A Nielsen-Thurston inspired story of iterating free group automorphisms and efficiently deforming graphs

Catherine PFAFF (with Y. Algom-Kfir, I. Kapovich, L. Mosher)

University of California Santa Barbara

San Diego, January 2018

Is A Tale With Two Surprisingly Interconnected Themes

What happens when you iterate a free group automorphism?

• Outer automorphism invariants

 $\leftrightarrow \rightarrow$

What happens when you efficiently deform a metric graph?

> • Geodesics in Culler-Vogtmann Outer Space

Main Character: Outer Automorphism Group of the Free Group $Out(F_r)$

 $F_r = \langle x_1, \ldots, x_r \rangle$ rank r free group

Definition $Out(F_r) = \frac{Aut(F_r)}{Inn(F_r) = \{\varphi_a \mid \varphi_a(b) = aba^{-1} \forall a, b \in F_r\}}$

To define $\Phi \in Aut(F_r)$, just need to describe images of generators:

$$\Phi = \begin{cases} x_1 \mapsto x_1 x_3^{-1} \\ x_2 \mapsto x_3 \\ x_3 \mapsto x_2 \end{cases}$$

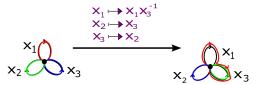
• • = • • = •

Outer Automorphism Group of the Free Group $Out(F_r)$

To utilize work of Nielsen, Skora, Stallings, Whitehead, and Bestvina-Feighn-Handel we view

$$\Phi = \begin{cases} x_1 \mapsto x_1 x_3^{-1} \\ x_2 \mapsto x_3 \\ x_3 \mapsto x_2 \end{cases}$$

as a homotopy equivalence of graphs:



Definition

 $\varphi \in Out(F_r)$ is fully irreducible (f.i.) if no positive power φ^k fixes the conjugacy class of a proper free factor of F_r .

Catherine PFAFF (UCSB)

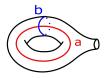
Iterating automorphisms & deforming graphs

The Backstory

$GL_2(Z) \cong MCG(\bigcirc) \cong Out(F_2)$

2x2 integer matrices of determinant +/- 1

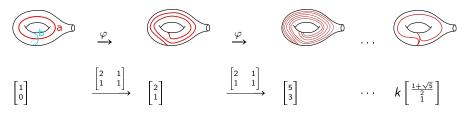
 $\operatorname{Aut}(F_2)$ Inn (F_2)



・ 何 ト ・ ヨ ト ・ ヨ ト

Nielsen-Thurston studied asymptotic dynamical invariants

For φ a generic (pseudo-Anosov) surface homeo, repeated application of φ to any curve limits on the same object...



Some important "conjugacy class" invariants:

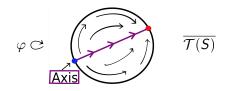
* Connected to "measured foliations"

Catherine PFAFF (UCSB)

JMM 2018 6 / 24

$\mathcal{T}(S)$: Deformation space of hyp. metrics on a surface S

- Amazingly, the space of metrics is itself a metric space &...
- [Royden] For closed surface S: $Isom(\mathcal{T}(S)) \cong MCG(S)$
- [Thurston] $\mathcal{T}(S)$ is compactified by projective measured foliations on S & $\overline{\mathcal{T}(S)}$ is a ball
- \bullet Bers, Marden, Masur, Strebel, Thurston, & others connected mapping class group invariants with geodesics in $\mathcal{T}(S)$

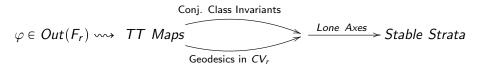


The $Out(F_r)$ Tale: Interconnected Goals & Strategy

Interconnected Goals:

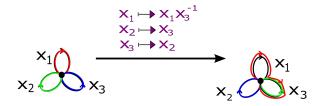
- **1** Understanding generic $Out(F_r)$ conjugacy class invariants
- ² Understanding Geodesics in Outer Space CV_r

Strategy/Outline:



Train Track Representatives (Bestvina-Handel)

Recall: $\varphi \in Out(F_r)$ always have topological representatives:



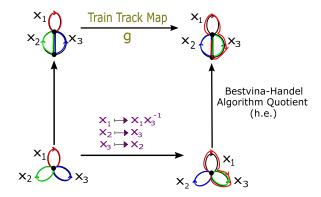
• But iteration may lead to cancellation on edge interiors

Train Track Representatives (Bestvina-Handel)

f.i. $\varphi \in Out(F_r)$ have train track representatives $g \colon \Gamma \xrightarrow{h.e.} \Gamma$

•
$$g_*: \pi_1(\Gamma) \to \pi_1(\Gamma)$$
 is φ

• $g^k \mid_{int(e)}$ is locally injective \forall edges e of Γ , k > 0

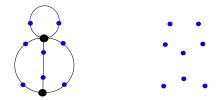


$\mathcal{IW}(\varphi)$: An $Out(F_r)$ Conjugacy Class Invariant

Idea in analogy with Nielsen-Thurston setting:

- Iterate loops vvv Lamination leaves
- Record at vertices how lamination leaves enter & leave

Combinatorially:



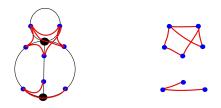
Vertex for each directed edge at each node

$\mathcal{IW}(\varphi)$: An $Out(F_r)$ Conjugacy Class Invariant

Idea in analogy with Nielsen-Thurston setting:

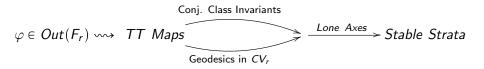
- Iterate loops vvv Lamination leaves
- Record at vertices how lamination leaves enter & leave

Combinatorially:



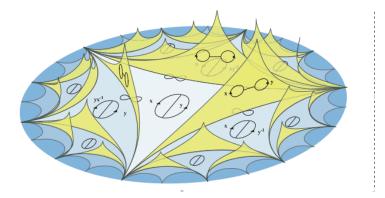
- Vertex for each directed edge at each node
- 2 Take any edge
- Sook at its image after applying g iteratively

Strategy/Outline:



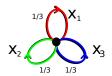
$Out(F_r)$ & the Deformation Space of Metric Graphs

 $Out(F_r)$ is the isometry group for a deformation space of metric graphs, Culler-Vogtmann Outer Space CV_r



Points in the Outer Space CV_r

Points in CV_r are marked, metric, graphs:



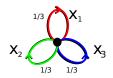
Most basic point:

Can additionally:

Change lengths on edges

Outer Space CV_r

Points in CV_r are marked, metric, graphs:



Most basic point:

Can additionally:

Change lengths on edges

Apply automorphism

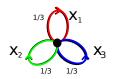
Catherine PFAFF (UCSB)

terating automorphisms & deforming graphs

JMM 2018 16 / 24

Outer Space CV_r

Points in CV_r are marked, metric, graphs:



Most basic point:

Can additionally:

Change lengths on edges

Apply automorphism

"Blow up" vertex

erating automorphisms & deforming graph

Outer Space in Rank 2 (CV_2) The graphs Γ with $\pi_1(\Gamma) = F_2$: CV_2 :

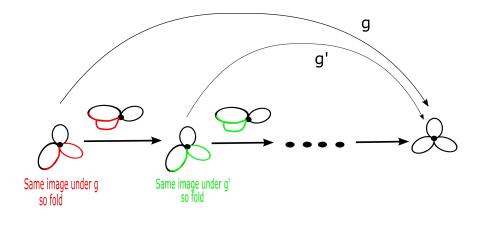
Catherine PFAFF (UCSB)

terating automorphisms & deforming graphs

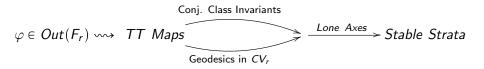
JMM 2018 18 / 24

TT Maps $g \rightsquigarrow$ Geodesics in CV_r

- Stallings allows us to decompose a tt map as a sequence of "folds"
- Skora made continuous, to define geodesics in CV_r



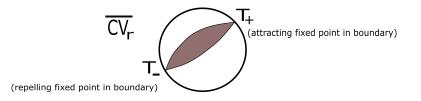
Strategy/Outline:



Surprising Connection: Lone Axes in Outer Space

Definition (Axis bundle \mathcal{A}_{φ} for nice $\varphi \in Out(F_r)$ (Handel, Mosher))

 $\mathcal{A}_{\varphi} = \overline{\{\text{Fold line geodesics for tt reps of } \varphi^k \text{ with } k > 0\}} \subset CV_r$



Theorem (Main Theorem I; Mosher, Pfaff)

(Algorithmically checkable) $\mathcal{IW}(\varphi)$ condition for when \mathcal{A}_{φ} a "lone axis"

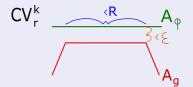
- Exist by Pfaff, many by I. Kapovich-Pfaff,
- different kinds by Coulbois-Lustig

Catherine PFAFF (UCSB)

Test for generic behavior (Stable Strata)

Theorem (Main Theorem II; Algom-Kfir, I. Kapovich, Pfaff)

 $\varphi \in Out(F_r)$ lone axis f.i. st all components of $\mathcal{IW}(\varphi)$ are complete gphs $\implies \exists$ constants R, ε st if \exists a *tt map g with an axis* A_g satisfying



- Then g represents an ageometric f.i. ψ st either *IW*(ψ) ≃ *IW*(φ) or *IW*(ψ) ≇ *IW*(φ) & pathology occurs
- (2) can happen
- (2) cannot happen if $\mathcal{IW}(\varphi)$ is the complete gph on 2r-1 vertices

A B A A B A

Unhatched Egg: Random Walks

- I. Kapovich-Pfaff proved complete gph on 2r 1 vertices generic as $\mathcal{IW}(\varphi)$ along "tt directed" random walk
- Gadre-Maher used "stable strata" theorems to prove generic pseudo-Anosov index list

Question (Work in progress with Algom-Kfir, I. Kapovich, J. Maher)

- Does Main Theorem II indicate that complete ideal Whitehead graphs are generic for $Out(F_r)$?
- Or other stable strata graphs?

Thank you!

▶ ▲ 클 ▶ 클 ∽ ९ ୯ JMM 2018 24 / 24

・ロト ・ 日 ト ・ ヨ ト ・