
Out(F3) INDEX REALIZATION

CATHERINE PFAFF

Abstract. By proving precisely which singularity index lists arise from the pair of invariant fo-
liations for a pseudo-Anosov surface homeomorphism, Masur and Smillie [MS93] determined a
Teichmüller flow invariant stratification of the space of quadratic differentials. In this paper we
determine an analog to the theorem for Out(F3). That is, we determine which index lists per-
mitted by the [GJLL98] index sum inequality are achieved by ageometric fully irreducible outer
automorphisms of the rank-3 free group.

1. Introduction

We let Out(Fr) denote the outer automorphism group of the rank-r free group. In this paper
we prove realization results for an outer automorphism invariant dependent only on the conjugacy
class (within Out(Fr)) of the outer automorphism, namely the “index list.” This work is motivated
both by the important role index lists have played in mapping class group theory and by the role
they are already playing in studying the dynamics of the groups Out(Fr).

The outer automorphism groups have been studied for many years. More recent developments
have encouraged and enabled rapid analysis of deep relationships between the mapping class groups
and the groups Out(Fr). For a compact surface Σ, the mapping class group MCG(Σ) is the
group of isotopy classes of orientation-preserving homeomorphisms of Σ. The relationship between
the mapping class groups and Out(Fr) is particularly visible in rank 2, where there are even
isomorphisms Out(F2) ∼= Out(π1(Σ1,1)) ∼= MCG(Σ1,1) for the one-holed torus Σ1,1. It can be
noted that even in higher ranks, many outer automorphisms are still induced by homeomorphisms
of compact surfaces with boundary. For future reference, such outer automorphisms are called
geometric.

While not necessary for following the content of this paper, we first briefly explain indices in
the mapping class group setting to orient the reader more familiar with surface theory. The index
list is an important invariant of a “pseudo-Anosov” mapping class. Pseudo-Anosovs are the most
common mapping class group elements (see for example [Mah11]) and are characterized by having a
representative leaving invariant a pair of transverse measured singular minimal foliations. In [MS93]
Masur and Smillie determined precisely which singularity index lists, permitted by the Poincaré-
Hopf index formula, come from these invariant foliations of pseudo-Anosovs. The stratification
they give of the space of quadratic differentials is not only invariant under the Teichmüller flow,
but has been extensively studied in papers such as [KZ03], [Lan04], [Lan05], [EMR12], and [Zor10].

The index list for a pseudo-Anosov can identically be viewed in terms of its invariant foliation or
in terms of its dual R-tree. In fact, the singularities of the invariant foliation, lifted to the universal
cover, are in one-to-one correspondence with the branchpoints of the dual R-tree. In the respective
settings, the index list has an entry of 1 − k

2 obtained by counting the number k of prongs at the
singularity or the valence of the branch point. Alternatively, one can ascertain the index list from
singularities of the expanding invariant lamination (obtained as the limit of any simple closed curve
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under repeated application of the pseudo-Anosov) or from the invariant train track. Much of this
theory can be found in [FdPDdm91].

A “fully irreducible” (iwip) outer automorphism is the most commonly used analogue to a
pseudo-Anosov mapping class. An element φ ∈ Out(Fr) is fully irreducible if no positive power
φk fixes the conjugacy class of a proper free factor of Fr. The index theory for automorphisms of
free groups dates back to the work of Cooper [Coo87], Dyer and Scott [DPS75], Gersten [Ger87],
and later Bestvina and Handel [BH92] in understanding the fixed point sets for an automorphism.
Gersten [Ger87] proved the Scott conjecture [DPS75] that rank of the fixed subgroup Fix(Φ) =
{g ∈ Fr | Φ(g) = g} for a Φ ∈ Aut(Fr) is finite. In [BH92], Bestvina and Handel proved the
strengthened Scott conjecture, stating that Fix(Φ), for Φ ∈ Aut(Fr), has rank ≤ r. Gaboriau,
Jaeger, Levitt, and Lustig [GJLL98], utilizing the index theory for R-trees already developed in
[GL95], introduced an index theory for automorphisms of free groups in order to prove (as a positive

answer to a conjecture of Cooper [Coo87], pg. 455) that, in fact, rk(Fix(Φ)) + a(Φ)
2 . Here a(Φ)

denotes the number of attracting fixed points for the action of Φ on ∂Fr. [GJLL98] also provides
an inequality bounding the index sum for a nongeometic fully irreducible, as described below.

As with a pseudo-Anosov acting on Teichmüller space, a fully irreducible acts with north-south
dynamics [LL03] on the natural compactification of Culler-Vogtmann Outer space [CV86]. Both
the attracting and repelling points for the action are R-trees, denoted respectively T+

φ and T−φ . The

repelling tree is an extension, to nongeometric fully irreducibles, of the dual tree to the invariant
foliation for a pseudo-Anosov. As with a pseudo-Anosov, the index list for a fully irreducible, as
defined in [HM11], has an entry of 1 − k

2 obtained by counting the valence k of the branch point.
The index list can again also be computed from the expanding lamination of [BFH97]. For a fully
irreducible the lamination can be obtained by applying an automorphism in the class repeatedly
to any generator, then taking the closure. The description of the index list we use here (explained
in Section 2) uses the “train track representative” proved to exist for a fully irreducible in [BH92].

While the Out(Fr) groups resemble mapping class groups, there is added depth to the Out(Fr).
A particularly good example of this arises when trying to generalize the Masur-Smillie pseudo-
Anosov index theorem to nongeometric fully irreducibles. One facet of this depth is expanded
upon in [Pfa12b], [Pfa13a], and [Pfa13b], where we show that, unlike with pseudo-Anosovs, where
the ideal Whitehead graph can be determined by the singularity index list, the ideal Whitehead
graph actually gives a finer invariant of a fully irreducible giving, in particular, more detailed
behavior of the lamination at a singularity. In this paper we focus on the fact that, instead of
being restricted by an index sum equality, such as the Poincaré-Hopf index equality, the index sum
for a fully irreducible is only restricted by an inequality. Gaboriau, Jäeger, Levitt, and Lustig
proved in [GJLL98] that each fully irreducible φ ∈ Out(Fr) satisfies that index sum inequality
0 > i(φ) ≥ 1 − r. Here we revise their index definition to be invariant under taking powers and
to have the sign consistent with the mapping class group case. If one takes an adequately high
power (the “rotationless power” of [FH11], see Subsection 2.2), the definitions differ only by a sign
change. This is simply because we compute the index using periodic points, instead of fixed points,
on the boundary of T+.

Index lists of geometric fully irreducibles are understood by the Masur-Smillie index theorem.
Complexity of the nongeometric case prompted Handel and Mosher to ask ([HM11] Question 6):

Question 1.1. Which index types, satisfying 0 > i(φ) ≥ 1− r, are achieved by nongeometric, fully
irreducible φ ∈ Out(Fr)?

We answered the rank 3 case with:

Theorem 1.2. Each of the six possible index lists, {−1
2 ,−

1
2 ,−

1
2}, {−

1
2 ,−1}, {−3

2}, {−
1
2 ,−

1
2},

{−1}, and {−1
2}, satisfying 0 > i(φ) > 1− r are realized by fully irreducible φ ∈ Out(F3). In fact,

they are realized by ageometric fully irreducible φ ∈ Out(F3).
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One may notice that we restrict to looking at outer automorphisms for which the right-hand
inequality is strict. This is because we focus on ageometric outer automorphisms, as defined in
[GJLL98]. While ageometrics are believed generic, there does exists a second class of nongeometric
outer automorphisms, namely the parageometrics (which could be classified as nongeometric fully
irreducible outer automorphisms with geometric attracting tree). These have been studied in
papers such as [HM07] and [Gui05], where in fact they show that the inverse of a parageometric is
ageometric. It can additionally be noted that Bestvina and Feighn give in [BF94] a nice description
of the distinction between ageometrics, parageometrics, and geometrics.

It is proved in [GL95] that a fully irreducible has geometric attracting tree precisely if the index
sum satisfies i(φ) = 1 − r. Thus, like geometrics, parageometrics have index sum i(φ) = 1 − r. It
would be interesting to understand whether index lists satisfying i(φ) = 1− r, but not realized by
geometrics, are in fact realized by parageometric outer automorphisms.

While this paper is the first to focus on index list realization, the index theory for free group
outer automorphisms has in some directions already been extensively developed. In fact, there are
three types of Out(Fr) index invariants in the literature, those of [GL95], [GJLL98], and [CH]. The
index of φ, as defined and studied in [GJLL98], is equal to the geometric index of T+

φ , as established

by Gaboriau-Levitt [GL95] for more general R-trees. [CH12] provides a relationship between the
index of [CH] and the geometric index, as well as uses the index to relate different properties of the
attracting and repelling tree for a fully irreducible. There are also even index realization results
of a different nature. For example, [JL09] gives examples of automorphisms with the maximal
number of fixed points on ∂Fr, as dictated by a related inequality in [GJLL98]. Focusing on an
Out(Fr)-version of the Masur-Smillie theorem, we restrict attention to fully irreducibles and the
[GJLL98] index inequality given above.

Acknowledgements. The author would like to thank her thesis advisor Lee Mosher for his contin-
ued discussions and support. She would like to thank Thierry Coulbois for his invaluable computer
program and assistance. She would like to thank Ilya Kapovich for helpful discussions and advice.
And, finally, she would like to thank Martin Lustig for his interest in her work.

2. Definitions and Background

2.1. Train track representatives. Let Rr denote the r-petaled rose (graph with one vertex and r
edges) together with an identification π(Rr) ∼= Fr. We call a connected 1-dimensional CW-complex
Γ such that each vertex has valence at least two, together with a homotopy equivalence (marking)
Rr → Γ, a marked graph. Each φ ∈ Out(Fr) is represented by a homotopy equivalence g : Γ→ Γ of
a marked graph, where φ = g∗. When g additionally sends vertices to vertices and satisfies that gk

is locally injective on edge interiors for each k > 0, we say g is a train track (tt) representative for
φ, and a train track (tt) map. In [BH92], Bestvina and Handel prove that a fully irreducible outer
automorphism always has a train track representative.

Many of the definitions and notation for discussing train track representatives were established
in [BH92] and [BFH00]. We remind the reader here of a few that are relevant.

Let g : Γ → Γ be a tt map. For each x ∈ Γ, we let D(x) denote the set of directions at x, i.e.
germs of initial segments of edges emanating from x. For an edge e ∈ E(Γ), we let D0(e) denote
the initial direction of e. For a path γ = e1 . . . ek, define D0γ = D0(e1). We denote the map of
directions induced by g by Dg, i.e. Dg(d) = D0(g(e)) for d = D0(e). A direction d is periodic if
Dgk(d) = d for some k > 0.

We call an unordered pair of directions {di, dj} a turn. It is an illegal turn for g if Dgk(di) =

Dgk(dj) for some k and legal otherwise. Considering the directions of an illegal turn equivalent,
one can define an equivalence relation on the set of directions at a vertex. Each equivalence class
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is called a gate. For a path γ = e1e2 . . . ek−1ek in Γ, we say γ takes {ei, ei+1} for each 1 ≤ i < k.
For both edges and paths we more generally use the “overline” to denote a reversal of orientation.

We call a tt map reducible if it has an invariant subgraph with a noncontractible component and
is otherwise called irreducible. An outer automorphism φ is fully irreducible if every representative
of every power is irreducible.

The transition matrix for a tt map g is the square matrix such that, for each i and j, the ijth

entry is the number of times g(Ej) contains Ei with either orientation. A transition matrix A = [aij ]

is Perron-Frobenius (PF) if there exists an N such that, for all k ≥ N , Ak is strictly positive (see
for example [BH92]).

We call a tt map g expanding if for each edge e in Γ we have that |gn(e)| → ∞ as n→∞, where
for a path γ we use |γ| to denote the number of edges γ traverses (with multiplicity).

In this paper we only deal with expanding irreducible train track maps and hence will give
definitions, etc, in this context, even when it is not strictly necessary.

2.2. Periodic Nielsen paths and rotationless powers. Let g : Γ → Γ be an expanding irre-
ducible tt map. A periodic Nielsen path (PNP) for g is a nontrivial path ρ in Γ such that, for some
k, we have gk(ρ) ' ρ rel endpoints. ρ is called an indivisible periodic Nielsen path (iPNP) if it
cannot be written as a nontrivial concatenation ρ = ρ1 · ρ2, where ρ1 and ρ2 are nontrivial PNPs.
An (indivisible) periodic Nielsen path is just called an (indivisible) Nielsen path when its period is
1. The notation reflects this.

As it is used in Section 3, we remark that iPNPs have a specific structure, described in [BH92]
Lemma 3.4:

Proposition 2.1. Let g : Γ→ Γ be an expanding irreducible tt map. Then every iPNP ρ in Γ has
the form ρ = ρ1ρ2, where ρ1 and ρ2 are nondegenerate legal paths sharing their initial vertex v ∈ Γ
and such that the turn at v between ρ1 and ρ2 is an illegal nondegenerate turn for g.

The notion of a rotationless tt map is first defined in [FH11] Definition 3.18. However, because
we only deal with expanding irreducible tt maps, we instead use the version of the definition and
results surrounding it given in [HM11].1

Given an expanding irreducible tt map g : Γ→ Γ, we call a periodic vertex v of Γ principal that
is either the endpoint of an iPNP or that has at least 3 periodic directions. (In order to include all
endpoints of iPNPs under this definition, one typically adds valence-2 vertices at the endpoints of
iPNPs, by [FH11] Lemma 2.12 there are only finitely many such points.) An expanding irreducible
tt map g : Γ → Γ such that each principal vertex is fixed and each principal direction of each
principal vertex is fixed is called rotationless.

We will use that rotationless powers always exist (and are in fact bounded by the rank of the
free group). To understand this, one needs from [FH11] Proposition 3.29 that φ ∈ Out(Fr) is
rotationless if one (hence all) of its expanding irreducible tt representatives is rotationless. The
following is [FH11] Corollary 4.43:

Proposition 2.2. For each r ≥ 2, there exists an R(r) ∈ N such that φR(r) is rotationless for each
φ ∈ Out(Fr).

2.3. Local Whitehead graphs, ideal Whitehead graphs, and index lists. We assume in
this subsection that g : Γ → Γ is an expanding irreducible tt representative of φ ∈ Out(Fr). We
also assume that g is PNP-free.

1The definitions in [HM11] are also adjusted from those in [FH11] to resolve an omission that meant that endpoints
of closed periodic Nielsen paths were not considered principal.
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The following definitions are from [HM11]. One can reference [Pfa12a] Section 2.9 for more
extensive explanations of the definitions and their invariance (notice that the index list being an
outer automorphism invariant follows from the ideal Whitehead graph being an outer automorphism
invariant, since it is computed from the ideal Whitehead graph). It is notable that, while we use
a tt representative here to define the ideal Whitehead graph and index list for a fully irreducible
outer automorphism, both the ideal Whitehead graph and index list are invariants of the outer
automorphism (again by [Pfa12a]). In fact, they are invariants of the conjugacy class within
Out(Fr) of the outer automorphism.

Let g : Γ → Γ be a tt representative of φ ∈ Out(Fr) and v a vertex of Γ. The local Whitehead
graph LW(g; v) for g at v has a vertex for each direction at v and an edge connecting the vertices
for di and dj when there exists an edge e of Γ and k > 0 so that gk(e) takes the turn {di, dj}.
Restricting to periodic directions, one obtains a subgraph called the local stable Whitehead graph
SW(g; v). Still assuming g has no PNPs, the ideal Whitehead graph IW(φ) of φ is then isomorphic
to the disjoint union

⊔
SW(g; v) taken over all principal vertices.

Remark 2.3. A useful observation is that, if LW(g; v) is connected, then so is SW(g; v). Hence,
if g is PNP-free and all local Whitehead graphs are connected, then the connected components of
the ideal Whitehead graph are in one-to-one correspondence with the principal vertices.

Let φ be a nongeometric fully irreducible outer automorphism and let C1, . . . , Cl be the connected
components of the ideal Whitehead graph IW(φ). For each j, let kj denote the number of vertices
of Cj . The index list for φ can be defined as

{i1, . . . , ij , . . . , il} = {1− k1

2
, . . . , 1− kj

2
, . . . , 1− kl

2
},

where we only include nonzero entries. The index sum is then i(φ) =
∑
ij .

2.4. Full irreducibility criterion. In order to show that our maps represent fully irreducible
outer automorphisms, we use the “Full Irreducibility Criterion (FIC)” proved in [Pfa13a] (Lemma
4.1):

Lemma. (The Full Irreducibility Criterion (FIC)) Let g : Γ → Γ be a PNP-free, irreducible train
track representative of φ ∈ Out(Fr). Suppose that the transition matrix for g is Perron-Frobenius
and that all the local Whitehead graphs are connected. Then φ is fully irreducible.

3. Verification Procedures

In Theorem 4.1 we used a computer program [Cou14] to verify that each example is indeed a
PNP-free tt representative of the correct rank. We include here a procedure for finding by hand all
PNPs of a train track map. This procedure is not too different from that given in [Pfa13a] and is
that applied in [HM11] Example 3.4.

We also include here procedures for computing by hand local Whitehead graphs and ideal White-
head graphs. In the proof of Theorem 4.1 we only use the procedures for PNP-free train track maps.

We leave verification of the validity of all of the procedures to the reader.

3.1. Finding periodic Nielsen paths. Let g : Γ → Γ be an expanding irreducible tt map and
{T1, . . . , Tn} the set of illegal turns for g. The following procedure will identify if there exists an
iPNP ρ = ρ1ρ2 for g, where ρ1 = e1 . . . em and ρ2 = e′1 . . . e

′
m′ are edge paths (with possibly em and

e′m′ being partial edges) and with illegal turn Ti = {D0(e1), D0(e′1)} = {d1, d
′
1}. Since PNPs can

be decomposed into iPNP, as such, one can find all PNPs for g. Throughout the procedure, we
use the notation ρ1,k = e1 . . . ek and ρ2,l = e′1 . . . e

′
l for respectively the length-k and length-l initial

segments of a proposed ρ1 and ρ2.
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We suppose one has followed the procedure to obtain legal paths ρ1,k = e1 . . . ek and ρ2,l = e′1 . . . e
′
l

and explain the next step of the procedure in each of the possible cases.

(Case A) Suppose that either gj(ρ1,k) is the initial subpath of gj(ρ2,l) or vice versa.
Without generality loss (or by adjusting notation) we can assume gj(ρ1,k) is the initial

subpath of gj(ρ2,l), so gj(ρ2,l) = gj(ρ1,k)σ, for some legal path σ. Then if ρ1,k were the
initial subpath of some ρ1 and ρ2,l were the initial subpath of some ρ2 so that ρ = ρ1ρ2

were a PNP for g, we would need for ρ1 to contain another edge ek+1. With each choice of
ek+1 such that ρ1,kek+1 is legal and Dgj+P (ek+1) = DgP (σ) for some P , one must continue
to compose with g until following the procedure either leads to a PNP or shows the choice
does not lead to a PNP. (Notice that to check if Dgj+P (ek+1) = DgP (σ) for some P it is
enough to check that either Dgj+1(ek+1) = Dg(σ) or {Dgj+1(ek+1), Dg(σ)} is an illegal
turn).

(Case B) Suppose that gj(ρ1,k) = γα′1 and gj(ρ2,l) = γα′2 where {D0(α1), D0(α2)} is a legal turn.
Then ρ1,k and ρ2,l could not yield an iPNP containing Ti and one must start the procedure

over for each possible edge addition arising in (A).
(Case C) Suppose that gj(ρ1,k) = γα′1 and gj(ρ2,l) = γα′2 where {D0(α1), D0(α2)} is an illegal turn.

And either
(i) ρ1,k is an initial subpath of α′1 and ρ2,l is an initial subpath of α′2
(ii) or (i) does not hold.

In the case of (i), there exists an iPNP from a fixed point of ek to a fixed point in e′l. In
the case of (ii), one must continue composing with g until either they land in the case of
(A), (B), or (i) or they reach a rotationless power, in which case (ii) would indicate there
is no iNP.

Remark 3.1. One can note that this procedure is finite, as there are only finitely many illegal turns
and a bound on the length of an iNP (as described in [BH92] Corollary 3.5 to be a consequence of the
“bounded cancellation lemma”). Since we never reach a case where we have to take advantage of the
bound of the length of an iNP, we refer the interested reader to [BH92] for its explicit computation.

While the procedure in theory also could require computation of the rotationless power for a given
rank, in practice it also is not used in our applications of the procedure and its computation can be
somewhat involved. Hence, we refer the reader to [FH11] Corollary 4.43.

3.2. Computing index lists. Suppose g : Γ→ Γ is a train track representative for an ageometric
fully irreducible. And supposed Γ has periodic vertices v1, . . . , vk. For each 1 ≤ i ≤ k, let ni denote
the number of gates at the vertex vi. Define an equivalence relation on the set of all periodic points
by: xi ∼ xj if there exists a PNP running from xi to xj . Call an equivalence class a Nielsen class.
For a Nielsen class Ni = {x1, . . . , xn}, let gi denote the number of gates at xi. Now let

ni = (
∑
gi)−#{iNPs ρ such that both endpoints of ρ are in Ni}.

The index list is then
{1− n1

2
, . . . , 1− nt

2
},

where we only include nonzero entries.
Notice that there are only finitely many nonzero entries, as there are only finitely many iNPs

and a periodic point xi that is not a vertex and not the endpoint of an iNP will have 1 − xi
2 = 0.

Additionally notice that one does not need to find all periodic points to make this computation,
but only needs to consider Nielsen classes that contain a vertex or endpoint of a PNP.

3.3. Computation of local Whitehead graphs. Now let g : Γ→ Γ be any expanding irreducible
tt map. Recall that the local Whitehead graph LW(g; v) has a vertex for each direction at v and
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an edge connecting the vertices for di and dj if there is some edge e of Γ and some k > 0 so that

gk(e) takes the turn {di, dj}. We explain a finite procedure for computing all such {di, dj}. We

denote by T this list of turns taken by some gk(e).
Enumerate the edges ei of Γ. For each ei, find the list of turns traversed by g(ei). Let

T = {{di1 , dj1}, . . . , {dim , djm}}

be the union of these lists. That is, each {dib , djb} ∈ T is a turn taken by some g(ei). We now
construct the list of turns T as follows: T first off includes all elements of T , but it will also include
all Dgk({dib , djb}) where k > 0. To ensure this:

Start with {di1 , dj1}. AddDg({di1 , dj1}), Dg2({di1 , dj1}), etc, toD until reaching someDgN ({di1 , dj1})
already in D. Now do the same for {di2 , dj2}, for {di3 , dj3}, etc.

Notice that, not only is this set T finite, but it will contain fewer than mR elements, where R is
the minimal rotationless power (see Subsection 2.2). So the procedure is finite.

Example 3.2. We consider the train track map on the rose:

g =


a 7→ cab

b 7→ ca

c 7→ acab

We will show how to verify that this is a tt representative of an ageometric fully irreducible with
single-entry index list {−1}.

Since the automorphism is positive, it is easily verified to be a tt map. It is irreducible since
the iterated image of each edge contains each other edge (notice that, since it is a tt map, this also
implies that the transition matrix is Perron-Frobenius). It is expanding since the image of each
edge has length ≥ 2.

The direction map Dg sends:
a 7→ c 7→ a 7→ . . .
b 7→ c 7→ . . .
c 7→ a 7→ . . .
ā 7→ b̄ 7→ ā 7→ . . .
b̄ 7→ ā 7→ . . .
c̄ 7→ b̄ 7→ . . .

From this one can see that the periodic directions are a, c, ā, and b̄ and the gates are {a, b}, {c},
{ā, c̄}, and {b̄}. Since there are four gates at the single vertex, the index list has a single entry
1− 4

2 = −1, provided that the map is PNP-free and represents a fully irreducible. (Without PNPs,
there is precisely one ideal Whitehead graph component for each local stable Whitehead graph, of
which there is only one here since there is only one vertex.)

The turns taken by g(a) are {c̄, a} and {ā, b}. The turns taken by g(b) are {c̄, a}.The turns taken
by g(c) are {ā, c}, {c̄, a}, and {ā, b}. Thus,

T = {{c̄, a}, {ā, b}, {ā, c}}.

{c̄, a} 7→ {b̄, c} 7→ {ā, a} 7→ {b̄, c}, which is already in T .
{ā, b} 7→ {b̄, c}, which is already in T .
{ā, a} 7→ {b̄, a} 7→ {ā, c}, which is already in T .

So

T = {{c̄, a}, {ā, b}, {ā, c}, {b̄, c}, {ā, a}, {b̄, a}}.

Thus, the single local Whitehead graph (which is connected) is:
7



From this, by restricting to the periodic directions, one can ascertain the single local stable White-
head graph (yielding the ideal Whitehead graph):

We now show how to apply the procedure to verify that there are no PNPs. The two illegal turns
are {a, b} and {ā, c̄}. We verify that there is no iPNP containing {a, b} and leave the verification
for {ā, c̄} to the reader.
a 7→ cab
b 7→ ca

Thus we are in the case of (A) with e1 = b, and there must be another edge e2 after b. e2 must
satisfy that either Dg(e2) = a or Dg(e2) = b. The only such possibility is e2 = c. So ρ1,2 = bc. We
apply g twice because after the first application, cancellation ends in the illegal turn {ā, c̄}, but not
in the manner of (C)(i):
a 7→ cab 7→ acabcabca
bc 7→ caacab 7→ acabcabcabacabcabca

We are now in the case of (A) and must add another edge e′2 after e′1 = a. e′2 must satisfy that
either Dg2(e2) = a or Dg2(e2) = b. So we must check e′2 = a and e′2 = b. The cancellation of
g3(aa) and g3(bc) ends with {b̄, c̄}, which is a legal turn. And the same is true for the cancellation
of g3(ab) and g3(bc). So we are done.

Notice that we have shown that g is an irreducible PNP-free tt map with Perron-Frobenius tran-
sition matrix and a unique connected local Whitehead graph. Hence, g represents an ageometric
fully irreducible outer automorphism. The index list {−1} could additionally have been computed
from the ideal Whitehead graph because the single component has 4 vertices.

4. Main Theorem

Theorem 4.1. Each of the six possible index lists, {−1
2 ,−

1
2 ,−

1
2}, {−

1
2 ,−1}, {−3

2}, {−
1
2 ,−

1
2},

{−1}, and {−1
2}, satisfying 0 > i(φ) > 1− r are realized by fully irreducible φ ∈ Out(F3). In fact,

they are realized by ageometric fully irreducible φ ∈ Out(F3).

Proof. For each index list we give an explicit example. We used a computer program [Cou14] to
verify that each example is indeed a tt map of the correct rank and additionally has no PNPs.
We apply the FIC to show that the example is indeed a fully irreducible outer automorphism.
To verify that a given representative has PF transition matrix, since our representatives are tt
maps, it suffices to prove that a sufficiently high power maps each edge over each other edge. We
compute the local Whitehead graphs to show that they are connected. (There should be precisely
one connected graph for each vertex.) Having no PNPs, having PF transition matrix, and having
connected local Whitehead graphs, our representatives are fully irreducible by the FIC. Having no
PNPs additionally implies they in fact represent an ageometric fully irreducible. Restricting the

8



local Whitehead graphs to their periodic direction vertices (and the edges between them) gives
the local stable Whitehead graphs. Since there are no PNPs, these local stable Whitehead graphs
are precisely the components of the ideal Whitehead graph. As explained in Section 2, one then
computes the index list by including for each component C of the ideal Whitehead graph an entry
1− k

2 , where k is the number of vertices of C.

INDEX LIST {−3
2}:

A plethora of examples with this index list can be found in [Pfa13b].

INDEX LIST {−1
2 ,−1}:

The representative on the graph

c

a
b

d

is:

g =


a 7→ adbcdbdbda

b 7→ bdadb

c 7→ cdbdbdadbdbdadbdbdbdadbdbdadbcdbdbdadbdbdadb

d 7→ dbd

As you can see from the below figure, the local Whitehead graphs are connected.

ba

ad

d c

bc

Restricting to periodic directions, since there are no periodic Nielsen paths, this gives the ideal
Whitehead graph, from which the index list is computed to be {−1

2 ,−1}:

ba a

d d c

b

INDEX LIST {−1
2 ,−

1
2 ,−

1
2}:

The representative on the graph

a
c

b
e

d

is:

g =



a 7→ adecdadebda

b 7→ bdadadecdadebdadadebdadebdadadecdadebdadadeb

c 7→ cdadebdadadebdadebdadadebdadadecdadebdadadebdadebdadadecdadebdadadebdadebdadadecdadebda

d 7→ dadebdad

e 7→ ebdadade
9



As you can see from the below figure, the local Whitehead graphs are connected.

ba

ad

d c

bc e

e

Restricting to periodic directions, since there are no periodic Nielsen paths, this gives the ideal
Whitehead graph, from which the index list is computed to be {−1

2 ,−
1
2 ,−

1
2}:

ba

ad

d c

b e

e

INDEX LIST {−1}: The representative on the rose is:

g =


a 7→ cab

b 7→ ca

c 7→ acab

As you can see from the below figure, the single local Whitehead graph is connected.

b c
aa

c b

Restricting to periodic directions, since there are no periodic Nielsen paths, this gives the ideal
Whitehead graph, from which the index list is computed to be {−1}:

aa

c b

INDEX LIST {−1
2 ,−

1
2}:

The representative on the graph

a
c

b
e

d

is:

g =



a 7→ aebedcebedcebebedcebebeda

b 7→ beda

c 7→ cebebeda

d 7→ dcebebed

e 7→ ebedcebe
10



As you can see from the below figure, the local Whitehead graphs are connected.

ba

ad

dc

bc e

e

Restricting to periodic directions, since there are no periodic Nielsen paths, this gives the ideal
Whitehead graph, from which the index list is computed to be {−1

2 ,−
1
2}:

ba

d

dc

e

INDEX LIST {−1
2}:

The representative on the graph

a

c

b

d

is:

g =



a 7→ d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄

b 7→ d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄

c 7→ cdbabdcdbdbdcdbdbdcdbdcdbabdcdbabdcdbdbdcdbdbdcdbdcdbabdcdbabdcdbd

āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄cdbabdcdbdbdcdbdbdcdbdcdbabdcdbabdcdbdbdcdbdbdcdbdcdbabdcdbabdcdbd

āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄

d 7→ āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄d̄b̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄āb̄d̄c̄d̄b̄d̄c̄d̄b̄

As you can see from the below figure, the local Whitehead graphs are connected.

b aa

d dc

b

c

Restricting to periodic directions, since there are no periodic Nielsen paths, this gives the ideal
Whitehead graph, from which the index list is computed to be {−1

2}:

b

dc

It can be noted that this example was in fact produced using the random automorphism generat-
ing capacity of [Cou14]. The sage worksheet can be found at http://www.math.uni-bielefeld.

de/~cpfaff/SageWorksheet.pdf

�
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