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Abstract. We defined a new set of coordinates with respect to which the Thurston compactifi-

cation of Teichmüller space is the radial compactification of Euclidean space.

The seminal work [4] of Thurston uses lengths of simple closed curves on a surface to define a
compactification of its Teichmüller space. Let S denote the set of isotopy classes of essential simple
closed curves on a closed orientable surface Σ of genus g ≥ 2. Throughout this paper a measured
foliation is a transversally measured singular foliation on a surface. A hyperbolic metric and a
measured foliation on Σ each assign a length to members of S. Both then determine a projectivized
length function on S, leading to Thurston’s famous [4] compactification of Teichmüller space T (Σ).

As depicted to the right, let {αi} denote a set of
pairwise disjoint simple closed curves on Σ whose com-
plement is a disjoint union of 3-holed spheres (pants).
Fenchel-Nielsen coordinates on Teichmüller space as-
sign a length and twist parameter to each αi. Dehn-
Thurston coordinates use similar data to parameterize
measured foliations. In both cases the length is positive, or possibly zero in the case of measured fo-
liations, but the twist is an arbitrary real number. The collar parameter (CP) coordinates we define
here assign a point in R2 to each αi. They are a variant of the Fenchel-Nielsen and Dehn-Thurston
coordinates, and encode both the length and the twist parameter. With respect to CP coordinates
the Thurston compactification is the radial compactification of Teichmüller space.

We now describe CP coordinates. In what follows the term structure means either a hyperbolic
metric or a measured foliation on Σ. Each αi is contained in an annulus Ai that in some sense is
maximal in the structure. In a hyperbolic structure, Ai is provided by the Collar Lemma [1]. By
Proposition 1.4 every measured foliation is equivalent to one such that either ∂Ai is transverse to
the foliation, or else Ai is a union of smooth closed leaves such that the union of the closed leaves
isotopic into Ai, that are in the complement of Ai, has zero transverse measure. Such an annulus
in either structure is called a standard collar.

Given a structure on Σ and pair of pants in a pants decomposition, there is a structure-preserving
reflection of the pants whose fixed point set consists of three arcs, one arc connecting each pair of
boundary components. The arcs are called seams. Each annulus Ai has two basepoints on each
boundary component given by the intersection with the seams of the pants decomposition.

CP coordinates parameterize structures on the annulus up to iso-
topy fixing the basepoints. Triangulate the annulus using these
basepoints, and arcs β and γ connecting them, plus three meridian
circles around the annulus. The structure on the annulus is deter-
mined by the lengths of the sides of a triangle in this triangulation
(a,b,c in the image). There is an equation relating these lengths,
giving a parameter space R2 with coordinates that are certain lin-

ear combinations of edge lengths. This parameter space is called the space of collar parameters, and
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is described in §1.3. It is a pleasant fact that for both structures the equation is symmetric in the
three edge lengths.

In the hyperbolic case, the curves {αi} are geodesics and separate
Σ into hyperbolic pants. Deleting the interiors of the annuli results
in subsurfaces called shorts. The boundary components of the shorts
are hypercycles (curves that are equidistant from a geodesic). Every
point in the shorts is within distance cosh−1(3) of the boundary.

The intersection of a seam of the pants with the shorts is the
unique geodesic arc in the shorts connecting that pair of boundary
components and meeting them orthogonally. These arcs are called
the seams of the shorts. The shorts are determined up to isometry
by the data for the annuli. Gluing the shorts to the annuli so that
the basepoints on the annuli are endpoints of seams parameterizes
Teichmüller space by a product of parameter spaces for the annuli.

A similar procedure works for measured foliations. Each mea-
sured foliation on the annulus is linear (see §1.5). The measured
foliations on the pairs of shorts are determined solely by the measure of the boundary components.
Again there are seams: the fixed points of a reflection that preserves the measure. These folia-
tions yield a global parametrization of the space of measured foliations on Σ, as a product of the
parameter spaces for the annuli.

This gives the parameterizations ΘT : R6g−6 → T (Σ) of Teichmüller space, and ΘMF : R6g−6 →
MF(Σ) of the space of measured foliations, using CP coordinates. Since both sets of coordinates are
determined by the lengths of the same sides of the same triangles the homeomorphism ΘT ◦Θ−1

MF ,
sending a measured foliation to a hyperbolic metric, is a good approximation for large foliations.
This works so well because most of the length of a geodesic (after a small perturbation), and all
the measure, is concentrated in the collars. Using these coordinates on Teichmüller space, it follows
that the Thurston compactification is just the radial compactification of Euclidean space. The same
result does not hold using Fenchel-Nielsen coordinates, as is apparent by considering sequences
where the lengths of some αi go to zero. There are explicit formulae (Proposition 4.1) for collar
parameters in terms of the Fenchel-Nielsen coordinates or the Dehn-Thurston coordinates.

A hyperbolic torus with a geodesic boundary component can be obtained
by identifying two boundary components of a hyperbolic pair of pants that
have the same length (α in the image). The limit, as the length of the torus’
boundary component goes to zero, is a complete hyperbolic once-punctured
torus T with finite area. Given a standard collar A containing a closed
geodesic α, there is such a T that contains an isometric image of the interior

of A and exactly two points, one on each (purple) boundary component of A, are identified to a
single point p in T . Twisting along α produces a one-parameter family of such tori. A geodesic arc
crossing A and with these endpoints gives a geodesic loop β in T . There is another loop γ such
that α, β, γ are three closed geodesics in T that pairwise-intersect precisely once. With suitable
orientations, we have α ·β ·γ = 1 ∈ π1T . These closed geodesics contain the three edges in a triangle
of the triangulation of A, and hence define the collar parameters. More precisely, the length of
a triangle edge is half the length of the geodesic loop that contains it. The commutator [α, β] is
parabolic. The formula for the trace of this parabolic, expressed in terms of the lengths of α, β, γ,
gives the equation relating the edge lengths in a standard collar. It follows that one may regard the
collar parameters of a standard collar as a point in the Teichmüller space of finite area complete
hyperbolic metrics on T , and thus can view T (Σ) as a product of (3g− 3) copies of the Teichmüller
space of the punctured torus.



COLLAR PARAMETERS FOR TEICHMÜLLER SPACE & MEASURED FOLIATIONS ON A SURFACE 3

Given v ∈ R6g−6 with |v| ≤ 1 one can write down an explicit quadratic differential on Σ that
varies continuously with v. When |v| < 1 this is a rescaling of a hyperbolic metric with collar
parameters v/(1−|v|). For |v| = 1 it is a measured foliation for collar parameter v. This realizes the
Thurston compactification of Teichmüller as a subspace of Q(Σ), the space of quadratic differentials
on Σ.

Theorem A bounds the difference between the length of an isotopy class of a loop in a hyper-
bolic metric and the corresponding measured foliation. The bound is in terms of the minimum
word length in the conjugacy class for the loop. This implies Theorem B concerning the com-
pactification. These theorems follow from a stronger result that compares pointwise the hyperbolic
metric and corresponding measured foliation after isotoping these structures into a nice position.
This culminates in Theorem C, which lifts both Teichmüller space and the space of measured folia-
tions to spaces of quadratic differentials where the Thurston compactification arises from (rescaled)
quadratic differentials, rather than isotopy classes of structures.

1. Collar parameters

In what follows, Σ is a closed orientable surface of genus g ≥ 2 and a structure is either a
hyperbolic metric or a measured foliation on Σ.

To provide a common frame of reference for the structures, we fix a triangulation of a standard
annulus. Define the circle S1 := R/2Z, and the standard annulus as A := S1 × [−1, 1]. The

universal cover of the standard annulus is Ã = R × [−1, 1] ⊂ R2. Let p : R × [−1, 1] → A be the

covering map. The subset [−1, 1]2 of Ã is a fundamental domain. Triangulate [−1, 1]2 with eight
Euclidean triangles as shown in Figure 1a. Their images under p give a triangulation of A. This
triangulation contains a reference triangle with sides that are sa = p([0, 1]× 0) and sb = p(1× [0, 1])
and sc = p({(t, t) : 0 ≤ t ≤ 1}). The basepoints on ∂A are p(1,±1).

Figure 1. (a) The left-hand image depicts a triangulation of a fundamental domain
for the standard annulus A = S1 × [−1, 1] with the reference triangle shaded in.
The basepoints are in orange. (b) The right-hand image shows the lengths of the
edges determined by a hyperbolic metric or measured foliation on A.

In the following we explain how a triple (a, b, c) in H (see Equation 1) or ∆ (see Equation 2)
determines, respectively, a hyperbolic metric or a measured foliation on the reference triangle where
the lengths of sa, sb, and sc are respectively a, b, and c. Using the triangulation of Figure 1, we
then define, respectively, a hyperbolic metric or measured foliation on the standard annulus.

1.1. Shorts decomposition. Suppose

A = {αi : 1 ≤ i ≤ 3g − 3}
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is a set of disjoint simple closed curves in Σ such that the closure of
each component of Σ \ A is a pair of pants. Then there are 2g − 2
complementary components.

Let AN = {Ai : 1 ≤ i ≤ 3g − 3} be a set of pairwise disjoint
compact annuli in Σ such that Ai is a neighborhood of αi. Let SH
be the closure of Σ \AN. Then SH = {Sj : 1 ≤ j ≤ 2g − 2} where
each Sj is called a pair of shorts, and is a pair of pants with annuli
neighborhoods of the boundary components removed.

Then D = (SH,AN) is called a shorts decomposition of Σ.

1.2. Hyperbolic collars.

Definition 1.1 (collars). A hyperbolic collar is an annulus A endowed with a hyperbolic metric so
that A contains a simple closed geodesic α and each point of ∂A is a fixed distance d from α. Thus
∂A consists of two hypercycles. The number d is called the depth of the collar. A hyperbolic collar
whose core geodesic has length 2a is a standard collar if it has depth κ(a) = sinh−1(1/ sinh(a)).

The Collar Lemma, see [1], says that disjoint closed geodesics in a hyperbolic surface are contained
in disjoint standard collars.

Figure 2. (a) A standard collar and (b) its triangulation.

A hyperbolic collar can be triangulated, as described above, in such a way so that the sides of the
reference triangle are geodesics. This is shown in Figure 2b, however in general β is not orthogonal
to α. A hyperbolic collar is standard if and only if the side lengths of the reference triangle in the
triangulation satisfy the collar equation:

Lemma 1.2 (collar equation). If S is a standard collar and the length of the core geodesic is 2a
then the edge lengths (a, b, c) of the reference triangle satisfy

cosh2 a+ cosh2 b+ cosh2 c = 2 cosh a cosh b cosh c.

We say a point in R3 satisfies the collar equation if it is in the set

(1) H = {(a, b, c) : cosh2 a+ cosh2 b+ cosh2 c = 2 cosh a cosh b cosh c a, b, c > 0}.

The set H is the left-hand image in Figure 3. It sits inside the cone from the origin on the
triangle in the plane x + y + z = 2 with vertices the points (1, 1, 0) and (1, 0, 1) and (0, 1, 1). It
is asymptotic to the sides of this cone. The intersections of H with the planes x + y + z = C are
convex curves becoming larger and more nearly triangular as C increases. This is depicted on the
right for C = 3, 4, 5.
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Figure 3. (a) On the left is H and (b) on the right is some cross sections of H

Given (a, b, c) ∈ H there is a unique hyperbolic metric hyp(a, b, c) on A = S1 × [−1, 1] satisfying
all of the following properties.

1. The metric is isometric to a standard collar with core curve of length 2a.
2. The metric is preserved by rotation of the S1 factor.
3. The curve β : [−1, 1] → A given by β(t) = p(−1, t) is a geodesic of speed b and length 2b.
4. There is a geodesic γ : [−1, 1] → A of length 2c and homotopic rel endpoints to t 7→ p(t, t).

Rotational invariance implies that each S1 × y is a hypercycle and has constant speed. Half the
length of each boundary component of A is h = a coth(a). The sides sa and sb of the reference
triangle are hyperbolic geodesics, but the third side sc is not. The geodesic reference triangle is the
triangle in A with sides sa, sb and p ◦ γ[0, 1]. It has geodesic sides and is isotopic to the reference
triangle without moving the vertices. It is clear that a standard triangulation of a standard collar can
be isotoped without moving the basepoints to be hyp(a, b, c). We call such a metric standard. The
next result implies that a standard metric on an annulus differs pointwise from a linear measured
foliation by at most twice the Euclidean metric.

Lemma 1.3. The metric hyp(a, b, c) on A pulls back using the covering space projection to the

metric on Ã = R× [−1, 1] given by

ds2 =

(
a2 +

( a

sinh a

)2( sinh(by)

sinh b

)2
)
dx2 ± 2ab

√
1−

(
1

sinh a sinh b

)2

dxdy + b2dy2

The sign is +1 if cosh c ≥ cosh a cosh b. Hence

|ds2 − (a.dx± b.dy)2| ≤ 2(dx2 + dy2)

1.3. Triangle lengths and collar parameters. Let π : R3 → R2 be the linear map defined by

π(a, b, c) = (4a− 2b− 2c, 2b− 2c).

This is the composition of orthogonal projection of R3 onto the subspace given by a + b + c = 0,
followed by an isomorphism to R2. This particular isomorphism was chosen so that simple closed
curves, thought of as measured foliations, map to integer points. The numbers (a, b, c) are called the
triangle lengths and (x, y) = π(a, b, c) are the collar parameters. It is routine to check that the map
πH = π|H : H → R2 is a homeomorphism, so the collar parameters determine the triangle lengths.

A collar parameter p ∈ R2 gives rise to both a measured foliation and a hyperbolic metric on A,
and thus also on the universal cover Ã.



6 DARYL COOPER AND CATHERINE PFAFF

1.4. Parameterizing Teichmüller space. In the following Σ is a closed orientable connected
surface of genus g ≥ 2 and, as in §1.1,

A = {αi : 1 ≤ i ≤ 3g − 3}

is a set of disjoint simple closed curves in Σ such that the closure of each component of Σ \ A is a
topological pair of pants. A point in T (Σ) is uniquely determined by collar parameters (xi, yi) ∈ R2

for each αi as follows.
Choose a set of pairwise disjoint annuli {Ai : 1 ≤ i ≤ 3g − 3} such that Ai contains αi in the

interior for each i. Choose an identification of Ai and the standard annulus A. The collar parameters
(xi, yi) determine a hyperbolic metric on Ai, using the triangle lengths π−1(xi, yi).

The closure of a component of Σ \ A is a hyperbolic pair of pants. The hyperbolic structure on
each pair of pants is determined by the collar parameters. The basepoints of the standard collars
are on the seams of the pants they are in. This determines how standard collars are glued to pants
and thus determines a hyperbolic metric on Σ and a parameterization

η :
∏

R2 −→ T (Σ).

1.5. Parameterizing measured foliations. Our point of view is that a measured foliation |ω| is
determined by a 1-form ω. We regard two measured foliations as equivalent if they determine the
same length functions on S. If ω = 0 on a subsurface then the foliation on that subsurface is not
important. The discussion below follows the terminology of [2, Section 6.2]. We wish to concentrate
the transverse measure in the annuli. We will define a standard measured foliation on shorts and
on an annulus. Fix a shorts decomposition of the surface Σ. Then a measured foliation on Σ is
standard if the restriction to each pair of shorts and each annulus is standard. It follows from [2]
that:

Proposition 1.4. Every measured foliation on a surface is equivalent to a standard one.

Let P be a pair of shorts with boundary components δ1, δ2, δ3 (in [2] the corresponding boundary
components are called γ1, γ2, γ3). Given m1,m2,m2 ≥ 0 we define a standard measured foliation
on P such that the transverse measure of δi is mi. Except for the case of (m1,m2,m3) = (0, 0, 0)
the leaves of the foliation are shown in [2, Figure 6.6], but modified as follows. If mi = 0 then
an annulus neigborhood of δi is foliated by smooth circles, and with transverse measure zero. The
result is shown in Figure 5. The remaining case of (m1,m2,m3) = (0, 0, 0) is shown in Figure 4.

Figure 4. The measured foliation in the case of m1 = m2 = m3 = 0 on shorts
(left) and pants (rights). The line of reflection in the shorts is the blue dotted line.

In each case there is an automorphism of P that is a reflection that fixes the union of three arcs,
one connecting each pair of boundary components, and that is measure preserving.
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Figure 5. Possible foliations on the shorts [2, Figure 6.6]: from left to right these
are where m1 + m2 + m3 > 2max{m1,m2,m3}, and m1 = m2 + m3, and m1 >
m2+m3, and m1 = m3,m2 = 0, and m1 > m3,m2 = 0, and m1 > 0,M2 = m3 = 0.

It remains to define a standard measured foliation on an annulus. They are given by a linear
1-form. There are two kinds, depending on whether the leaves are circles, or arcs connecting the
two boundary components. In the first case the transverse measure might be zero.

Definition 1.5 (triangle equality). A point x ∈ R3 satisfies the triangle equality if it is in the set

(2) ∆ = {(a, b, c) : a+ b+ c = 2max{a, b, c} & a, b, c ≥ 0}.

This is the cone from 0 on a 2-simplex. Figure 3 shows how the subset H of R3 sits inside ∆
like a hyperboloid inside its lightcone: they are asymptotic at infinity. Moreover π| : ∆ → R2 is a
homeomorphism.

A measured foliation µ on A is linear if it is covered by a measured foliation |df | on Ã ⊂ R2

given by the restriction of some linear map f : R2 → R. A Euclidean line segment in A is either
transverse to the foliation, or else contained in a leaf. We assign lengths (a, b, c) to the sides of the
reference triangle in A by integrating |df | along each side. Then (a, b, c) ∈ ∆ and h = a. We again
refer to π(a, b, c) ∈ R2 as CP parameters, and they determine these lengths for measured foliations.

Given edge lengths v = (a, b, c) ∈ ∆, if c ≥ max(a, b) then c = a+ b, otherwise
c = |a− b|. Let mf(v) be the linear measured foliation on A that assigns lengths
a, b, c to the standard unit vectors e1, e2, e1 + e2 respectively. Then mf(v) lifts
to a measured foliation |ωv| where ωv is the 1-form on R2 given by

(3) ωv =

{
a.dx+ b.dy c = a+ b
a.dx− b.dy c = |a− b|

The figure above shows a foliation on R2 such that ωv vanishes on the tangent spaces of the leaves.
When v = 0 we define the leaves to be the circles given by ker dy.

An assignment of a point in π(∆) = R2 to each annulus in an annulus-shorts decomposition of Σ
determines a measured foliation on Σ and a parameterization

µ :
∏

R2 −→ MF(Σ).

1.6. CP maps. The collar parameters on Teichmüller space and measured foliations are the maps
ΘT = η−1 : T (Σ) → R6g−6 and ΘMF = µ−1 : MF(Σ) → R6g−6. The map m = µ ◦ η−1 : T (Σ) →
MF(Σ) is called the foliation map, and the inverse h : MF(Σ) → T (Σ) the hyperbolization map.

2. The Thurston compactification is the Radial Compactification

Suppose that ds is a positive semi-definite quadratic form on Σ. There is a length function

L(ds) : S → R
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defined as follows. Given an element σ of S then

(L(ds))(σ) = inf

∫
γ

ds

where the infimum is taken over all simple closed curves γ in the isotopy class σ. We are interested
in applying the length function to ds, when it is given either by a hyperbolic metric, or by a
transversally measured foliation on Σ.

Choose a finite symmetric generating set W ⊂ π1(Σ). Set W 1 = W and Wn+1 = {x.y : x ∈
W, y ∈ Wn}. For g ∈ π1Σ define w : π1Σ → Z by w(g) = min{n : ∃h hgh−1 ∈ Wn}. The number
w(g) is called the conjugacy word length of g and is the minimum length of a word in the elements
of W that is conjugate to g. The hyperbolic structure, η(σ), and the measured foliation, µ(σ), give
length functions on S that differ by less than a fixed multiple of word length:

Main Theorem A. Given a conjugacy word length w on π1Σ, there is a constant C > 0 such that
m : T (Σ) → MF(Σ) satisfies:

∀ ρ ∈ T (Σ) | L(ρ)− L(m(ρ)) | ≤ C · w
Using the embedding Rn ↪→ Rn given by v 7→ v/(1+ ∥v∥) the radial compactification of Rn is the

unit ball B = {v ∈ Rn : ∥v∥ ≤ 1}. The Thurston compactification is T (Σ) = T (Σ) ⊔ P(MF). Since
µ(tv) = t ·µ(v) for t > 0, it follows from Theorem A that the length functions t−1L(η(tv)) converge
to the length function of µ(v) provided v ̸= 0.

Main Theorem B. Using ΘT coordinates to identify T (Σ) ≡ R6g−6, the Thurston compactification
is the radial compactification of R6g−6. For 0 ̸= v ∈ R6g−6, we have limt→∞ η(tv) = [µ(v)] ∈ T (Σ).

3. Realizing the compactification with quadratic differentials.

Suppose ds0 is some Riemannian metric on Σ, not necessarily hyperbolic, called the background
metric. We show that, after a suitable isotopy, a hyperbolic metric on Σ differs from some measured
foliation on Σ by less than a fixed multiple of ds0. Then integration along geodesics shows the two
length functions are close, provided these geodesics are not too long in the background metric. We
formalize this with the following.

Definition 3.1. A seminorm ds on Σ is C-efficient with respect to the background metric ds0 if for
each g ∈ π1Σ there is a ds-geodesic α : S1 → Σ that is freely homotopic to a loop representing g,
and ℓ(α, ds0) ≤ C ·w(g). A set of seminorms N is uniformly efficient if there is C > 0 such that all
the seminorms in N are C-efficient.

Since Σ is compact any two background metrics are bilipschitz. Thus whether or not a set of
seminorms is uniformly efficient does not depend on the choice of background metric.

The space of quadratic differentials Q(Σ) on Σ contains the subspace, T̃ (Σ), of hyperbolic metrics

and the subspace, M̃F(Σ), of measured foliations. There are natural projections πT : T̃ (Σ) → T (Σ)

and πMF : M̃F(Σ) → MF(Σ), and πT is a fiber bundle with fiber the group of diffeomorphisms
isotopic to the identity. These maps have sections:

Main Theorem C (Efficient Realization Theorem). Suppose Σ is a closed orientable surface with

genus at least 2. Then there are embeddings η̃ : R6g−6 → T̃ (Σ) and µ̃ : R6g−6 → M̃F(Σ) such that
µ = πMF ◦ µ̃ and η = πT ◦ η̃, with η̃(tx) = tη̃(x) for each t ≥ 0. Moreover, given a background
metric ds0 on Σ, there is C = C(ds0) > 0 so that the image of µ̃ and of η̃ are uniformly efficient and

(4) ∀x ∈ R6g−6 | η̃(x)− µ̃(x) | ≤ C · |ds0|
To define µ̃ and η̃ involves writing down explicit metrics and measured foliations on shorts that

match standard metrics on collars along the boundary.
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4. Converting between Collar Parameters and Fenchel-Nielsen coordinates

We provide here the coordinate change maps between the CP coordinates we have defined, and
the classical Fenchel-Nielsen coordinates on Teichmüller space and Dehn-Thurston coordinates for
measured foliations.

Proposition 4.1. Suppose (2ℓ, 2τ) ∈ R+ × R are Fenchel-Nielsen coordinates [5]. The triangle
lengths (a, b, c) are given by

(5)

a = ℓ

b = cosh−1(cosh τ coth ℓ)

c = cosh−1(cosh(ℓ− τ) coth ℓ)

and the collar parameters are given by

(6)
x = 4ℓ− 2 cosh−1 (cosh τ coth ℓ)− 2 cosh−1 (cosh(ℓ− τ) coth ℓ)

y = 2 cosh−1(cosh τ coth ℓ)− 2 cosh−1(cosh(ℓ− τ) coth ℓ)

If (2ℓ, 2τ) ∈ R≥0 ×R are Dehn-Thurston coordinates [3] then the triangle lengths (a, b, c) are given
by a = ℓ and b = |τ | and c = |ℓ− τ | and the collar parameters by

(7)
x = 4ℓ− 2|τ | − 2|ℓ− τ |
y = 2|τ | − 2|ℓ− τ |

When ℓ is large then coth ℓ ≈ 1. Observe that replacing coth ℓ by 1 in (6) yields (7).

5. The collar equation and Teichmüller space of a once-punctured torus

The collar equation is also the equation of the character variety for the Teichmüller space of finite
area hyperbolic structures on a once-punctured torus T . This follows because the worst case for a
standard collar is given by T , where there is a single self intersection point on the boundary of a
standard collar. This point determines a reference triangle in T and this triangle determines the
metric on T up to isotopy. Here are the details.

Refer to Figures 6 and 7. Let D be an ideal quadrilateral in H2 such that the common perpen-
diculars, A and B, to opposite sides of D are orthogonal. Then there is an a ∈ R>0 so that the
lengths of these common perpendiculars are 2a and 2κ(a). Now D is a fundamental domain for a
hyperbolic metric on T . This is obtained by identifying the opposite sides of D using isometries
that translate along the common perpendiculars. The image of A in T is a simple closed geodesic
α. The standard collar of α meets itself at one point p, that is the image of the endpoints of A.
The image of B is a closed geodesic β on T that is orthogonal to α at the point q. There is a third
closed geodesic γ on T that contains p and q and is homotopic to α · β. Then the reference triangle
has side lengths a, b, c that are the half-lengths of the geodesics α, β, and γ.

If A,B ∈ SL(2,R) are the holonomies of α and β then C = AB is the holonomy of γ. It follows
from the trace relation that

(8) tr[A,B] = −2 = (trA)2 + (trB)2 + (trC)2 − trA trB trC − 2.

The relationship trA = 2 cosh a between the trace and translation length yields the collar equation
in this case.

The hyperbolic structure on T has the property that α and β are orthogonal. Any finite area
structure on T can be obtained from some such α and β by an earthquake à la Fenchel-Nielsen
along α by some distance. One can picture the triangulation on the resulting structure by cutting
D along A and sliding the bottom half sideways, see Figure 7. It follows that the standard collar of
α in the resulting structure still has a single point of self intersection. The geodesic B is replaced
by the geodesic connecting p and the image p′ of p under the sideways slide.
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Figure 6. (a) The left-hand image depicts an ideal quadrilateral D in H2 such
that the common perpendiculars, A and B, to opposite sides of D are orthogonal.
If the length of A is 2a, then the length of B is 2κ(a). The 2κ(a)-hypercycles are
depicted in purple. (b) The right-hand image depicts the punctured torus obtained
by identifying the opposite sides of D using isometries that translate along the
common perpendiculars. α is the image of A and β is the image of B. The image
of the 2κ(a)-hypercycles correspond to the standard annulus boundary image.

Figure 7. tr[A,B] = −2 ⇒ cosh2 a+ cosh2 b+ cosh2 c = 2 cosh a cosh b cosh c

Proposition 5.1. Let T be a once-punctured torus and α, β a generating set for π1(T ). Let T (T )
denote the Teichmüller space of finite area hyperbolic metrics on T . Then there exists a homeomor-
phism θ : T (T ) −→ H so that θ(ρ) = (a, b, c) are half the lengths of geodesic representatives of α,
β, and α.β respectively.
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