the figure):

w v

v3

v2

v1

I

T
D1

D2

w

TI

w

T ′

w

T ′

(2)

(1)

(3)
(2)

(1)

(1)

(1) All leaves exit vJ through a direction mapped by
h to D1.

(2) All leaves exit vJ through a direction direction
mapped by h to D2.

(3) Some leaves exit vJ through a direction mapped
by h to D1, while some leaves exit vJ through a direc-
tion mapped by h to D2.

If J is of type (3), one can construct a possible peel
by extending J until it meets a vertex. Thus we can
assume each J to be of type (1) or (2) as in the upper
right image of the figure.

Let w′
1, ..., w

′
m be the vertices of T ′ mapped to w by

h. Up to reindexing, suppose w′
1, ..., w

′
p are the vertices that meet both segments J of type (1) and of type

(2). For each i = 1, ..., p, we choose a turn τi with one direction being a segment of type (1) and the other
direction being a segment of type (2).

The goal of the rest of the proof is to locate a cube of the form CT ′,T1∪{τ1,...,τp}∪T2
containing both T and

TI , hence contradicting the assumption that TI ̸∈ BT ′ . Toward this end, choose a cube CT ′,T containing T
and let (xτ ) be the coordinates of T in that cube. Temporarily suppressing the subscript i for notational
simplicity, suppose τ = {d1, d2}, with d1 determined by the segment of type (1) and d2 determined by the
segment of type (2). Let G be the gate containing d1 and d2. Let G1 = {d ∈ G | x{d,d1} > x{d1,d2}} and
G2 = {d ∈ G | x{d,d1} ≤ x{d1,d2}}. Thus G = G1 ⊔G2, with d1 ∈ G1 and d2 ∈ G2.
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There must be a path in GT from d1 to d2, or we would have x{d1,d2} = 0 which is not the case since τ
is folded. Recall from Equation (3) that x{d1,d2} is the minimum of xτ as τ ranges over edges of this path.
Let {d′1, d′2} be the edge such that x{d′

1,d
′
2} = x{d1,d2}. Then

x{d′
1,d

′
2} = x{d1,d2}

≤ min{x{d1,d′
1}, x{d′

1,d
′
2}, x{d′

2,d2}} by Equation (3)

≤ min{x{d1,d′
1}, x{d2,d′

2}}

so by Lemma 3.11, T lies in ST ,T ′ where T ′ = (T \ {{d′1, d′2}})∪{{d1, d2}}. (Here T ∩T ′ = T \ {{d′1, d′2}}, so
in the notation of Equation (4), up to relabeling, we can take d1, d

′
1 ∈ C1 and d2, d

′
2 ∈ C2 with [d′1, d

′
2] ∈ GT

and [d1, d2] ∈ GT ′ .) Thus, up to replacing T by T ′, we can assume τ = {d1, d2} ∈ T .
If GT contains an edge {d, d1} where d ∈ G2 then, since x{d,d1} ≤ x{d1,d2}, we have T ∈ ST ,T ′ for

T ′ = (T \ {{d, d1}}) ∪ {{d, d2}} by Lemma 3.11. (Here T ∩ T ′ = T \ {{d, d1}}, so in the notation of
Equation (4), up to relabeling, we can take d ∈ C1 and d1, d2 ∈ C2 with (d, d1) ∈ T and (d, d2) ∈ T ′.) Thus,
up to replacing T by T ′, we can assume no edges connect d1 and G2.

Similarly, if GT contains an edge {d, d2} where d ∈ G1, then since x{d,d1} > x{d1,d2}, we have x{d,d2} =
x{d1,d2} by Equation (2). Thus, by the symmetric argument, we can assume no edges connect d2 and G1.

The conclusion is that T ∈ CT ′,T1∪{τ1,...,τp}∪T2
where Tj is an independent subset whose elements lie in Gj

(for some i), for j = 1, 2. Within this cube, the split train track TI is the point with the same coordinates
as T except xτi = 0 for each i = 1, ..., p. In particular TI lies in a splitting face of BT ′ . Contradiction. □

This criterion allows us to show that each T ′ has a unique complete peeling.

Lemma 3.18. Each T ′ ∈ Aφ has a unique complete peel. More specifically, if T ′ lies in the interior of a
splitting face of BT then the complete peel of T ′ is T .

Proof. By Proposition 3.14, we know that T ′ lies in the interior of a splitting face of some BT . Then T ′ lies
in the interior of some cube CT,T . If xτ (T

′) > 0, then we can run Example 3.16 to peel to the point T ′
1

with the same coordinates as T ′, except that xτ (T
′
1) = 0. Repeating this argument inductively, we get to a

complete peel, which must then be the splitting vertex of BT , namely T .
Conversely, by Lemma 3.17, each peel of T ′ at a 2-gate vertex lies in a splitting face of BT , for otherwise

there is a possible peel at a 2-gate vertex of T , but since T ′ is fully preprincipal these cannot exist. □

Lemma 3.19. Suppose T ′ lies in the branched cube BT . Then the complete peel of T ′ lies in BT as well.

Proof. We apply Lemma 3.17 repeatedly. At every peeling at a 2-gate vertex, we stay in BT ′ , for otherwise
there is a possible peel at a 2-gate vertex of T ′, but since T ′ is fully preprincipal these cannot exist. □

Proposition 3.20. Distinct branched cubes BT1
and BT2

cannot intersect away from their folding faces.

Proof. Assume otherwise, then there exists some T lying in the interior of a splitting face of BT1
and that

of BT2
. Taking their complete peels, we get T1 = T2 by Lemma 3.18. □

Proposition 3.21. Let T ′ be a fully preprincipal weak train track on a folding face F of BT . Then BT ∩BT ′

is a splitting face of BT ′ contained in F . See Figure 7.

Proof. For each point T ′′ ∈ BT ∩BT ′ , there is a fold path from T ′ ∈ F to T ′′, hence BT ∩BT ′ is contained

e1

e2

e′1

e′2

T T ′

in F . It remains to show that this
intersection is a splitting face of BT ′ .

Let (x′
τ ) be the coordinates of T ′

in BT and T the subset of T0 con-
sisting of elements τ for which x′

τ <
ℓ(τ). Each τ ∈ T specifies an ele-
ment τ◦ of T ′

0 , namely the unfolded
portion of the directions in τ . More precisely, suppose τ = {d1, d2}, and suppose di is the germ of the edge
ei. Then since xτ < ℓ(τ), there are some terminal segments e′1 ⊂ e1 and e′2 ⊂ e2 so that the images of e′1
and e′2 in T ′ determine two directions d′1 and d′2 at a vertex. Moreover, d′1 and d′2 lie in the same gate, since
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T

T ′

T

T ′

x

Figure 7. If T ′ be a fully preprincipal train track on a folding face of BT , then BT ∩BT ′

is a splitting face of BT ′ , as in the left, and not on the right.

e′1 and e′2 would be folded if one folds τ completely. The turn τ◦ determined by τ is {d′1, d′2}. Furthermore,
ℓ(τ◦) ≤ ℓ(τ)− x′

τ .
Let T ◦ ⊂ T ′

0 denote the subset consisting of the τ0 arising as such. We claim T ◦, when considered as a
graph with vertex set G′, is a disjoint union of complete subgraphs of T ′

0 .
For this, it suffices to show that if {d′0, d′1} ∈ T ◦ and {d′1, d′2} ∈ T ◦, then {d′0, d′2} ∈ T ◦. Let {d0, d1} ∈ T0

be a turn determining {d′0, d′1} and {d2, d3} ∈ T0 a turn determining {d′1, d′2}. The directions d0, d1, d2, d3
must lie in the same gate of T , since otherwise d1 and d2 cannot pass through the same direction d′1. Thus
{d0, d3} ∈ T0 and determines {d′0, d′2} ∈ T ◦, as desired. So the claim is proved.

By the claim, T ◦ determines a partition of G′, namely where two directions d′1, d
′
2 lie in the same subset

if and only if {d′1, d′2} ∈ T ◦. The intersection BT ∩BT ′ is the splitting face associated to this partition. □

Proposition 3.22. Each folding face of a branched cube BT is a union of splitting faces of branched cubes.

Proof. Fix a folding face F . By Proposition 3.14, each point x ∈ F lies in the interior of a splitting face S of
a branched cube BT ′ . Lemma 3.19 implies that T ′, being the complete peel of x, must lie in BT . Suppose
T ′ lies in a folding face F ′ of BT , and suppose F ′ is minimal with respect to this property. Since there is a
fold path from T ′ to x, we have that F is a subfolding face of F ′.

By Proposition 3.21, BT ∩BT ′ is a splitting face S′ of BT ′ contained in F ′. Since x ∈ BT ∩BT ′ = S′, we
have that S is a subsplitting face of S′.

Suppose F is a proper subset of F ′. Then by the minimality of F ′, we have T ′ ∈ F ′\F , which implies
that the interiors of the subsplitting faces of S′ = BT ∩BT ′ cannot meet F , contradicting the choice of S as
a splitting face that contains x in its interior. Thus F = F ′. In particular T ′ lies in F , which implies that
S′ = BT ∩BT ′ lies in F as well. This argument shows that F is the union of such splitting faces S′. □

3.7. The unique successor property. In this subsection, we prove one final combinatorial property of
the branched cubes.

Proposition 3.23. For each point T in the axis bundle, the set of branched cubes BT ′ for which T lies in
the interior of a folding face of BT ′ , once partially ordered by inclusion, has a unique maximal element.

Proof. Suppose otherwise that there are two maximal branched cubes BT ′
1
, BT ′

2
for which T lies in the interior

of a folding face of BT ′
i
. Suppose T lies in a cube CT ′

2,T ⊂ BT ′
2
. Without loss of generality suppose T is a

maximal independent set. As explained in Example 3.16, each coordinate xτ gives a possible peel, and the
act of peeling determines a split path. If all such split paths lie in BT ′

1
, then the interior of BT ′

2
would meet

BT ′
1
. But then by Proposition 3.20, BT ′

2
lies on a folding face of BT ′

1
, contradicting maximality of BT ′

2
. Thus

some split path, determined by some possible peel (D1, D2, I), does not lie in BT ′
1
.

We apply Lemma 3.17 to BT ′
1
and the possible peel (D1, D2, I) to obtain a possible peel (D′

1, D
′
2, I

′) of
T ′
1 which maps to (D1, D2, I) in the sense of the lemma. Let T ′′ be the train track obtained by splitting this

possible peel. Since T ′
1 lies in a folding face of BT ′′ , Proposition 3.21 states that BT ′

1
∩ BT ′′ is a splitting

face of BT ′
1
, so T cannot lie in the interior of a folding face of BT ′

1
unless BT ′

1
∩ BT ′′ = BT ′

1
, see Figure 8.

This is equivalent to BT ′
1
⊂ BT ′′ , but this contradicts the maximality of BT ′

1
. □
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T ′
1

T ′′

T

(D1, D2, I)

(D′
1, D

′
2, I

′)

Figure 8. BT ′
1
∩BT ′′ is a splitting face of BT ′

1
, so T cannot lie in the interior of a folding

face of BT ′
1
unless BT ′

1
∩BT ′′ = BT ′

1
.

4. Cubist complexes

In this section we introduce the definition of a cubist complex. We choose to present the definition in a
general abstract setting in anticipation of future applications. Because of this, we have to first introduce an
abstract definition of a branched cube in §4.1. The definition of a cubist complex will then appear in §4.2.

Using the properties established in the previous section, we then show the axis bundle is a cubist complex
in §4.3. Finally, we define the cardiovascular system of a cubist complex and study its properties in §4.4.

4.1. Abstract definition of branched cubes. We first present an abstract definition of branched cubes.
The properties and terminology here are all motivated by the axis bundle setting of Section 3.

Let G = {G1, ..., Gm} be a finite collection of finite sets. We denote by Λ2Gi the set of unordered
pairs of distinct elements of Gi. (This notation is motivated from exterior products of vector spaces.) Let
T0 = Λ2G1 ⊔ ... ⊔ Λ2Gm. As in Section 3, we can view each subset T ⊂ T0 as a graph GT with vertex set
⊔m
i=1Gi. We say that T is independent if GT has no cycles.
Suppose we have a ℓ(τ) ∈ R>0 associated to each τ ∈ T0 satisfying Equation (1). For each independent

subset T ⊂ T0, we define the cube CT to be the metric space
∏

τ∈T [0, ℓ(τ)]. The coordinates of CT are

denoted x
(T )
τ , for each τ ∈ T .

We extend the notation x
(T )
{d1,d2} to make sense for each {d1, d2} ∈ T0 as follows: If there is a path in

GT connecting d1 to d2, consider the shortest such path (which is unique since T has no cycles) and define

x
(T )
{d1,d2} as the minimum over x

(T )
τ as τ ranges over the edges of this path. If d1 = d2, then x

(T )
{d1,d2} = ∞.

Also, if τ ∈ T , then x
(T )
τ retains its original definition as a coordinate on CT . If there is no path in T

connecting d1 to d2, define x
(T )
{d1,d2} = 0.

A fold path in CT is an oriented path of the form α(s) = (αt(s))t∈T where each αt is an nondecreasing
function. A subcube of CT is a subset of the form

∏
τ∈T [x

′
τ , x

′′
τ ] where x′

τ ≤ x′′
τ for each τ . Each subcube

can be viewed as an isometrically embedded copy of some other cube such that the image of each folding
path is a folding path. As another subcube example, let p0 ∈ CT (ℓt) and then the set of p ∈ CT for which
there is a fold path from p0 to p is a subcube. We refer to this set as the subcube determined by p0.

Finally, we define the slice ST ,T ′ ⊂ CT for each ordered pair of independent subsets T , T ′ ⊂ T0: Let
C1, . . . , Ck be the components of GT ∩T ′ . Define ST ,T ′ to be the subset of CT consisting of all points
satisfying the following inequalities for each i, j = 1, . . . , k:{

x
(T )
{di,dj} ≤ min{x(T )

{di,d′
i}
, x

(T )
{dj ,d′

j}
} if ∃ {di, dj} ∈ T and {d′i, d′j} ∈ T ′ connecting Ci & Cj

x
(T )
{di,dj} = 0 if ∃ {di, dj} ∈ T but no τ ′ ∈ T ′ connecting Ci & Cj .

Definition 4.1. A branched cube BG associated to G is a metric space that is the union of cubes CT , as
T ranges over all independent subsets of T0, for some choice of ℓ(τ) ∈ R>0 associated to the elements τ ∈ T0
satisfying Equation (1), so that for each pair of independent subsets T1, T2 ⊂ T0, we have

CT1 ∩ CT2 = ST1,T2 = ST2,T1 ,
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with the function x
(T1)
{di,dj} identified with the function x

(T2)
{d′

i,d
′
j}

for each i, j for which there is a {di, dj} ∈ T

and a {d′i, d′j} ∈ T ′ connecting Ci and Cj . This ensures that the functions x
(T )
τ , as T ranges over all

independent subsets of T0, can be patched together into a function xτ on BG .
The splitting face of BG associated to partitions Gi = Gi,1⊔ ...⊔Gi,mi

is the subspace defined by xτ = 0
whenever τ ̸⊂ Gi,mi for all i. In particular, the splitting vertex of BG is the splitting face associated to the
partition of each Gi into one-element sets, defined by xτ = 0 for all τ . The folding face of BG associated
to an independent subset T ⊂ T0 is the subspace defined by xτ = ℓ(τ) for all τ ∈ T .

A fold path in BG is an oriented path that is locally a fold path in each cube that it lies in. Let p0 be
a point in BG . Consider the set of points p in BG for which there is a folding path from p0 to p. This set is
also the union of subcubes determined by p0 in each cube that contains p0. Note that this set is in general
not a branched cube. We refer to it as the generalized branched cube determined by p0.

Lemma 4.2. We have the following properties of branched cubes.

(1) A finite product of branched cubes is a branched cube.
(2) Each splitting face of a branched cube is a branched cube.
(3) Each folding face of a branched cube is a branched cube.

Proof. For (1), we have BG ×BG′ ∼= BG⊔G′ . Because of this, it suffices to show (2) and (3) in the case when
G just contains one finite set G.

For (2), consider the splitting face S associated to a partitionG = G1⊔...⊔Gm. Then for every independent
subset T ⊂ T0, we have CT ∩S = CT1⊔...⊔Tm

= CT1
×...×CTm

where Ti is the subset of T consisting of elements
lying within Gi, which is independent as a subset of Λ2Gi. Conversely, given independent subsets Ti ⊂ Λ2Gi,
we have that T1⊔...⊔Tm is an independent subset of T0. Thus S =

⋃
T1,...,Tm

CT1×...×CTm
∼= BG1×...×BGm .

For (3), we first show this for a folding face F associated to a single element {d1, d2}. Let G1 = {d ∈ G |
ℓ({d, d1}) > ℓ({d1, d2})} and G2 = {d ∈ G | ℓ({d, d1}) ≤ ℓ({d1, d2})}. Thus G = G1 ⊔ G2, with d1 ∈ G1

and d2 ∈ G2. The same argument as in Lemma 3.17 shows that F ⊂
⋃

T1,T2
CT1∪{d1,d2}∪T2

where the union

ranges over all independent subsets T1 ⊂ Λ2G1 and T2 ⊂ Λ2G2.
Now CT1∪{d1,d2}∪T2

∩ F ∼= CT1
× CT2

. Thus F =
⋃

T1,T2
(CT1∪{d1,d2}∪T2

∩ F ) ∼=
⋃

T1,T2
(CT1

× CT2
) =

BG1
×BG2

.
Moreover, under this isomorphism, the maximum value of xτ for τ ∈ Λ2Gi equals ℓ(τ). Hence, for folding

faces of BG associated to larger subsets, we can run this argument inductively. □

4.2. The definition of a cubist complex.

Definition 4.3. A cubist complex is an ordered pair (X,B) where X is a topological space and B is a
collection of subspaces, each homeomorphic to a branched cube, and satisfying each of (a)-(d):

a. The space X is the disjoint union of the interiors of the elements of B.
b. For each B ∈ B, each splitting face of B is an element of B, while each folding face of B is a union

of elements of B.
c. For each B1, B2 ∈ B, either B1 ∩B2 = ∅, or B1 ∩B2 ∈ B and is a sub-branched cube of B1 and B2.
d. For each 0-dimensional branched cube {v} ∈ B, the set of all B ∈ B for which v lies in the interior

of a folding face of B, once partially ordered by inclusion, has a unique maximal element B(v).

For a cubist complex (X,B), X carries a natural piecewise-linear structure
by declaring each branched cube in B to be PL-isomorphic to a branched cube.
In the following, we will always implicitly endow X with this PL-structure. In
particular, an isomorphism of cubist complexes is a PL isomorphism sending
branched cubes to branched cubes. Also, in the following, whenever the collection
B of branched cubes is clear, we simply refer to X as a cubist complex.

An example of a cubist complex is shown to the right. Note that the ‘local di-
mension’ of a cubist complex is allowed to jump. In the image, the local dimension
at some parts is 2, while at other parts it is 1.

Recall from pg. 2 of the introduction the differences between cubist complexes
and cube complexes. We make now item (3) from that comparison precise via the following lemma.
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Lemma 4.4. Let (X,B) be a cubist complex. Let Y be a subspace of X that is a union of elements in B and
which is PL isomorphic to a generalized branched cube itself. Then for each 0-dimensional branched cube
{v} ∈ B, the generalized sub-branched cube of Y determined by v is a union of elements of B.

Proof. Let N be the number of elements of B that intersect the interior of the sub-branched cube Z of Y

v

v3

v1

Z1

Z3

B0

Z2v2

determined by v. We proceed by induction on (dimZ,N) with the lexi-
cographic order. If dimZ = 0, then Z = {v} is a 0-dimensional element
of B. We move on to the induction step.

Consider the elements of B contained in Y that have splitting vertex
at v, and let B0 be the element among these with the highest dimension.
Here we use the fact that Y is PL isomorphic to a generalized branched
cube to make sure that B0 is uniquely defined. Let e1, ..., en be the
collection of 1-dimensional splitting edges of B0. Let vi be the endpoint
of ei that is not v, and let Zi be the sub-branched cube of Y determined
by vi. For each i, if ei is an entire splitting edge of Z, then Zi has lower

dimension than Z, otherwise Zi intersects strictly less elements of B in their interior than Z does, since B0

intersects the interior of Z but not that of Zi. By our induction hypothesis, each Zi is a union of elements
of B. This implies that Z = B0 ∪ Z1 ∪ ... ∪ Zm is a union of elements of B.

□

We refer to the union of the k-dimensional branched cubes in a cubist complex X as the k-skeleton of
X. We caution that the k-skeleton of X as a cubist complex is different from the k-skeleton of X when
considered as a cell complex. For example, if B is a branched cube as in Example 3.5, then the 1-cell that
the branching happens along does not lie in the 1-skeleton of X as a cubist complex.

The 1-skeleton of X can be given the structure of a directed graph gX by orienting each 1-dimensional
branched cube so that it is a folding path in each branched cube that contains it.

The next two lemmas concern the behaviour of gX in each branched cube.

Lemma 4.5. Let (X,B) be a cubist complex. Let Y be a subspace of X that is a union of elements in B
and which is PL-isomorphic to a generalized branched cube itself. Let v be the splitting vertex of Y . Then
for each vertex w of gX lying in Y , there is a directed edge path in gX from v to w.

Proof. Let N be the number of elements of B that intersect the interior of Y . We prove the lemma by
induction on (dimY,N) with the lexicographic order. If dimY = 0 or 1, the lemma is clear.

We move on to the induction step. Define the sub-branched cube B0, the vertices vi, and the generalized
sub-branched cubes Zi as in Lemma 4.4. If w = v, then the lemma holds trivially. Otherwise, since
Y = B0 ∪ Z1 ∪ ... ∪ Zm, w lies in some Zi. By induction, there is a directed edge path from the splitting
vertex vi to w. Concatenating this with the edge from v to vi, we are done. □

Furthermore, we claim that a directed edge path as in Lemma 4.5 is unique up to sweeping the path
across 2-dimensional branched cubes.

More precisely, suppose B is a 2-dimensional branched cube. Suppose β and β′ are directed edge paths in
gX with a common initial vertex v1 and a common terminal vertex v2, and each of which is the concatenation
of one 1-dimensional splitting face of B and one 1-dimensional folding face of B. Then for each edge path
α1 with terminal vertex v1 and each edge path α2 with initial vertex v2, we say that the directed edge paths
α1 ∗ β ∗ α2 and α1 ∗ β′ ∗ α2 are related by sweeping across B.

Lemma 4.6. Let (X,B) be a cubist complex. Let Y be a subspace of X that is a union of elements in B
and which is PL isomorphic to a generalized branched cube itself. Let v be the splitting vertex of Y , and let
w be some vertex lying in Y . Suppose γ and γ′ are directed edge paths in gX from v to w. Then γ and γ′

are related by sweeping across finitely many 2-dimensional branched cubes.

Proof. Define N as in Lemma 4.5. We prove the lemma by induction on (dimY,N) with the lexicographic
order. If dimY = 0 or 1, the lemma is clear.

We move on to the induction step. Define the sub-branched cube B0, the edges ei, the vertices vi, and
the generalized sub-branched cubes Zi as in Lemma 4.4. If w = v, then the lemma holds trivially. Otherwise
the initial edges of γ and γ′ must each be one of the ei.
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Figure 9. For Lemma 4.6, we first argue the case when the initial edges of γ and γ′ agree
(left), we then argue one case when the initial edges of γ and γ′ differ (right).

We first assume the initial edges of γ and γ′ are the same ei (see Figure 9 left). In this case, γ = ei ∗ α
and γ′ = ei ∗α′ for some directed edge paths α and α′ in Zi from vi to w. By induction, α and α′ are related
by sweeping across finitely many 2-dimensional branched cubes, so the same holds for γ and γ′.

It remains to prove the lemma for one choice of γ whose initial edge is ei and for one choice of γ′ whose
initial edge is ei′ , for each pair (i, i′). Note that there is a vertex u on B0 such that the sub-branched cube
Q determined by u equals Zi ∩ Zi′ . More concretely, there is a 2-dimensional splitting face F of B0 for
which ei and ei′ are among the 1-dimensional splitting faces of F . The vertex u can be characterized as the
intersection between the subcubes of F determined by vi and vi′ .

By Lemma 4.5, there is a directed edge path α from u to w. Meanwhile, there is a directed edge path β
from ei to u and a directed edge path β′ from ei′ to u. See Figure 9 right. The edge paths ei ∗ β ∗ α and
ei′ ∗ β′ ∗ α are related by sweeping across F . □

Finally, we introduce the following condition, which will come into play in Section 4.4.

Definition 4.7. A periodic cubist complex is a connected cubist complex (X,B) together with an
isomorphism φ : X → X such that the Z-action generated by φ is free and cocompact.

4.3. The axis bundle is a cubist complex. Let φ ∈ Out(Fr) be nongeometric fully irreducible. We
briefly return to the axis bundle setting to show that it has a cubist complex structure.

Recall from Section 3 that for each fully preprincipal element T ∈ Aφ, there is a branched cube BT .
Lemma 4.2 implies that each splitting face of BT is a branched cube. We define Bφ to be the collection of
all the BT and their splitting faces, as T ranges over all fully preprincipal elements in Aφ.

More generally, given any local decomposition G of IW (φ), we define GBφ to be the collection of the BT

and their splitting faces, as T ranges over all fully preprincipal elements split at least as much as G.
To distinguish the branched cubes BT from a general element of (G)Bφ, which can be a proper splitting

face of BT , we refer to the former as the primary branched cubes in the following proof.

Theorem 4.8. Suppose that r ≥ 3 and φ ∈ Out(Fr) is nongeometric fully irreducible. Then (Aφ,Bφ) is a
cubist complex. Furthermore, the action of φ on Aφ makes it into a periodic cubist complex.

More generally, for each local decomposition G, we have that (GAφ,GBφ) is a cubist complex, and the
action of φ on GAφ makes it into a periodic cubist complex.

Proof. Definition 4.3(a) follows from Proposition 3.14 and Proposition 3.20. Definition 4.3(b) follows from the
definition of the branched cubes and Proposition 3.22. Definition 4.3(d) is a special case of Proposition 3.23.

We now show Definition 4.3(c). Since branched cubes have disjoint interiors, two branched cubes B1 and
B2 can only possibly intersect along a union of branched cubes, each of them being (1) a splitting face of B1

and a branched cube in a folding face of B2, or (2) a branched cube in the interior of a folding face of B1 and
of B2. If a branched cube of type (1) arises, Proposition 3.21 implies that B1∩B2 is a sub-branched cube. If
a branched cube of type (2) arises, then by Proposition 3.23, the splitting vertex of B1 and B2 coincide, so
B1 and B2 are splitting faces of some primary branched cube BT , in which case they intersect in a splitting
face of BT . (In fact, this argument shows that there can never be branched cubes of type (2).)

It remains to show that (GAφ, φ) is a periodic cubist complex. Connectedness follows from Proposi-
tion 2.20. Freeness follows from Proposition 2.7. Finally, cocompactness follows from Lemma 2.8. □
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4.4. Cardiovascular system. Let (X,B) be a cubist complex. We define a directed graph cX as follows:

• The vertex set of cX is the 0-skeleton of X.
• For each vertex v, let B(v) be the branched cube that is maximal with respect to the property that

v is contained in the interior of a folding face of B(v), and let S(v) be the splitting vertex of B(v).
By Definition 4.3(4), S(v) is well-defined. If S(v) ̸= v, then we add a directed edge from v to S(v).
(If S(V ) = v then we do not add any edges.)

The graph cX is naturally seen as a subspace of X by placing the directed edges
along straight lines. We refer to cX as the cardiovascular system of X. See
the right-hand image for an example of a cardiovascular system.

A crucial property of the cardiovascular system is that each vertex has at most
one outgoing edge, but possibly multiple incoming edges. In particular, each
vertex v has a unique ‘successor’ S(v). Iteratively determining edges as such, we
obtain a directed edge path γv = (Si(v))i≥0, which is a ray if Si+1(v) ̸= Si(v)
for each i ≥ 0, and is a finite path otherwise. Conversely, each maximal directed
edge path arises as such.

For the rest of this section, we restrict to the setting where (X,φ) is periodic
(recall Definition 4.7). The aim is to deduce the cardiovascular system properties in this setting.

The cocompactness of the Z-action implies each directed edge path γv = (Si(v))i≥0 is eventually periodic:

Proposition 4.9. Let (X,φ) be a periodic cubist complex. For each vertex v, there exists P,N ∈ Z, and an
i0 ≥ 0, such that Si+P (v) = φN (Si(v)) for all i ≥ i0.

Proof. Since ⟨φ⟩ acts cocompactly on X, the set V of ⟨φ⟩-orbits of vertices is finite. We define a map
Z≥0 → V by sending i to the orbit of Si(v). By the pigeonhole principle, there are integers i1 > i2 such that
Si1(v) and Si2(v) lie in the same orbit, i.e. there is some N ∈ Z such that Si1(v) = φN (Si2(v)).

Meanwhile, since φ preserves the cubist complex structure of X, we have φ(S(v)) = S(φ(v)) for any
vertex v. Applying this fact repeatedly, we deduce that, for each i ≥ i2,

Si+(i1−i2)(v) = Si−i2(φN (Si2(v))) = φN (Si(v)).

□

Next, we show that the connectedness of X implies that each directed path γv = (Si(v))i≥0 is actually a
ray. To this end, we introduce a measure of distance between vertices of cX .

Definition 4.10. Let α be an edge path in Γ. Note that α may not be a directed edge path, i.e. it can
traverse some edges of Γ in the opposite direction of their prescribed orientations.

We define the combinatorial length of α to be

min{n | α = α1 ∗ ... ∗ αn, for some monotone edge paths αj each lying in a single branched cube }

where by a monotone edge path, we mean an edge path β where β or −β is a directed edge path.
The combinatorial distance between two vertices v0 and v1 is the minimum combinatorial length of

paths between them. It is straightforward to verify that the combinatorial distance is a metric.

Lemma 4.11. Let v0 and v1 be two vertices of X. Suppose there is a directed edge path α from v0 to v1
that lies in one branched cube B. Then either S(v0) = v1, or there is a directed edge path β from v1 to S(v0)
that lies in one branched cube, so that the cX-edge from v0 to S(v0) is homotopic to α ∗ β.

Proof. Without loss of generality, we can assume that B is the branched cube that is maximal with respect
to the property that v0 is contained in the interior of a folding face of B, so that S(v0) is the splitting vertex
of B. Since α lies on B, we have that v1 lies on B. By Lemma 4.5, there is a directed edge path β from v1
to S(v0) that lies in B. Since α ∗ β and the cX -edge from v0 to S(v0) are paths in B with the same initial
and terminal vertices, and B is contractible, they are homotopic. □

Corollary 4.12. Suppose v0, v1 ∈ V X. If the combinatorial distance between v0 and v1 is 1, then either
v0 = S(v1) or v1 = S(v0) or S(v0) = S(v1), or the combinatorial distance between S(v0) and S(v1) is ≤ 1.
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Proof. Up to switching v0 and v1, there is a directed edge path α0 from v0 to v1 that lies in one branched
cube. By Lemma 4.11, either v1 = S(v0), or there is a directed edge path β0 from v1 to S(v0) that lies in one
branched cube. By Lemma 4.11 again, either S(v0) = S(v1), or there a directed edge path α1 from S(v0) to
S(v1) that lies in one branched cube. □

Proposition 4.13. Let (X,φ) be a periodic cubist complex. For each vertex v, the directed edge path
γv = (Si(v))i≥0 is a ray, i.e. Si+1(v) ̸= Si(v) for each i ≥ 0.

Proof. Suppose otherwise that there is a vertex v0 for which Si+1(v0) = Si(v0) for some i ≥ i0. Let v1 be
a vertex that is of combinatorial distance 1 away from v0. We claim that the directed edge path from v1
stabilizes at the same point as that from v0, i.e. S

i+1(v1) = Si(v1) = Si(v0) for i ≥ i1.
By Corollary 4.12, Si0(v0) and Si0(v1) have combinatorial distance at most 1. If Si0(v0) = Si0(v1) then

our claim is clear. Otherwise there is a directed edge path α either from Si0(v0) to Si0(v1) or from Si0(v1)
to Si0(v0) that lies in one branched cube. The former cannot be true since Si0(v0) = Si0+1(v0). But then,
applying Lemma 4.11, there is a directed edge path β from Si0(v0) to Si0+1(v1), thus S

i0+1(v0) = Si0(v0) =
Si0+1(v1) since again Si0(v0) = Si0+1(v0).

Now let α be an edge path between v0 and φ(v0). Let v0, v1, ..., vm = φ(v0) be the sequence of vertices
on α. For each i, the combinatorial distance between vi−1 and vi is 1, hence by applying our claim in the
first paragraph repeatedly, we have Si(φ(v0)) = Si(v0) for all large i. Thus Si0(v0) = Si(v0) = Si(φ(v0)) =
φ(Si(v0)) = φ(Si0(v0)), that is, S

i0(v0) is a fixed point of φ. This contradicts freeness of φ. □

An artery of the cardiovascular system is a periodic directed edge path, i.e. directed edge path A = (vi)i∈Z
for which there exist P,N such that vi+P = φN (vi) for all i. Then P is the period of A and N the order.

Proposition 4.13 implies that N ̸= 0, since if N = 0, we have that SP (vi) = vi+P = vi, and the directed
edge path starting at vi is finite. Thus we can define the average period of A to be P

N .

Proposition 4.14. Let (X,φ) be a periodic cubist complex. There is at least one, and at most finitely many
arteries in the cardiovascular system of X.

Proof. To show that there is at least one artery, take some vertex v and apply Proposition 4.9 to the directed
edge ray r = (Si(v))i≥0 to get values of P,N, i0 so that Si+P (v) = φN (Si(v)) for all i ≥ i0. For each i, we
define a vertex vi by picking k large enough so that i + kP ≥ i0, and setting vi = φ−kN (Si+kP (v)). Note
that if k1 < k2 are integers such that i+ k1P, i+ k2P ≥ i0, then

φ−k2N (Si+k2P (v)) = φ−k2N (Si+(k2−1)P+P (v)) = φ−k2NφN (Si+(k2−1)P (v))

= φ−(k2−1)N (Si+(k2−1)P (v)) = ... = φ−k1N (Si+k1P (v))

so vi is well-defined. The following similar computation shows that (vi)i∈Z is an artery:

vi+P = φ−kN (Si+P+kP (v)) = φ−(k−1)N (Si+kP (v)) = φN (vi).

To show finiteness, we first claim that there is a uniform bound on the order of the arteries in X: Suppose
two arteries A and A′ pass through the same ⟨φ⟩-orbit of vertices, say v ∈ A and v′ ∈ A′ where v′ = φq(v).
Then A and A′ share the same order. Indeed, if Si+P (v) = φN (Si(v)) then

Si+P (v′) = Si+P (φq(v)) = φq(Si+P (v)) = φN+q(Si(v)) = φN (Si(φq(v))) = φN (Si(v′)).

Thus the order of A′ divides that of A. Symmetrically, the order of A divides that of A′, so they must
coincide. Our claim now follows from the fact that there are finitely many ⟨φ⟩-orbits of vertices.

Let N0 be the lowest common multiple of the orders of all arteries. Let V0 be the finite set of ⟨φN0⟩-orbits
of vertices. If there are more than |V0| arteries, then two of them must pass through the same ⟨φN0⟩-orbit of
vertices, but then they would actually share some vertex, which would imply the two arteries coincide. □

By Lemma 4.5, each artery A can be homotoped into the reverse of a directed edge line L of the 1-skeleton
Γ. Indeed, one can replace each edge v → S(v) by the reverse of a homotopic directed edge path within the
same cube. In this context we say that L is a simple factorization of A.

Lemma 4.6 implies that any two simple factorizations of a common artery A are related by sweeping
across 2-dimensional branched cubes. The last goal of this section is show that any two simple factorizations
of any two arteries are also related in this way.
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Recall the notion of the combinatorial distance between two vertices. We define the combinatorial
distance between two arteries to be the minimum combinatorial distance between their vertices.

Lemma 4.15. Let (X,φ) be a periodic cubist complex. Suppose A and A′ are arteries combinatorial distance
1 apart. Then A and A′ have a common average period and they admit a common simple factorization.

Proof. By definition, up to switching A and A′, there exist vertices v ∈ A and v′ ∈ A′, and a directed edge
path α0 from v to v′ that lies in one branched cube. By Lemma 4.11, either S(v) = v′, or there is a directed
edge path β0 from v′ to S(v) so that the cX -edge from v to S(v) is homotopic to α0 ∗ β0. The former case
cannot happen here or we would have A = A′.

We then apply Lemma 4.11 to β0 to obtain a directed edge path α1 from S(v) to S(v′) so that the cX -edge
from v′ to S(v′) is homotopic to β0 ∗ α1.

Repeating this argument, we have edge paths αk from Sk(v) to Sk(v′) and βk from Sk(v′) to Sk+1(v) such
that the cX -edge from Sk(v) to Sk+1(v) is homotopic to αk ∗ βk and the cX -edge from Sk(v′) to Sk+1(v′) is
homotopic to βk ∗ αk+1.

Let P and N be the period and order of A, and let P ′ and N ′ be the period and order of A′. For each q, we
have φ−qNP ′

(αqPP ′) is an edge path from φ−qNP ′
(SqPP ′

(v)) = v to φ−qNP ′
(SqPP ′

(v′)) = φq(PN ′−NP ′)(v′)
that lies on a branched cube. Since there are only finitely many such edge paths, for some 0 < q1 < q2,
we have φ−q1NP ′

(αq1PP ′) = φ−q2NP ′
(αq2PP ′). In particular, φq1(PN ′−NP ′)(v′) = φq2(PN ′−NP ′)(v′), thus

φ(q1−q2)(PN ′−NP ′)(v′) = v′. Since φ cannot have fixed points, we have PN ′ −NP ′ = 0, thus P
N = P ′

N ′ .

Finally, the directed edge path ∗∞j=−∞φj(q2−q1)NP ′
(∗q2PP ′

k=q1PP ′(αk ∗ βk)) is a common simple factorization

for A and A′. □

Proposition 4.16. Let (X,φ) be a periodic cubist complex. Suppose A and A′ are arteries. Then A and A′

have a common average period and their simple factorizations are related by sweeping across 2-dimensional
branched cubes.

Proof. We first claim that there exist arteries A0 = A,A1, ..., An = A′ such that Ai−1 and Ai are of
combinatorial distance 1 apart for each 1 ≤ i ≤ n.

To see this, let α be an edge path between A and A′. Let v0,...,vm be the sequence of vertices on α, where
v0 ∈ A and vm ∈ A′. For each i = 0, ...,m, let ri be the cX -ray starting at vi. By Proposition 4.9, each ri
eventually converges into an artery Ai.

For each i, the combinatorial distance between vi−1 and vi is 1, hence by Corollary 4.12, either Ai−1 = Ai

or the combinatorial distance between Ai−1 and Ai is 1. Hence it suffices to discard any repeated arteries.
Now the proposition follows from Lemma 4.6 and Lemma 4.15. □

5. Examples

In this section, we go through some examples of cubist decompositions of axis bundles.

Example 5.1 (Lone axes). In [MP16], it is shown that the axis bundle of an ageometric, fully irreducible
φ ∈ Out(Fr) is a line if and only if both the index satisfies i(φ) = 3

2 − r and no component of the ideal
Whitehead graph IW (φ) has a cut vertex. See [GP23] and [Pfa24] for concrete examples.

In this case, the cubist decomposition of the axis bundle Aφ can only be a union of 1-cubes and 0-cubes.
The cardiovascular system coincides with the axis bundle (with the additional data of being oriented toward
the splitting direction). Thus there is exactly one artery and it coincides with the axis bundle.

Example 5.2 (Multiple arteries). Let φ ∈ Out(F3) be defined by φ(a) = cbca, and φ(b) = cbc, and
φ(c) = ac. This is the same outer automorphism considered in [Pfa24, Example 9.1].

a

bc

This outer automorphism φ is represented by the fully preprin-
cipal train track map g on the three-petaled rose, as depicted
to the right. One can check via a straightforward computation
that it has no PNPs. Using the criterion in [Kap14], one can
verify that φ is ageometric fully irreducible.

We compute the cubist decomposition of Aφ by the following algorithm:
1. Take T ∈ Aφ to be the fully preprincipal element that is the universal cover of the domain of the train
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track map above. Compute the branched cube BT ⊂ Aφ. Let A be the union of the φ-translates of BT .
2. For each fully preprincipal T ∈ A ⊂ Aφ, compute BT ⊂ Aφ. (There are infinitely many such T but only
finitely many φ-orbits, so this is a finite time process.)

a. If any such BT do not lie in A, we add it to A and repeat this step.
b. If all such BT lie in A, the algorithm terminates.

The output A of the algorithm is the axis bundle Aφ: Suppose, for the sake of contradiction, there was a
T ′ ∈ Aφ with T ′ ̸∈ A. Then, as in the proof of Proposition 3.14, there is a fold path α from a vertex T of
A to T ′. Every time α exits a branched cube in A it enters another one (for otherwise we could have added
that branched cube to A) so at the end of the path, T ′ lies in A.

Figure 10 shows the result of our computation of Aφ. We have drawn one fundamental domain of Aφ

under the φ-action; the 1-cubes on the right are sent to the 1-cubes on the left by φ as indicated.

a

bc c

bca

c a

bca

c ac

cbca

ccbca ac

cbcaac

cbcaccbca ac

cbca

cbcaccbca ac

cbca

cbcac ac

ba

accbc ac

cbca

cbc ac

a

cbc ac

a

cbc c

a

b c

a

cb c

cbca

c a

cbca

c ac

Figure 10. The axis bundle of the outer automorphism in Example 5.2.

The length of each edge in the figure is the fold length. These are computed as follows: The normalized
eigenvector is [0.45, 0.29, 0.26], so we will start with ℓ(a) ≈ 0.45, and ℓ(b) ≈ 0.29, and ℓ(c) ≈ 0.26. Consider
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the vertical fold path from the node meeting the edges labeled III and IV on the left. This folds the turn {b̄, c̄},
so the length folded can be computed to be ≈ 0.29( 0.26

0.26+0.29+0.26 ), or equivalently ≈ 0.26( 0.26
0.45+0.26 ). This is

≈ 0.095. This says the lengths on the graph below are ℓ(a′) ≈ 0.45, and ℓ(b′) ≈ 0.185, and ℓ(c′) ≈ 0.155, and
ℓ(d′) ≈ 0.095, where d′ is the edge created by the fold. One then performs similar computations iteratively.

The cardiovascular system is drawn in red, with the arteries bold. In this example there are three arteries,
demonstrating that axis bundles do not necessarily have a unique artery.

Example 5.3 (Unique artery, branching). Let φ ∈ Out(F3) be defined by φ(a) = aca, and φ(b) = ac, and
a

bc

φ(c) = bc. This outer automorphism φ is represented by the
train track map on the three-petaled rose depicted to the right.
A straightforward computation shows this train track map has
no PNPs and then the criterion in [Kap14] provides that φ is
ageometric fully irreducible. We show the cubist decomposition
of Aφ in Figure 11. Here, the 1-cube on the right is sent to the 1-cube on the top by φ as indicated.

This example exhibits some phenomena that are different from Example 5.2:

(1) There is branching in the axis bundle Aφ. More precisely, there are two branched 2-cubes in Aφ,
modulo the action of φ.

(2) There is a (branched) 2-cube with 4 vertices on one of its folding faces.
(3) There is a unique artery.
(4) The artery meets the boundary of Aφ.

a

b c

a

bc c

a

bc ac

aca

bc ac

Figure 11. The axis bundle of the outer automorphism in Example 5.3.
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Example 5.4 (Full & stable axis bundles). Let φ ∈ Out(F3) be defined by φ(a) = ac, and φ(b) = cbc,

a

bc

a

bc

and φ(c) = cbca. This outer automorphism φ is represented
by the train track map on the three-petaled rose in the upper
row of the image to the right. A straightforward computation
shows that this train track map has one PNP, namely a ∗ b2,
where b2 is a suitable suffix of b.

Collapsing this PNP, one obtains the train track map in the
bottom row of the image. Note, the stable Whitehead graph
of this map is that of the previous one with an additional edge,
as one should expect. A straightforward computation shows
this train track map has no PNPs and then the criterion in
[Kap14] provides that φ is ageometric fully irreducible.

We show the cubist decomposition of Aφ in Figure 12. The 1-cubes on the right are sent to the 1-cubes
on the left by φ as indicated. The cardiovascular system of Aφ is drawn in red, with the arteries bold.

c

a ba

c

a b

c

a bc

c

a cbc

c

a cb

c

a cba

ac

a cba

ac

a cbc

ac

aca cba

ac

cbca cba

ac

cbca cbc

ac

cbca cbccbca

Figure 12. The axis bundle and stable axis bundle in Example 5.4.
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As reasoned above, the ideal Whitehead graph IW (φ) has a cut vertex. Hence, the stable axis bundle
SAφ is a proper subset of Aφ. In the figure, SAφ is the line on the bottom. The cardiovascular system of
SAφ is drawn in green, with the arteries highlighted. This example demonstrates that the arteries of the
stable axis bundle need not agree with the arteries of the full axis bundle.

References

[Ago11] I. Agol. Ideal triangulations of pseudo-Anosov mapping tori. In Topology and geometry in dimension three, volume

560 of Contemp. Math., pages 1–17. Amer. Math. Soc., Providence, RI, 2011.
[AKKP19] Y. Algom-Kfir, I. Kapovich, and C. Pfaff. Stable strata of geodesics in outer space. International Mathematics

Research Notices, 2019(14):4549–4578, 2019.
[BF94] M. Bestvina and M. Feighn. Outer limits. preprint, pages 1–19, 1994.

[BFH97] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees, and irreducible automorphisms of free groups. Geo-

metric and Functional Analysis, 7(2):215–244, 1997.
[BFH00] M. Bestvina, M. Feighn, and M. Handel. The Tits Alternative for Out (Fn) I: Dynamics of exponentially-growing

automorphisms. Annals of Mathematics-Second Series, 151(2):517–624, 2000.

[BH92] M. Bestvina and M. Handel. Train tracks and automorphisms of free groups. The Annals of Mathematics, 135(1):1–
51, 1992.

[BV06] M. Bridson and K. Vogtmann. Automorphism groups of free groups, surface groups and free abelian groups. In

Proceedings of Symposia in Pure Mathematics, volume 74, page 301. Providence, RI; American Mathematical
Society; 1998, 2006.

[CL95] M. Cohen and M. Lustig. Very small group actions on r-trees and dehn twist automorphisms. Topology, 34(3):575–

617, 1995.
[CV86] M. Culler and K. Vogtmann. Moduli of graphs and automorphisms of free groups. Inventiones mathematicae,

84(1):91–119, 1986.
[FH11] M. Feighn and M. Handel. The recognition theorem for Out(Fn). Groups Geom. Dyn., 5(1):39–106, 2011.

[GP23] D. Gagnier and C. Pfaff. Taking the high-edge route of rank-3 outer space. International Journal of Algebra and

Computation, 33(08):1659–1685, 2023.
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