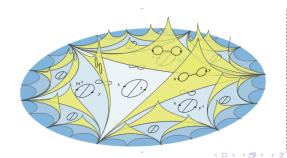
Symmetries, Outer Space, & the Outer Automorphism Group of the Free Group

Catherine Pfaff

University of California, Santa Barbara

Manhattan College Colloquium, February 2018



I. Groups

< □ > < □ > < □ > < □ > < □ >

2 / 34

3

Groups

Familiar: Integers \mathbb{Z} with addition +:

- **1** Have an identity: (-5) + 0 = -5, 0 + 1002 = 1002
- **a** Have inverses: 7 + (-7) = 0, (-22) + 22 = 0
- **3** Are associative: (5 + (-3)) + 12 = 5 + ((-3) + 12)

So $(\mathbb{Z}, +)$ example of:

Definition (Group)

Collection of objects *G* with **Binary operation *** where:

- **(**) *G* has an identity e: $a \star e = a$, $e \star a = a$ for all $a \in G$.
- **2** Each $a \in G$ has an inverse a^{-1} : $a \star a^{-1} = e = a^{-1} \star a$.
- Solution Associativity: All $a, b, c \in G$ satisfy: $(a \star b) \star c = a \star (b \star c)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

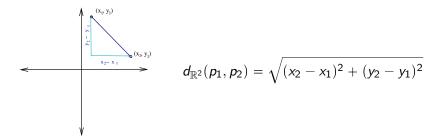
3 / 34

II. Symmetries, Isometry Groups, & the Spaces they Act On

N 4 E N

Elements of groups can be functions!

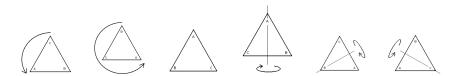
Integers are actually distance-preserving functions, i.e. isometries!



- $a \in \mathbb{Z} \iff$ isometry of \mathbb{R}^2 : $(x, y) \mapsto (x + a, y)$ $(x, y) \mapsto (x + 3, y)$ then $(x, y) \mapsto (x + 2, y)$, same as $(x, y) \mapsto (x + (3 + 2), y)!$
- $(a, b) \in \mathbb{Z} \times \mathbb{Z} \iff$ isometry of \mathbb{R}^2 : $(x, y) \mapsto (x + a, y + b)$
- Isometry group: All rotations, reflections, translations, glide reflections
 < □ > < ∂ > < ≥ > < ≥

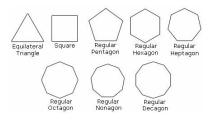
Symmetries of a Triangle

Symmetry (isometry) group?



Every symmetry is a composition of the same rotation & flip!

Can do with all kinds of polygons...



э

(日)

III. Folding things up (Quotients)

A B M A B M

3

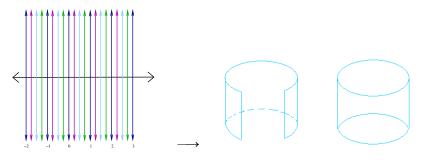
Quotients: The cylinder

Group of isometries vvv Quotient space

(Identifying each point with all its images)

Group: Isometries of \mathbb{R}^2 defined by $(x, y) \mapsto (x + a, y)$ with $a \in \mathbb{Z}$

Quotient:

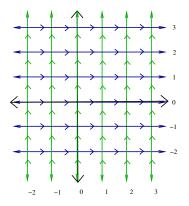


9 / 34

Quotients: The torus

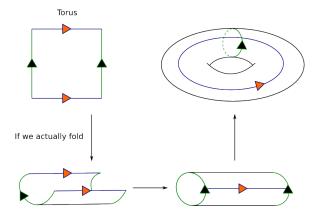
Group: Isometries of \mathbb{R}^2 defined by $(x, y) \mapsto (x + a, y + b)$ for $a, b \in \mathbb{Z}$ **Quotient:**

This group takes each square in picture to each other square in picture



Quotients: The torus

How taking the quotient leads to a torus:



3. 3

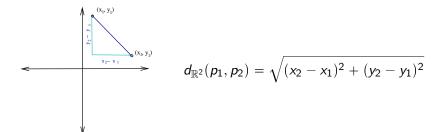
IV. The ways we travel in \mathbb{R}^2

< 回 > < 三 > < 三 >

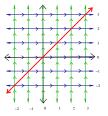
э

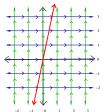
Geodesics in \mathbb{R}^2

The shortest path between points is always a straight line (y = mx + b):



Geodesics in $\mathbb{R}^2 \rightsquigarrow ?$ in Torus

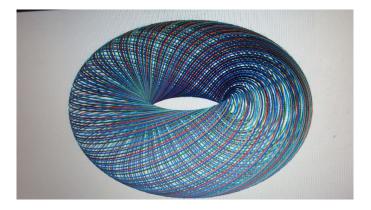




< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geodesics in $\mathbb{R}^2 \rightsquigarrow ?$ in Torus

What if slope irrational (not $\frac{a}{b}$ with $a, b \in \mathbb{Z}$)?



This geodesic image is **dense**! (Passes infinitely close to each point)

4 3 5 4 3

V. Special Group: $Out(F_r)$

イロト イポト イヨト イヨト

3

Recall Groups

Familiar: Integers \mathbb{Z} with addition +:

- **1** Have an identity: (-5) + 0 = -5, 0 + 1002 = 1002
- **2** Have inverses: 7 + (-7) = 0, (-22) + 22 = 0
- **3** Are associative: (5 + (-3)) + 12 = 5 + ((-3) + 12)

So $(\mathbb{Z}, +)$ example of:

Definition (Group)

Collection of objects *G* with **Binary operation *** where:

- **(**) *G* has an identity e: $a \star e = a$, $e \star a = a$ for all $a \in G$.
- 2 Each $a \in G$ has an inverse a^{-1} : $a \star a^{-1} = e = a^{-1} \star a$.
- Solution Associativity: All $a, b, c \in G$ satisfy: $(a \star b) \star c = a \star (b \star c)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The Free Group F_r

 $F_r = \langle x_1, \dots, x_r \rangle$ rank-*r* free group

Example: $F_3 = \langle x_1, x_2, x_3 \rangle$

Elements of the group look like:

 $x_2 x_1 x_3^{-1}$ or $x_3 x_1^{-1} x_2^{-1} x_3^{-1} x_1$ or $x_3^{-1} x_2 x_1$

What elements of the group don't look like:

 $x_1 x_3^{-1} x_3 x_2 x_1 x_3^{-1}$ (write instead $x_1 x_2 x_1 x_3^{-1}$)

How multiply elements of group:

$$x_1 x_3^{-1} * x_3 x_2 x_1 x_3^{-1} = x_1 x_3^{-1} x_3 x_2 x_1 x_3^{-1} = x_1 x_2 x_1 x_3^{-1}$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Automorphisms of F_r

Interested in permutations φ of F_r preserving the structure, i.e. want

$$\varphi(\mathbf{a} \star \mathbf{b}) = \varphi(\mathbf{a}) \star \varphi(\mathbf{b})$$

They look like "replacement" functions, e.g.

• $x_2 \rightsquigarrow x_2 x_3^{-1}$ • $(\& x_2^{-1} \rightsquigarrow x_3 x_2^{-1}).$ So $\varphi(x_2 x_1 x_3^{-1}) = x_2 x_3^{-1} x_1 x_3^{-1}$

Or compositions of these kinds of functions.

• • = • • = • = =

$Out(F_r)$ as an isometry group

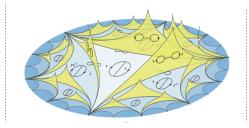
$Out(F_r)$ is the isometry group of Culler-Vogtman Outer Space...

Will be a simplicial complex where each point represents a graph!

* E > * E >

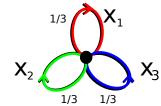
- 3

VI. "Inspiration from Above": Outer Space

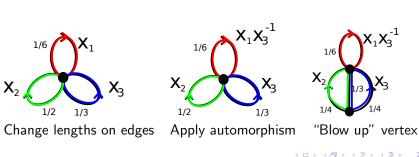


Outer space CV_r

Points in CV_r are marked, metric, graphs:



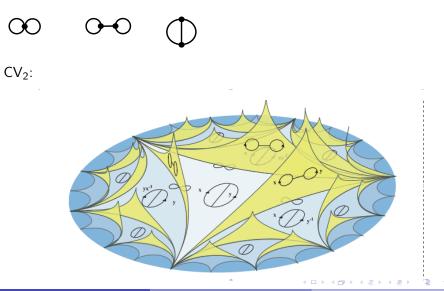
Most basic point:



э

Outer Space in Rank 2 (CV₂)

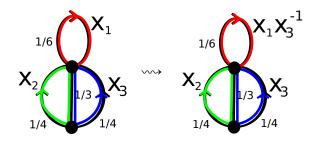
The graphs Γ with 2 loops (i.e. $\pi_1(\Gamma) = F_2$):



Catherine Pfaff (UCSB)

The symmetries (isometries) of CV_r ?

Just apply an automorphism!



-

э

VII. Folding Up Outer Space

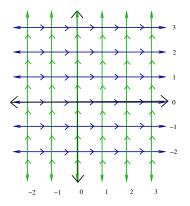
< 回 > < 三 > < 三 >

э

Recall torus

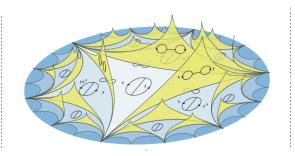
Group: Isometries of \mathbb{R}^2 defined by $(x, y) \mapsto (x + a, y + b)$ for $a, b \in \mathbb{Z}$ **Quotient:**

This group takes each square in picture to each other square in picture



Quotient of Outer Space: $CV_2/Out(F_2)$

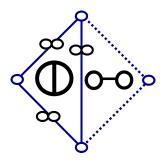
Recall CV_2 :



< ∃⇒

Quotient of Outer Space: $CV_2/Out(F_2)$

 $CV_2/\operatorname{Out}(F_2)$ looks like



but with edges identified:

★ ∃ ► < ∃ ►</p>

э

VIII. Traveling in Outer Space

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

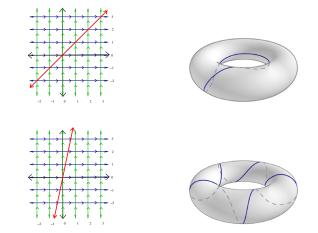
Geodesics in Quotient

Question: What do geodesics in quotient of Outer Space look like?

★ ∃ ► < ∃ ►</p>

3

Recall Torus



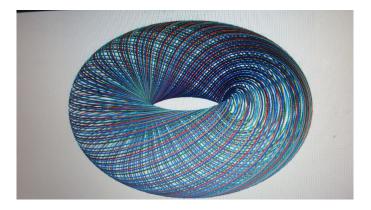
Also have geodesics closing up like this in quotient of Outer Space.

ヨト イヨト

э

Recall Torus

For slope irrational (not $\frac{a}{b}$ with $a, b \in \mathbb{Z}$):



This geodesic image is **dense**! (Passes infinitely close to each point)

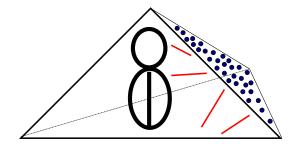
Does Outer Space have geodesics like this?

Catherine Pfaff (UCSB)

Dense Geodesics

Theorem (Theorem; Algom-Kfir, Pfaff)

Yes!!! (The quotient of Outer Space has dense geodesics.)



★ ∃ ► < ∃ ►</p>

Thank you!

< □ > < □ > < □ > < □ > < □ >

2