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Abstract. We describe train track automata for large classes of fully irreducible elements of
Out(Fr), and their associated geodesics in Culler-Vogtmann Outer Space.

1. Introduction

Let Fr denote the free group of rank r ≥ 3, and consider its outer automorphism group Out(Fr).
Out(Fr) acts isometrically [FM11], with finite point stabilizers and North-South dynamics [LL03],
on the parameter space of rank-r weighted graphs, the Culler-Vogtmann Outer space CVr [CV86].
The dynamically minimal and generic elements of Out(Fr) are the fully irreducible elements and
associated to each fully irreducible element is a collection of invariant axes. These axes arise from
the Stallings fold decompositions [Sta83] of special topological representatives called “train track
maps” [BH92].

[AKKP19] proposes a stratification of fully irreducible axes by their [HM11] ideal Whitehead
graphs, much as there is a stratification of pseudo-Anosov axes by the index lists of their invariant
foliations/ laminations. This paper is the first of a series of papers describing and analyzing the train
track automata for these ideal Whitehead graph “strata.” Ideal Whitehead graphs are Out(Fr)
conjugacy class invariants and can be seen to describe the behavior of lamination leaves at the
singularities in the attracting trees in ∂CVr.

We start with the train track automata for “lone axis” fully irreducible outer automorphisms,
as first introduced in [MP16] and characterized by having only a single invariant axis. These
automata generalize those constructed in [Pfa15a], [GP23], and [AHLP24] to encode all lone axis
fully irreducible train track representatives. To avoid overloading the introduction with definitions,
we include here only an abbreviation of Theorem 10.4 and Theorem 10.6:

Theorem 10.4-10.6. The following 2 statements hold:
(a.) Any loop in the lone axis automaton A(G) represents a train track map and, under suitable

conditions, this train track map represents a fully irreducible φ ∈ Out(Fr) such that the
ideal Whitehead graph of φ is isomorphic to G.

(b.) Every train track representative of a lone axis fully irreducible φ ∈ Out(Fr) determines a
directed loop in the lone axis train track automaton A(IW (φ)).

As one moves away from lone axis fully irreducible outer automorphisms, the situation becomes
substantially more complicated. A display of this is included in Example 11.1. While all of the
“pathologies” of Example 11.1 can still occur in such a setting, we tackle them in constructing the
train track automata for what we call “proper full fold (pff) decompositions” of “fully singular”
train track representatives.

As above, we include here only an abbreviation of Theorems 11.3, 11.4, and 11.5:

Theorem 11.3 -11.4. The following 3 statements hold:
(a.) Any loop in the fully singular pff train track automaton A(G) represents a train track

map and, under suitable conditions, this train track map represents a fully irreducible
φ ∈ Out(Fr) such that the ideal Whitehead graph of φ is isomorphic to G.
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(b.) Suppose g is a fully singular train track representative of a fully irreducible φ ∈ Out(Fr).
Then any pff decomposition of g determines a directed loop in a fully singular pff train track
automaton, more precisely A(IW (φ)).

(c.) Any bi-infinite path in a fully singular pff train track automaton A(G) determines a geodesic
in CVr.

The axes in CVr of proper full fold decompositions of fully singular train track representatives
avoid the merging of vertices. Algom-Kfir, Kapovich, and Pfaff provide in [AKKP19, §6] an ex-
ample of a merging of vertices during a fully irreducible axis. In Example 9.1 we provide a fully
irreducible outer automorphism where only the proper choice of axis avoids this phenomena and
§7 provides some analysis of its occurrence. We stop short of fully tackling such circumstances in
this paper by focusing on the automata for proper full fold decompositions of fully singular train
track representatives.

We conjecture that each ageometric fully irreducible outer automorphism has a fully singular
train track representative and these representatives generically have proper full fold decompositions.
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Advanced study for their hospitality, and Bob Moses for funding her 2024-2025 membership. This
work has received funding from an NSERC Discovery Grant.

2. Background

Assume throughout this section that Γ is a finite oriented graph where each vertex has valence
≥ 3 and Fr is a free group of rank r ≥ 3. This section will contain explanations of background
given in previous works, included here for convenience. Expository overlap may occur.

2.1. Edge Maps on Graphs. Suppose Γ has positively oriented edges {e1, e2 . . . , en} and vertices
{v1, v2, . . . , vm}. We use the notation EΓ := {e1, e2 . . . , en} for the positively oriented edge set, and
V Γ := {v1, v2, . . . , vm} for the vertex set, and E±Γ = {e1, e1, . . . , en, en} for the full directed edge
set, with an overline indicating a reversal of orientation.

2.1.1. Directions, turns, & edge paths. Given v ∈ V Γ, a direction at v is an element of E±Γ with
initial vertex v. For each v ∈ V Γ, let D(v) denote the set of directions at v and DΓ := ∪V ΓD(v).
A turn at v is an unordered pair {d1, d2} of directions at v and is degenerate if d1 = d2.

An edge path (or just path) ρ in Γ is a finite sequence (a1, a2, . . . , aℓ) ∈ (E±Γ)ℓ

such that there exists a sequence (v1, v2, . . . , vℓ−1) ∈ (V Γ)ℓ−1 satisfying that the
turn {aj , aj+1} is a turn at vj for each j ∈ {1, 2, . . . , ℓ − 1}. For such a path
(a1, a2, . . . , am) we write γ = a1a2 . . . am and say γ contains the oriented edges
a1, a2, . . . , am and takes the turns {a1, a2}, {a2, a3}, . . . , {an−1, an}. Note that γ = a1 a2 . . . am
take the same set of turns. We call γ tight if it takes no degenerate turns, colloquially described
as there being no “backtracking.” Fixing endpoints, there is a unique tight path in the homotopy
class of each path γ. We say this path is obtained from γ by tightening γ.

2.1.2. Graph maps. An edge (or graph) map g : Γ → Γ′ is

• a map V : V Γ → V Γ′, where we write g(v) for V(v), together with
• for each e ∈ E±Γ, an assignment of a path g(e) in Γ′ such that

(1) if the initial vertex of e is v, then the initial vertex of g(e) is g(v), and
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(2) if g(e) is the edge path g(e) = a1a2 . . . am, then g(e) is the edge path g(e) = am . . . a2 a1.

Viewing Γ and Γ′ as topological spaces, g is a continuous map sending vertices to vertices.
g#(e) is obtained from g(e) by tightening, as in §2.1.1.

2.1.3. Taken turns & tight maps. Given a graph map g : Γ → Γ, we define

τ(g) := {{d1, d2} | {d1, d2} is taken by g(e) for some e ∈ EΓ}

and say each turn T ∈ τ(g) is g-taken. Let

τ∞(g) =
∞⋃
k=1

τ(gk)

and say each turn T ∈ τ∞(g) is g∞-taken.
We then call g tight if the image of each edge is a tight path. In particular, no degenerate turns

are g-taken. If γ = a1a2 . . . an is a path in Γ for some a1, a2, . . . , an ∈ E±Γ, then g(γ) will mean
the concatenation of edge paths g(γ) = g(a1)g(a2) . . . g(an). Note that g(γ) is tight if and only if
γ is tight and g is locally injective on γ.

2.1.4. Directions maps & gate structures. To g we associate a direction map Dg : DΓ → DΓ′ such
that if g(e) = a1a2 . . . am, for some m ≥ 1 and a1, a2, . . . , am ∈ E±Γ, then Dg(e) = a1. We call a
direction e periodic if Dgk(e) = e for some k > 0, and fixed if k = 1. When g : Γ → Γ is a self-map,
the turn {d1, d2} is an illegal turn for g if {Dgk(d1), Dgk(d2)} is degenerate for some k ∈ Z≥1.
Defining an equivalence relation on DΓ by d1 ∼ d2 when {d1, d2} is an illegal turn, the equivalence
classes are gates and the partitioning of the directions at each vertex into gates is the induced gate
structure. Note that each gate at a periodic vertex contains a unique periodic direction.

2.1.5. Markings & representatives. Viewing g as a continuous map of graphs, we say g represents φ
when π1(Γ) has been identified with Fr (i.e. Γ is marked) and φ is the induced map of fundamental
groups. When a marking is not explicitly given, we mean “there exists a marking such that.”

2.2. Train track (tt) maps and fully irreducible outer automorphisms.

2.2.1. Train track (tt) maps. Suppose g : Γ → Γ is an edge map. We call g a train track (tt) map
if gk is tight for each k ∈ Z>0. We assume throughout that tt maps are surjective, as they will
automatically be for homotopy equivalences, due to our vertex valence restriction at the start of the
section. We call the train track map g expanding if for each edge e ∈ EΓ we have |gn(e)| → ∞ as
n → ∞, where for a path γ we use |γ| to denote the number of edges γ traverses (with multiplicity).
Note that, apart from our not requiring a “marking,” these definitions coincide with those in [BH92]
when g is in fact a homotopy equivalence of graphs (viewed topologically).

2.2.2. Transition matrices. The transition matrix M(g) of a tt map g : Γ → Γ is the square |EΓ| ×
|EΓ| matrix [aij ] such that aij , for each i and j, is the number of times g(ei) contains either ej or
ej . Note that each transition matrix is a nonnegative integer matrix.

A nonnegative integer matrix A = [aij ] is irreducible if for each (i, j), there is a k ∈ Z>0 so that

the ijth entry of Ak is positive, and so in particular is at least 1. Furthermore, A is Perron–Frobenius
(PF) if there exists an N such that, for each k ≥ N , we have that Ak is strictly positive.

3



2.2.3. (Fully) irreducible outer automorphisms. A tt map is irreducible if its transition matrix is
irreducible. Not every element of Out(Fr) is represented by a tt map, and even fewer by irreducible
tt maps. An outer automorphism φ ∈ Out(Fr) is fully irreducible if no positive power preserves
the conjugacy class of a proper free factor of Fr. Bestvina and Handel [BH92] proved that each
fully irreducible outer automorphism has expanding irreducible tt representatives, with Perron–
Frobenius transition matrix.

If g is a tt representative of a fully irreducible φ ∈ Out(Fr), then τ∞(g) is the set of turns taken
by the [BFH97] “stable lamination” Λφ.

2.3. (Periodic) Nielsen paths. Let g : Γ → Γ be an expanding irreducible tt map. Bestvina and
Handel [BH92] define a nontrivial immersed path ρ in Γ to be a periodic Nielsen path (PNP) if, for
some power R ≥ 1, we have gR(ρ) ∼= ρ rel endpoints (and just a Nielsen path (NP) if R = 1). An
NP ρ is indivisible (hence is an “iNP”) if it cannot be written as ρ = γ1γ2, where γ1 and γ2 are
themselves NPs. Bestvina and Handel describe in [BH92, Lemma 3.4] the structure of iNPs:

Lemma 2.1 ([BH92]). Let g : Γ → Γ be an expanding irreducible train track map and ρ an iNP
for g. Then ρ = ρ̄1ρ2, where ρ1 and ρ2 are nontrivial legal paths originating at a common vertex v
and such that the turn at v between ρ1 and ρ2 is a nondegenerate illegal turn for g.

2.3.1. Rotationless powers. By [FH11, Corollary 4.43], for each r ≥ 2, there exists a rotationless
power R(r) ∈ Z>0 such that for each expanding irreducible tt representative g of a fully irreducible

φ ∈ Out(Fr), among other properties, each periodic vertex, direction, and PNP is fixed by gR(r).

2.4. PNP detection.

2.4.1. (Dangerous) long turns. The notion of a dangerous long turn is first introduced in [CL15b].
Suppose g : Γ → Γ on Γ is a tt map. By a long turn at a vertex v ∈ V Γ we mean a pair of legal
paths {α, β} emanating from v. We call {α, β} legal or illegal when {D(α), D(β)} is, respectively,
legal or illegal. A long turn {α, β} is dangerous if we have that

• g(α) is not an initial subpath of g(β), and
• g(β) is not an initial subpath of g(α), and
• g#(αβ) is an illegal path (i.e. cancellation of g#(α) and g#(β) ends with an illegal turn).

2.4.2. Identifying PNPs. The following is [AKKP19, Lemma 4.2] and gives a means for identifying
PNPs via dangerous long turns.

Lemma 2.2 ([AKKP19]). Let g : Γ → Γ be an expanding irreducible tt map and ρ an iNP for g.
Then ρ = ρ̄1ρ2, where {ρ1, ρ2} is a dangerous long turn for each positive power gk of g. More
generally, if g : Γ → Γ has a PNP, then Γ contains dangerous long turns for each positive power gk

of g. Thus, an expanding irreducible train track map with no dangerous long turns has no PNPs.

We now prove a lemma that arises in various forms in other papers but is needed in this fuller
generality here.

Lemma 2.3. Suppose g : Γ → Γ is an expanding irreducible tt map and g′ : Γ → Γ′ and g′′ : Γ′ → Γ
are surjective tight graph maps such that g = g′′ ◦ g′. Let f = g′ ◦ g′′ : Γ′ → Γ′ and suppose ρ = ρ̄1ρ2
is an iNP for g. Then each of the following holds.

(a) f is an expanding irreducible tt map with PF transition matrix M(f).

(b) If ρ′1 ⊂ ρ1 and ρ′2 ⊂ ρ2 are subpaths such that g′#(ρ) = ρ′1ρ
′
2, then ρ′ is an iNP for f and

{ρ′1, ρ′2} is a dangerous turn for f .
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Proof. (a) Suppose for the sake of contradiction that fk is not injective on the interior of some
e ∈ EΓ′. Since g′ is surjective g′(e′) contains e for some e′ ∈ EΓ±. Then there would be cancellation
on the interior of gk+1(e′) = g′′(fk(g′(e′))) ⊇ g′′(fk(e)), contradicting that g is a tt map.

Since g is expanding, there exists an edge e ∈ EΓ such that |gn(e)| → ∞ as n → ∞. Since g′′ is
surjective, there exists an edge e′ ∈ EΓ′ so that g′′(e′) contains e′ and thus |fn(e)| → ∞ as n → ∞.

To show M(f) is PF, it suffices to show that there exists a power n of f so that fn(e), for each
e ∈ EΓ′, contains either e′ or e′ for each e′ ∈ EΓ′. Since M(g) is PF, there exists a power k so
that each edge of EΓ contains an orientation of each edge of EΓ in its gk-image. Then, for each
e ∈ EΓ′, we know gk(g′′(e)) contains an orientation of each edge of EΓ in its image. And, since g′

is surjective, g′(gk(g′′(e))) = fk+1(e) contains an orientation of each edge of EΓ′ in its image.
(b) Let ρ′ := g′#(ρ). By the definitions and the fact that ρ is an iNP for g,

f(ρ′) ≃ f(g′(ρ)) ≃ (f ◦ g′)(ρ) ≃ (g′ ◦ g′′ ◦ g′)(ρ) ≃ (g′ ◦ g)(ρ)) ≃ g′(g(ρ)) ≃ g′(ρ) ≃ ρ′.

So ρ′ is by definition an NP for f . By symmetric argumentation, a decomposition of ρ′ into Nielsen
paths would yield a decomposition of ρ into Nielsen paths, contradiction that ρ is an iNP. Thus, ρ′

is in fact an iNP. Finally, {ρ′1, ρ′2} is a dangerous turn for f . □

2.5. Whitehead graphs & lamination train track (ltt) structures. Local Whitehead graphs,
stable Whitehead graphs, and ideal Whitehead graphs were first introduced by Handel and Mosher
in [HM11]. We stray from their definitions by assuming throughout that g : Γ → Γ is a tt map with
no PNPs. However, the presence of PNPs only impacts the ideal Whitehead graph definition.

2.5.1. Local & stable Whitehead graph. For each v ∈ V Γ the local Whitehead graph LW(g, v) has
vertices for the directions of D(v) and edges connecting the directions of each turn in τ∞(g). Given
a g-periodic v ∈ V Γ, the stable Whitehead graph SW(g, v) is the restriction of LW(g, v) to the
periodic direction vertices and edges betwixt them. In terms of gates, SW(g, v) has a vertex for
each gate at v.

2.5.2. Ideal Whitehead graph. In the absence of PNPs, if g represents a fully irreducible outer
automorphism φ, then the ideal Whitehead graph IW(φ) for φ is defined as

IW(φ) =
⊔

v∈V Γ

SW(g, v),

but with components containing only two vertices left out.
The ideal Whitehead graph is an invariant of the conjugacy class of the outer automorphism

represented by g and IW(φk) = IW(φ) for each k ∈ Z>0 [HM11, Pfa12].

2.5.3. Lamination train track (ltt) structure G(g). The lamination train track (ltt) structure G(g)
is obtained from its underlying graph Γ by replacing each vertex v ∈ V Γ with the local Whitehead
graph LW(g, v) as follows. Replace v with a vertex for each direction at v labeled with that direction
and then identify each of these new vertices with the vertex of LW(g, v) of the same label. Vertices
and edges of each SW(g, v) are colored purple and the remaining vertices and (open) edges of each
LW(g, v) are colored red. Alternatively, one could start with

⊔
v∈V Γ LW(g, v), color the LW(g, v)

as just described, and then include a directed edge [e, e] for each e ∈ EΓ. See §9.2 for examples.

2.6. Folds & Stallings fold decompositions. Suppose Γ and Γ′ are graphs viewed topologically
and e0, e1 ∈ E±Γ are distinct directed edges emanating from a common vertex. Then Γ′ is obtained
from Γ by a proper full fold of e1 over e0 when there exist orientation-preserving homeomorphisms
σ0 : [0, 1] → e0 and σ1 : [0, 2] → e1 so that Γ′ = Γ\ ∼ is the topological quotient of Γ with respect
to the equivalence relation ∼ defined by σ0(t) = σ1(t) for each t ∈ [0, 1]. Further, Γ′ is obtained
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from Γ by a complete fold of e0 and e1 if instead σ1 : [0, 1] → e1 and a partial fold of e0 and e1 if
instead σ0 : [0, 2] → e0. Proper full folds, complete folds, and partial folds are together called folds.

Suppose there are edges e, e′, e′′ ∈ EΓ such that
a partial fold of {e, e′} and a partial fold of {ē, e′′}
terminate at a common point p in e. Suppose fur-
ther that we can write e = e1e2, and e′ = e′1e

′
2, and

e′′ = e′′1e
′′
2e

′′
3 so that f(e1) = f(e′1), and f(e2) =

f(e′′1), and f(e′2) = f(e′′2). Define a tripod proper
full fold by first folding {e, e′} and {ē, e′′}, then afterward folding {e′2, e′′2}. A tripod fold could be
seen as the composition of three folds, namely two partial folds and a proper full fold.

Note that a proper full fold does not change the number of edges, a complete fold decreases the
number of edges, and a partial fold or tripod proper full fold increases the number of edges.

2.6.1. Proper full fold notational conventions. In the automata defined here, all folds are proper

full folds. We thus establish here notational conventions for
proper full folds. Suppose f : Γ → Γ′ is a single proper full fold
of an edge ej over an edge eℓ, as depicted to the left. Apart from
ej , each ei ∈ EΓ is mapped to a single edge of Γ′, which we call
e′i. The image of ej is an edge-path in Γ′ with 2 edges, the latter
of which we call e′j . The map f is then defined by

(1) f :

{
ej 7→ e′ℓe

′
j

ei 7→ e′i for i ̸= 1

and for such a map we just write f : ej 7→ e′ℓe
′
j , or even abusively ej 7→ eℓej . We will assume it

understood that f(ej) = e′je
′
ℓ. Call the edge-labeling of Γ′ just described the induced edge-labeling.

For the map induced by folding eℓ over ej , we may write f : ej 7→ ejeℓ.
The direction map Df for f will be

(2) Df(ei) =

{
e′ℓ for i = j

e′i for i ̸= j

and the direction indicated by an orange arrow in the figure above, namely e′j , is not in the image.

2.6.2. Stallings fold decompositions. We follow the [AHLP24] description and language of Stallings
fold decompositions. In general, each fully irreducible φ ∈ Out(Fr) has multiple tt representatives,
each of which can have several distinct Stallings fold decompositions. An example of the multiple
Stallings fold decompositions arising from a tt map with 2 illegal turns is given in Example 9.1.

Since a Stallings fold decomposition can end with a homeomorphism changing edge labels, we
define an edge-permutation graph isomorphism as a graph isomorphism that possibly permutes edge
labels and possibly reverses the orientations on some subset of the edges.

3. Indices, the index inequality, & the index defecit

3.1. Index sum & list. Let φ ∈ Out(Fr) be fully irreducible. For each component Ci of IW (φ),
let ki denote the number of vertices of Ci. Then the index sum (also called the rotationless index ) is

defined as i(φ) :=
∑

1− ki
2 . Since the index sum can be computed as such from an ideal Whitehead

graph, one can define an index sum for an ideal Whitehead graph, or in fact for any finite graph.
For a graph G, we denote the index sum by i(G). Note that the index sum is always in 1

2Z.
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Writing the terms 1 − ki
2 as a list, we obtain the index list for φ. By [GJLL98], we know that

each fully irreducible φ ∈ Out(Fr) satisfies the “index inequality”:

(3) 0 > i(φ) ≥ 1− r, or equivalently,
1

2
≥ i(φ) ≥ 1− r.

It is constructively shown in [CL15a] that, for each rank r ≥ 4 and list of negative 1
2 -integers (hence

sum) satisfying Equation 3, there is a fully irreducible outer automorphism in Out(Fr) having that
list as its index list. The case of r = 3 was proved in [Pfa15b].

3.2. Ageometric fully irreducible outer automorphisms. An ageometric fully irreducible
φ ∈ Out(Fr) can be characterized by satisfying 0 > i(φ) > 1 − r, a phenomena proved generic in
[KMPT22]. The index list, index sum, and ideal Whitehead graph are all invariant under taking
powers of the outer automorphism, hence the same holds for being ageometric.

By [BH92], all fully irreducible outer automorphisms have “stable” tt representatives and stable
tt representatives of ageometric outer automorphisms have no NPs [BF94, Theorem 3.2]. They in
fact have tt representatives for which all powers are stable. As such, we see no loss in assuming
throughout that all tt representatives of ageometric outer automorphisms have no PNPs, thus also
satisfy that their ideal Whitehead graph is the disjoint union of their stable Whitehead graphs.

Fully irreducible outer automorphisms that are not ageometric can be geometric, i.e. induced by
surface homeomorphisms, or parageometric. We avoid both these circumstances, as they are rare.

3.2.1. Ageometric full irreducibility criterion. We use the criterion of Proposition 3.1 to prove
that certain tt maps represent ageometric fully irreducible outer automorphisms. Proposition 3.1
is [AKKP19, Proposition 3.35], which is the elevation of [Pfa13, Proposition 4.1] to include the
observation that a fully irreducible with a PNP-free tt representative is in fact ageometric.

Proposition 3.1 ([Pfa13], [AKKP19]). (The Ageometric Full Irreducibility Criterion (FIC)) Let
g : Γ → Γ be a PNP-free, irreducible tt representative of φ ∈ Out(Fr). Suppose that the transition
matrix for g is Perron-Frobenius and that the local Whitehead graph at each vertex of Γ is connected.
Then φ is an ageometric fully irreducible outer automorphism.

3.3. Index deficit. In light of Equation 3, and following language proposed by Lee Mosher in
conversations, we call

(4) ID(φ) = i(φ) + r − 1

the index deficit of φ. For any tt representative g : Γ → Γ of φ, the Euler characteristic χ(Γ) of Γ
satisfies χ(Γ) = 1− r. So, in fact,

(5) ID(φ) = i(φ)− χ(Γ).

As an ageometric fully irreducible φ ∈ Out(Fr) is characterized by satisfying 0 > i(φ) > 1 − r,
it could also be characterized by having positive index deficit. The follow lemma says that ID(φ)
ranges from 0 (for geometric and parageometric φ ∈ Out(Fr)) to r − 1

2 :

Lemma 3.2 (Index deficit values). For each integer r ≥ 3, each 1
2 -integer value R satisfying

(6) 0 ≤ R ≤ r − 1

2

is realized as the index deficit ID(φ) for a fully irreducible φ ∈ Out(Fr).

Proof. Suppose that r ≥ 3 and R is a 1
2 -integer value satisfying 0 ≤ R ≤ r− 1

2 . Then R− r+1 is a
1
2 -integer value satisfying 1

2 ≥ R− r + 1 ≥ 1− r. Thus, by [CL15a], there exists a fully irreducible
φ ∈ Out(Fr) so that i(φ) = R− r + 1, i.e. R = i(φ) + r − 1. So R = ID(φ), as desired. □
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4. Outer space CVr, fully irreducible axes, & lone axis outer automorphisms

4.1. Outer space CVr. Outer space CVr was first defined in [CV86]. We do not use in this
manuscript all details of the definitions, so only hit on a few highlights here and then refer the
reader to [FM11, Bes14, Vog15] for further reading on the topic.

Points in CVr are triples (Γ,m, ℓ), called marked metric graphs, where
• Γ is a finite graph such that valence(v) ≥ 3 for each v ∈ V Γ, and
• m : Fr → π1(Γ) is an isomorphism, called a marking, and
• ℓ : EΓ → R+ is an assignment of lengths to edges satisfying that

∑
e∈EΓ ℓ(e) = 1.

Two triples are equivalent that differ by an isometric change of marking.
Outer space can be endowed with what is known as the Lipschitz metric L, which is in fact not

a metric, as it is asymmetric. Out(Fr) acts on CVr isometrically by changing the marking.

4.2. Fold line geodesics in CVr. In [Sko89], Skora interpreted a Stallings fold decomposition
for a graph map homotopy equivalence g : Γ → Γ′ as a sequence of folds performed continuously.
In [AKP15, Proposition 3.17] it is proved that any fold sequence similarly determines a geodesic
in CVr provided that there is some conjugacy class in Fr whose realization in the graphs of the
sequence is never folded. We give here a version specialized for our purposes:

Proposition 4.1. [AKP15, Proposition 3.17] Let {Fi : xi → xi+1}ki=0 be a sequence of folds in
CVr and suppose there is a conjugacy class α in Fr satisfying that, for each i, the realization
αxi of α in xi is legal with respect to Fi, ie. is not folded by Fi. Then the corresponding fold
path Im(F) = {xt}t∈[0,k] is an unparametrized geodesic, i.e. for each r ≤ s ≤ t in [0, k], we have
d(xr, xt) = d(xr, xs) + d(xs, xt).

4.3. Axes in outer space. Let g : Γ → Γ be an expanding irreducible tt map representing φ ∈
Out(Fr) and let λ > 1 be its PF eigenvalue. Suppose further that gk ◦ · · · ◦ g1 is a Stallings
fold decomposition of g. Repeating the decomposition defines a periodic fold line in CVr. A
discretization of this fold line is depicted in Equation 7 below, where Γ0 depicts Γ endowed with
the metric determined by the PF eigenvector and ΓnK = 1

λnΓ0 · φn for each n ∈ Z.

(7) . . . −→ Γ0
g1−→ Γ1

g2−→ · · · gK−−→ ΓK
gK+1−−−→ ΓK+1

gK+2−−−→ · · · g2K−−→ Γ2K
g2K+1−−−−→ . . .

The process of Skora defines a path L0 : [0, log λ] → CVr so that the union of φk-translates of L0

for all k gives the entire fold line L. That is, L : R → CVr is defined by L(t) = L0(t−⌊ t
log λ⌋)φ

⌊ t
log λ

⌋
.

L is called a periodic fold line for φ or, if φ is fully irreducible, an axis for φ.
[AKKP19, Lemma 2.7] implies that the periodic fold lines determined by tt representatives of

fully irreducible outer automorphisms are Lipschitz geodesics.

4.3.1. Fold-conjugate decompositions. Since an axis for a fully irreducible φ ∈ Out(Fr) has a

periodic structure, one can view its Stallings fold decompositions cyclically. With
careful attention paid to the marking, one can see that starting at a different fold
in a decomposition now yields a tt map representing the same outer automorphism.
Further, tt representatives may start “in the middle of a fold.” These notions of
cyclically permuting a Stallings fold decomposition or, equivalently, shifting along an
axis are formalized in [AHLP24] via the language of fold-conjugate and partial-fold
conjugate decompositions. We use the definitions presented there, just including here
that a subdivided fold is a fold written as a composition of two folds, as depicted to
the right. Since fold-conjugate tt maps represent the same outer automorphisms, they
share all outer automorphism invariants, such as ideal Whitehead graphs, indices, and whether or
not a map is fully irreducible.
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4.4. Lone axis outer automorphisms. A main focus of this manuscript is a class of ageometric
fully irreducible outer automorphisms proved in [MP16, Theorem 4.7] to have a unique axis in CVr:

A lone axis fully irreducible outer automorphisms is an ageometric fully irreducible outer auto-
morphism φ ∈ Out(Fr) satisfying that

(1) the rotationless index satisfies i(φ) = 3
2 − r and

(2) no component of the ideal Whitehead graph IW (φ) has a cut vertex.

Each tt representative of each lone axis fully irreducible φ is PNP-free ([MP16, Lemma 4.4]) and
has a unique Stallings fold decomposition ([MP16, Theorem 4.7]). Stallings fold decompositions of
tt representatives of the same lone axis fully irreducible outer automorphism are fold-conjugate as,
by [MP16, Theorem 4.7], they determine the same axis in CVr.

The following proposition, which is [MP16, Corollary 3.8], is inspiration for what we will define
in §7 as “fully singular outer automorphisms.”

Proposition 4.2 ([MP16]). Let φ be a lone axis fully irreducible outer automorphism. Then there
exists a train track representative g : Γ → Γ of some power φR of φ so that all vertices of Γ are
principal, and fixed, and all but one direction is fixed.

5. Proper full fold (pff) decompositions & standard notation

Suppose one has a Stallings fold decomposition Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn of a homotopy

equivalence tt map g : Γ → Γ, where for each 1 ≤ k < n, the

fold gk : Γk−1 → Γk is a proper full fold of an edge e
(k−1)
jk

over an

edge e
(k−1)
ℓk

, and gn is a graph isomorphism, possibly changing
edge labels and orientations. We call such a fold decomposition
(and its corresponding fold line in CVr) a proper full fold (pff)
decomposition/line. For such a pff decomposition we use the
following notation for 1 ≤ k < n and call it the standard notation:

(8) gk :


e
(k−1)
jk

7→ e
(k)
ℓk

e
(k)
jk

e
(k−1)
i 7→ e

(k)
i for i ̸= jk

We write gk : e
(k−1)
jk

7→ e
(k)
ℓk

e
(k)
jk

, or even more abusively ejk 7→ eℓkejk . The direction map for gk is

(9) Dgk :



e
(k−1)
jk

7→ e
(k)
ℓk

e
(k−1)
i 7→ e

(k)
i for i ̸= jk

e
(k−1)
i 7→ e

(k)
i for each i

The map gn may be a homeomorphism. In such a case, gn is a bijection on edges (possibly

reversing some orientations) and Dgn is a bijection on directions satisfying Dgn(e) = Dgn(e) for
each e ∈ EΓn−1. Note that the direction map for g is always Dg = Dgn ◦ · · · ◦Dg1.

For brevity we use the notation:

(10) gj,i :=

{
gj ◦ · · · ◦ gi if i ≤ j

gj ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gi if j < i
9



Throughout this manuscript we reserve the notation fk for gk,1 ◦ gn,k+1 : Γk → Γk.

Lemma 5.1. Suppose Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn is a Stallings fold decompositions of an

expanding irreducible homotopy equivalence tt map g : Γ → Γ, where each fold gk : Γk−1 → Γk is a

proper full fold defined by gk : e
(k−1)
jk

7→ e
(k)
ℓk

e
(k)
jk

. According to the standard notation:

(a) the direction ejn is not in the image of Dg, and
(b) the turn {eℓn , ejn} is a g-taken turn, and
(c)

τ(gn ◦ · · · ◦ g1) = τ(gn)
n−1⋃
k=1

Dgn,k+1(τ(gk)), and

(d) repeating the Stallings fold decomposition if necessary, the illegal turns for g are {ej1 , eℓ1}
and each nondegenerate turn {d1, d2} such that, for some k,

Dgk−1,1(d1) = ejk and Dgk−1,1(d2) = eℓk .

Assume gn is instead an edge-permutation graph isomorphism, as in a pff decomposition. Then
(a), (b), and (d) are replaced as follows with (a ′), (b ′), and (d ′).

(a ′) Dgn(ejn−1) /∈ Image(Dg), and
(b ′) the turn {Dgn(eℓn−1), Dgn(ejn−1)} is a g-taken turn, and
(d ′) the statement of (d) holds but with the added requirement that k ̸= pn for any p ∈ Z≥1.

Proof. a) ejn is not in the image of Dgn and Dg = Dgn ◦ · · · ◦Dg1.
b) Proper full folds are surjective, so each gk is surjective, so gn−1,1 is surjective. Thus, ejn−1 is in
the gn−1,1-image of some e ∈ E±Γ and so g(e) contains eℓnejn . Thus, {eℓn , ejn} is a g-taken turn,
as desired.
c) Since each gk is surjective and the standard proper full fold notation is consistent with that on
a rose, the same proof as that of [KP24, Lemma 2.12] works here also.
d) We first show that {ej1 , eℓ1} is an illegal turn, as is each turn {ejk , eℓk} such that both ejk and
eℓk are in the image of Dgk−1,1. Since g1 : Γ0 → Γ1 is defined by ej1 7→ eℓ1ej1 , we have

{Dg(ej1), Dg(eℓ1)} = {Dgk,2(Dg1(ej1)), Dgk,2(Dg1(eℓ1))} = {Dgk,2(eℓ1), Dgk,2(eℓ1)},

so is degenerate. And {ej1 , eℓ1} is an illegal turn, as desired.
Suppose {d1, d2} satisfies Dgk−1,1(d1) = ejk and Dgk−1,1(d2) = eℓk for some k ∈ Z>1. Then

{Dg(d1), Dg(d2)} = {Dgn,k(Dgk−1,1(d1)), Dgn,k(Dgk−1,1(d2))} = {Dgn,k(ejk), Dgn,k(eℓk)}

= {Dgn,k+1(Dgk(ejk)), Dgn,k+1(Dgk(eℓk))} = {Dgn,k+1(ejk), Dgn,k+1(ejk)},
so is also degenerate. And {d1, d2} is an illegal turn, as desired.

We now show that {ej1 , eℓ1} and such {d1, d2} are the only illegal turns. Each Dgk is bijective
on directions except for identifying ejk and eℓk . Thus, Dgk can only identify two directions in
Image(Dgk−1,1) if they are ejk and eℓk . Since Dg = Dgn◦· · ·◦Dg1, we cannot have any Dgm(d1) =
Dgm(d2), unless D(gk−1,1)(d1) = ejk and D(gk−1,1)(d2) = eℓk , or vice versa, for some k.

Now assume gn is instead an edge-permutation graph isomorphism.
a ′) ejn−1 /∈ Image(Dgn−1), and Dgn is bijective, and Image(Dg) = Image(Dgn◦Dgn−1◦· · ·◦Dg1).
b ′) By (b), we have gn−1,1(e) = . . . eℓn−1ejn−1 . . . for some e ∈ E±Γ and so g(e) = gn(gn−1,1(e)) =

. . . gn(eℓn−1)gn(ejn−1) . . . and takes the turn {gn(eℓn−1), gn(ejn−1)} = {Dgn(eℓn−1), Dgn(ejn−1)}.
d ′) Dgn is a bijection, so does not identify directions, but the remainder of the proof of (d) holds.

□
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6. Abstract lamination train track (ltt) structures

In preparation to discuss tt automata, we need an abstract notion of an ltt structure. Suppose
Γ is a directed finite graph of first betti number r and such that the valence of each vertex is ≥ 3.
An abstract lamination train track (ltt) structure G with underlying graph Γ and “index” I is a
partially colored partially directed labeled graph with:

(ltt-i) a vertex for each direction in G, colored either red or purple, and
(ltt-ii) 2(I− χ(Γ)), i.e. 2(I+ r − 1), of the vertices are colored red, and
(ltt-iii) at least one red vertex contained in precisely one red edge, and
(ltt-iv) for each edge e ∈ EΓ, a directed black edge labeled with e directed from the vertex labeled

e to the vertex labeled ē, and
(ltt-v) undirected purple edges connecting some portion of the pairs of purple vertices forming

turns in Γ (i.e. that represent distinct directions at a common vertex in Γ) and so that
each vertex is contained in at least one colored (purple or red) edge and there are never 2
colored edges connecting the same pair of vertices, and

(ltt-vi) for each v ∈ V Γ, the subgraph of G that is the union of the colored (purple or red) edges
representing turns at v, which we denote by LW (G, v), is connected.

We denote the edge connecting the turn {d1, d2} by [d1, d2], recognizing that [d1, d2] = [d2, d1].

The following language and notation will be used both for abstract ltt structures and those
defined by tt maps.

As mentioned in (ltt-vi), LW (G, v), called the local Whitehead graph at v, denotes the subgraph
of G that is the union of the colored edges representing turns at v. We let SW (G, v) denote the
purple subgraph of G and call it the stable Whitehead graph at v. The ideal Whitehead graph of
G is IW (G) :=

⊔
SW (G, v), as v varies over V Γ. Note that, if g is a tt representative of a fully

irreducible φ satisfying that g has PNPs and ltt(g) = G, then IW (φ) ̸= IW (G).
We consider a path in an ltt structure G smooth that alternates between black and colored edges.

An ltt structure is birecurrent that contains a bi-infinite smooth path γ so that γ \ σ contains each
edge of G for each finite subpath σ of γ.

7. Fully singular outer automorphisms & train track representatives

Suppose that g : Γ → Γ is a train track representative of an ageometric fully irreducible φ ∈
Out(Fr). As in [HM11] and [MP16], we call a periodic point in Γ (g-)principal if it is either the
endpoint of a PNP or has ≥ 3 periodic directions. Thus, if g has no PNPs, the principal vertices
are precisely those periodic vertices with ≥ 3 periodic directions. For a set g, let PV Γ denote the
set of g-principal vertices of Γ and nPV Γ the set of g-nonprincipal vertices of Γ.

7.1. Fully singular & fully preprincipal tt representatives. We call a tt representative g
of an ageometric fully irreducible φ ∈ Out(Fr) fully singular if it is PNP-free and each vertex is
principal, i.e. if PV Γ = V Γ. Note that in such a case, the vertices of Γ are in 1-to-1 correspondence
with the components of the ideal Whitehead graph.

We call a tt representative g of a fully irreducible φ ∈ Out(Fr) fully preprincipal if each vertex
has ≥ 3 gates, additionally requiring that g is PNP-free if φ is ageometric. Thus, each fully
singular representative is fully preprincipal, but the converse does not hold (even for PNP-free tt
representatives).

It is unclear at this point whether each ageometric fully irreducible outer automorphism has a
fully singular tt representative. However, in the case where i(φ) = 3

2 − r, such as for lone axis outer
automorphisms, [MP16, Corollary 3.8] implies the existence of fully singular tt representatives.

We now prove the existence of fully preprincipal tt representatives.
11



Proposition 7.1 (Fully preprincipal tt representatives). Each fully irreducible φ ∈ Out(Fr) has a
fully preprincipal tt representative.

Proof. Suppose φ ∈ Out(Fr) is fully irreducible. We show φ has a (PNP-free if φ is ageometric) tt
representative for which each vertex has at least three gates. Since φ is fully irreducible, it has a tt
representative. In the case where φ is ageometric, the representative can be chosen to additionally
be PNP-free. Let h : Γ → Γ be one such representative. We cannot a priori assume h is fully
preprincipal, so we suppose some v ∈ V Γ has less than three h-gates. If v had only one gate, then
any edge passing through v would have backtracking, contradicting that h is a tt representative of
a fully irreducible outer automorphism (an invariant graph could be inserted at v if no edge passed
over v). If v had 2 gates, we could perform folds, similar to those in [BH92, pg. 16-17], to obtain a
new (PNP-free if φ was ageometric) tt representative of φ with fewer vertices with less than three
gates:

One of the gates must have multiple directions in it, or v would have valence two. We fold
that gate λ. Suppose that k is the power of h that identifies all of the directions E1, . . . , En of λ.
Maximally fold hk−1(E1), . . . , h

k−1(En). We are then able to fold hk−2(E1), . . . , h
k−2(En) and do

so maximally. Continuing as such, we are eventually able to fold E1, . . . , En. Since each fold was
maximal, it either ended at a vertex or at a point that (now) has at least three gates. Thus, the
number of vertices with less than three gates has decreased.

So it is possible via repeating the folding procedure to obtain a representative in which all vertices
have at least three gates. Since the folds cannot increase the number of PNPs, the representative
is PNP-free if h was. □

7.2. The directional surplus & index deficit for fully preprincipal tt representatives.
Recall from §3 the index deficit ID(φ) = i(φ) + r − 1 for a fully irreducible φ ∈ Out(Fr). The
index deficit will relate to the “directional surplus” of its tt representatives:

Given a tt map g : Γ → Γ, we define the directional surplus of g by

(11) DS(g) :=
∑
v∈V Γ

 ∑
G ∈ Gates(v)

(|G| − 1)

 ,

where for each v ∈ V Γ, we denote by Gates(v) the set of gates at v.
Since a Stallings fold can only fold directions in the same gate, the directional surplus, roughly

speaking, determines how many distinct fold choices one has. As in Example 9.1, these distinct
folds generally lead to a multitude of related Stallings fold decompositions. But, unless some gate
has ≥ 3 directions, the directional surplus bounds the number of choices of subsequent folds at each
stage of forming a Stallings fold decomposition. The directional surplus gives a more complicated
bound on possible folds in the case of gates with ≥ 3 directions.

Proposition 7.2 (Index deficit for fully preprincipal tt representatives). Suppose that r ≥ 3 and
g : Γ → Γ is a fully preprincipal tt representative of an ageometric fully irreducible φ ∈ Out(Fr).
Then each of the following holds.

(a)

ID(φ) ≥ 1

2
|nPV Γ| +

1

2
DS(g) ≥ 1

2
|nPV Γ| +

1

2
.

(b) If g is fully singular, then ID(φ) = 1
2 DS(g). In particular, the directional surplus is the

same for any two fully singular tt representatives of the same ageometric fully irreducible
φ ∈ Out(Fr).
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Proof. Suppose g : Γ → Γ is a fully preprincipal tt representative of φ. Note that

(12) |V Γ| = |PV Γ| + |nPV Γ|
and

(13) |EΓ| =
1

2
|DΓ| =

1

2

∑
v ∈ V Γ

 ∑
G ∈ Gates(v)

|G|


=

1

2

∑
v ∈ PV Γ

|Gates(v)| +
1

2

∑
v ∈ nPV Γ

|Gates(v)| +
1

2
DS(g).

We first prove (a). Since g is fully preprincipal, for each v ∈ nPV Γ we have |Gates(v)| ≥ 3. So

(14)
∑

v ∈ nPV Γ

|Gates(v)| ≥ 3 |nPV Γ|.

Combining (13) and (14), we obtain

(15) |EΓ| ≥ 1

2

∑
v ∈ PV Γ

|Gates(v)| +
3

2
|nPV Γ| +

1

2
DS(g).

Since χ(G) = |V Γ| − |EΓ|, we have

χ(G) ≤ |PV Γ| + |nPV Γ| −

(
1

2

∑
v ∈ PV Γ

|Gates(v)| +
3

2
|nPV Γ| +

1

2
DS(g)

)

= |PV Γ| − 1

2

∑
v ∈ PV Γ

|Gates(v)| − 1

2
|nPV Γ| − 1

2
DS(g).

Since χ(G) = 1− r, this gives

(16) 1− r ≤ |PV Γ| − 1

2

∑
v ∈ PV Γ

|Gates(v)| − 1

2
|nPV Γ| − 1

2
DS(g).

Now,

(17) i(φ) =
∑

v ∈ PV Γ

(
1− |Gates(v)|

2

)
= |PV Γ| − 1

2

∑
v ∈ PV Γ

|Gates(v)|.

And so

(18) ID(φ) = i(φ) − (1− r) ≥

|PV Γ| − 1

2

∑
v ∈ PV Γ

|Gates(v)| −

(
|PV Γ| − 1

2

∑
v ∈ PV Γ

|Gates(v)| − 1

2
|nPV Γ| − 1

2
DS(g)

)
.

And so ID(φ) ≥ 1
2 |nPV Γ| + 1

2 DS(g).
Since g is not a homeomorphism, some g-gate must have ≥ 2 directions. Thus DS(g) ≥ 1 and

so, in fact

ID(φ) ≥ 1

2
|nPV Γ| +

1

2
,

proving (a).
We now prove (b). Now g is fully singular and so∑

v ∈ nPV Γ

|Gates(v)| = 0
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and thus

|EΓ| =
1

2

∑
v ∈ V Γ

|Gates(v)| +
1

2
DS(g).

So now

χ(G) = |V Γ| − 1

2

∑
v ∈ V Γ

|Gates(v)| − 1

2
DS(g) and i(φ) = |V Γ| − 1

2

∑
v ∈ V Γ

|Gates(v)|.

So

ID(φ) = i(φ)− χ(G) =

(
|V Γ| − 1

2

∑
v ∈ V Γ

|Gates(v)|

)
−

(
|V Γ| − 1

2

∑
v ∈ V Γ

|Gates(v)| − 1

2
DS(g)

)
.

And so ID(φ) = 1
2 DS(g), as desired.

□

Remark 1. From the proof one can see that ID(φ) is impacted by the number of nonprincipal
vertices with ≥ 3 gates and the direction surplus DS(g), i.e. the number of directions in gates
containing multiple directions. As DS(g) also relates to the number of choices of folds in a Stallings
fold decomposition, one can conjecture that ID(φ) would give bounds on the dimension of the
[MP16] stable axis bundle.

7.3. Pff decompositions of fully singular train track representatives.

Proposition 7.3 (Pff decompositions of fully singular train track representatives). Suppose g is a
fully singular tt representative of an ageometric fully irreducible φ ∈ Out(Fr). Then g has either a
pff decomposition or a Stallings fold decomposition with at least one tripod proper full fold.

If a fully preprincipal tt representative of an ageometric fully irreducible φ ∈ Out(Fr) has a pff
decomposition then it is fully singular.

Proof. Suppose g is a fully singular tt representative of an ageometric fully irreducible φ ∈ Out(Fr)
and perform as many proper full folds as possible to decompose g as g = g′′ ◦ g′, where g′ : Γ → Γ′

decomposes entirely into proper full folds and no Stallings fold decomposition of g′′ : Γ′ → Γ can
start with a proper full fold. If g′′ is a homeomorphism, then the proper full fold decomposition of
g′ is the desired pff decomposition. Now suppose that g′ is not a homeomorphism.

Note that Γ′ has the same number of vertices as Γ, i.e. the minimal number of vertices possible
for a train track representative of φ. Thus, simultaneously folding maximally each gate of g′′ cannot
lead to a complete fold of two edges. Since the decomposition of g′′ cannot start with a proper full
fold, this leaves that each of the folds is a partial fold.

It is possible for the partial folds to pass over each other. However, unless two of the partial
folds end at a common point (as in a tripod fold), no further folding of g can occur. Thus, since the
partial folds would have increased the number of vertices and g′ preserved the number of vertices,
and g′′ was not a homeomorphism, there exists an edge e such that a partial fold of {e, e′} and a
partial fold of {ē, e′′} terminate at a common point p in e. Write e = e1e2, and e′ = e′1e

′
2, and

e′′ = e′′1e
′′
2 so that g′′(e1) = g′′(e′1) and g′′(e2) = g′′(e′′1). If either {e′2, e′′2} can only partially be folded

or not folded at all, then we again have a contradiction with the increased number of vertices. If e′2
and e′′2 are completely folded, then g′′ would identify the terminal vertices of e′2 and e′′2. Note that
these vertices could not be equal or the fold would change the homotopy type of Γ′. So completely
folding e′2 and e′′2 would contradict that g and g′ are bijective on vertices, forcing g′′ to be bijective
on vertices. Thus, the fold is a tripod proper full fold.
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We now prove the final sentence. No proper full fold can identify two vertices. Thus, any tt
map g with a pff decomposition is bijective on vertices and thus each vertex is periodic. Since each
vertex of a preprincipal tt representative has ≥ 3 gates, we have that each vertex is in fact principal
and g is fully singular, as desired. □

8. Fully singular pff ltt structures & maps

8.1. Ltt structures of fully singular pff decompositions. The following two lemmas will help
us to understand the ltt structures of fully singular tt representatives.

Lemma 8.1. Suppose that g : Γ → Γ is a fully singular tt representative of an ageometric fully

irreducible φ ∈ Out(Fr) and that Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn is a pff decomposition of g.

Then G(g) is a birecurrent abstract ltt structure G with underlying graph Γ and index i(φ).

Proof. We prove that each property holds, following the definition of §6, and noting that (ltt-i) and
(ltt-iv) are just part of the definition, so require no proof.

(ltt-ii): Since the representative is fully singular, the numberR of nonperiodic directions isDS(g).
By Proposition 7.2, ID(φ) = 1

2DS(g), so DS(g) = 2ID(φ). By definition, ID(φ) = i(φ) + r − 1,
so DS(g) = 2(i(φ) + r − 1), proving (ltt-ii).

(ltt-iii) This follows from Lemma 5.1: By (a′), Dgn(ejn−1) /∈ Image(Dg), so is represented
by a red vertex. By (b′), the turn {Dgn(eℓn−1), Dgn(ejn−1)} is g-taken, so is represented by a
red edge, containing the vertex Dgn(ejn−1). By (c′), since Dgn(ejn−1) /∈ Image(Dgn,n−1) and
{Dgn(eℓn−1), Dgn(ejn−1)} is the only turn of τ(gn,n−1), no other turn contains Dgn(ejn−1).

(ltt-v) Most of (ltt-v) follows by the definition. Each vertex must be contained in a colored edge
as follows. Suppose the vertex represents a direction e. Then [e, e′] is an edge in G(g) if and only
if some gk(e′′) contains either e′e or ee′. As φ is fully irreducible, g must be expanding with PF
transition matrix so that, for an adequately high power k, the image of each edge maps over each
other edge and contains multiple edges in its image. That is, for in fact each e′′ ∈ EΓ, we have that
gk(e′′) passes over multiple edges including e. If e is not the first edge in gk(e′′), then we can take
e′ to be the edge directly preceding e. Otherwise we can take e′ to be the edge directly following e.

(ltt-vi) This follows from the fact that local Whitehead graphs of fully irreducible outer auto-
morphisms must be connected.

Finally, even though the definitions and situation are slightly different, the proof that G(g) is
birecurrent follows that of [Pfa15a, Proposition 4.4], replacing the single local Whitehead graph in
that situation with the union of the local Whitehead graphs of G(g).

□

Lemma 8.2. Suppose g : Γ → Γ is a fully singular tt representative of an ageometric fully irreducible
φ ∈ Out(Fr), with a pff decomposition, and G(g) its associated ltt structure. Then

(a) the disjoint union of the purple graphs is the ideal Whitehead graph, and
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(b) the number of g-nonperiodic directions in Γ is 2(i(φ) + |EΓ| − |V Γ|), i.e. 2(i(φ) − χ(G)),
and each of the nonperiodic directions occurs at a vertex of valence at least four, and

(c) one of the nonperiodic directions is contained in precisely one turn taken by g, i.e one of
the red directions is contained in precisely one red edge of G(g).

Proof. We prove the statements one at a time.
a) Since g is a fully singular tt representative of an ageometric φ, it has no PNPs, so

IW(φ) ∼=
⊔

v∈V Γ

SW(g; v).

Since the purple graphs are by definition the SW(g; v), (a) follows.
b) The first line follows from Lemma 8.1, so we prove the second line. Since each vertex is

principal, it has ≥ 3 periodic directions at it. Thus, a nonperiodic direction at a vertex would mean
adding to the number of directions at the vertex, so there are ≥ 4 directions.

c) This follows from Lemma 8.1.
□

8.2. Maps of ltt structures.

8.2.1. Proper full fold ltt structure maps. Suppose G is a pff ltt structure with underlying graph Γ
and that f : Γ → Γ′ is a proper full fold in Γ of e1 over e2. Suppose further that either e1 or e2 is
a red vertex direction of G. Then f · G is the pff ltt structure with

(pff-map-i.) underlying graph Γ′, and
(pff-map-ii.) e1 a red direction, and
(pff-map-iii.) [e2, e1] a red edge, and
(pff-map-iv.) a colored edge [Df(ej), Df(ek)] precisely when [ej , ek] is a colored edge of G, and
(pff-map-v.) the further red directions are determined as follows:

a. if e1 labels a red vertex in G, then vertex coloring is consistent betwixt G and f ·G and
b. if e1 labels a purple vertex in G, then e1 labels a red vertex in f · G, and e2 labels a

purple vertex in f · G, and all other vertex colors remain unchanged, and
(pff-map-vi.) the colored edges are red precisely if they contain a red vertex.

Lemma 8.3 (Pff ltt structure map). Suppose Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn is a pff

decomposition of a fully singular tt representative of an ageometric fully irreducible φ ∈ Out(Fr).
Let g′ : Γk → Γk denote fk, i.e. g′ = gk,1 ◦ gn,k+1. Then G(g′) = gk,1 · G for each k < n.

Proof. It suffices to show the statement for k = 1 and then the result follows by induction.
We use the standard notation that g1 : Γ → Γ′ is a proper full fold in Γ of ej1 over eℓ1 , to be

consistent with the notation of §10.0.1. Thus, according to the standard notation, g1 : ej1 7→ eℓ1ej1
and Dg1 : ej1 7→ eℓ1 . The translation to the definition’s notation is ej1 = e1 and eℓ1 = e2.

(pff-map-i) follows from the definition of G(g′) and (pff-map-ii) follows from the proof of Lemma
5.1a.

(pff-map-iii) By (maps-ii), it suffices to show that {eℓ1 , ej1} is g′-taken, which follows from the
proof of Lemma 5.1c because {eℓ1 , ej1} ∈ τ(g1).

(pff-map-iv) By the local Whitehead graph and ltt structure definitions, the colored edges of G(g)
and G(g′) correspond to, respectively, τ∞(g) and τ∞(g′). Let k ∈ Z>0 be such that τ(gk) = τ∞(g)
and τ(g′k) = τ∞(g′). Then g′k+1 = g1 ◦ gk ◦ gn,2, and so, according to Lemma 5.1c,

τ(g′k+1) = τ(g1 ◦ gk ◦ gn,2) = τ(gn) ∪Dg1(τ(g
k)) ∪D(g1 ◦ gk)(τ(gn,2)).

And τ(gn) = [ē2, e1], so the remaining colored edges are Dg1(τ(g
k)) ∪ D(g1 ◦ gk)(τ(gn,2)). And

Dg1(τ(g
k)) = Dg1(τ∞(g)) is precisely what we are hoping the rest of the taken turns are, so we are
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left to show that D(g1 ◦ gk)(τ(gn,2)) provides nothing new. Since direction maps of compositions

are compositions of directions maps, D(g1 ◦ gk)(τ(gn,2)) = D(g1(g
k)(τ(gn,2))). Again, by Lemma

5.1c, τ(gn,2) ⊆ τ(gk) = τ∞(g), so D(g1 ◦ gk)(τ(gn,2)) ⊆ Dg1(τ∞(g)), as desired.
(pff-map-v) By Lemma 8.2b, G(g) and G(g′) have the same number of red vertices. Further,

Image(Dg′R+1) = Image(Dg1 ◦DgR ◦Dgn,2) ⊆ Image(Dg1 ◦DgR).
Suppose first that ej1 is a red vertex direction of G(g) and suppose that e is another red vertex di-

rection of G(g). Then, ej1 , e /∈ Image(DgR) for any rotationless power R. Since ej1 /∈ Image(DgR)
and Dg1 is the identity on DΓ\ej1 , we have that Image(Dg1 ◦ DgR) = Image(DgR). That is,
Image(Dg′R+1) ⊆ Image(DgR). Since G(g) and G(g′) have the same number of red vertices, this
in fact means Image(Dg′R+1) = Image(DgR). So G(g) and G(g′) have the same red vertices.

Now suppose eℓ1 labels a red vertex of G(g), but ej1 is not. That is, DgR(ej1) = ej1 for any
rotationless power R. Further, ej1 must be in the image of Dgn,2 or could not be in the image of
DgR = D(gn,2 ◦ g1 ◦ gR−1). Keeping in mind that Dg1 : ej1 7→ eℓ1 , this implies eℓ1 ∈ Image(D(g1 ◦
gR ◦ gn,2)) = Image(Dg′R+1). That is, eℓ1 now labels a purple vertex. In fact, with the added
observation that Dg1 is the identity on DΓ\ej1 , we have by a very similar argument that all
purple vertices in G(g) stay purple, apart from ej1 . Since ej1 /∈ Image(D(g1)), we also have
ej1 /∈ Image(D(g1) ◦ gR ◦ gn,2)) = Image(Dg′R+1), i.e. ej1 is now a red direction vertex in G(g′).

(pff-map-vi) follows from the definition of G(g′). □

8.2.2. Edge-permutation ltt structure maps. Suppose G is a pff ltt structure with underlying graph
Γ. Suppose further that Γ′ is graph-isomorphic to Γ, and that EΓ and EΓ′ are labeled using the
same edge-labeling set {e1, . . . , en}. Now suppose that fσ : Γ → Γ′ is an edge-permutation graph
isomorphism where fσ(e) = σ(e) for each e ∈ E±Γ. Since the vertices of G are labeled by E±Γ,
it makes sense to define f · G as the pff ltt structure obtained from G by applying σ to the vertex
(and consistently black edge) labels.

Lemma 8.4 (Edge-permutation ltt structure map). Suppose Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn

is a pff decomposition of a fully singular tt representative of an ageometric fully irreducible φ ∈
Out(Fr). Let g′ : Γn−1 → Γn−1 denote g′ = gn−1,1 ◦ gn. Then gn · G(g′) = G(g).

Proof. Suppose gn = fσ. It suffices to show that g′ takes a turn {d1, d2} if and only if g takes the
turn {σ(d1), σ(d2)} and a direction d is g′-periodic if and only if σ(d) is g-periodic.

Let p be such that τ(g′p) = τ∞(g′) and τ(gp) = τ∞(g). We know that g′p is obtained from gp by
g′p : σ−1(e) 7→ σ−1(E1) . . . σ

−1(Em) if and only if gp : e 7→ E1 . . . Em. Thus g′ takes a turn {d1, d2}
if and only if g takes the turn {σ(d1), σ(d2)}.

Further, for a rotationless power R, we have that g′R : e 7→ e . . . if and only if gR : σ(e) 7→ σ(e) . . . .
That is, e is a periodic direction for g′ if and only if σ(e) is a periodic direction for g. □

8.2.3. Special ltt structure maps: tt-friendly symmetry maps & proper full folds. Even abstract ltt
structures have underlying graphs, so that we can talk about maps of these graphs, and the maps
of ltt structures they induce. We will be particularly interested in two types of such maps that will
compose to give tt maps.

Suppose that G is a lone axis ltt structure with underlying graph Γ and the black edges of G are
labeled with {e1, · · · , en}, where |EΓ| = n.

A tt-friendly symmetry map of G is a triple (G, f, f · G) such that f is a graph isomorphism and
f · G is color-preserving (possibly black edge orientation-reversing) graph isomorphic to G.

A tt-friendly proper full fold (pff) of G is a pair (G, f ·G) such that there exist distinct directions
E,E′ ∈ {e1, e1, · · · , en, en} satisfying that
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(tt-pff-i) E and E′ label vertices in the same component of the colored subgraph of G, and
(tt-pff-ii) either E or E′ labels a red vertex, and
(tt-pff-iii) [E′, E] is not a colored edge of G and E′ ̸= E, and
(tt-pff-iv) f is a proper full fold of E over E′ in Γ.

In the case of lone axis ltt structures, which will be describe in §10, (ii) and (iii) can be rewritten
as vr ∈ {E,E′} and er ̸= [E′, E], with the added condition that E′ ̸= E.

8.2.4. Compositions of ltt structure maps. The following two lemmas will help us to translate be-
tween pff decompositions of fully singular tt representatives and loops in the ltt structure automata.

Lemma 8.5. Suppose g is a fully singular tt representative of an ageometric fully irreducible

φ ∈ Out(Fr). And suppose that Γ0
g1−→ Γ1

g2−→ . . .
gn−→ Γn = Γ0 is a pff decomposition of g. Let

G(fk) = Gk for each k. Then Gk−1
gk−→ Gk is a tt-friendly proper full fold for each k < n and either

a tt-friendly proper full fold or tt-friendly symmetric map for k = n.

Proof. By Lemma 8.3, Gk = gk,1 ·G = G(fk). Thus, by Lemma 8.1 and recalling that the rotationless
index is an outer automorphism conjugacy class invariant, each Gk is a birecurrent abstract ltt
structure with underlying graph Γk and index i(φ). In fact, since the ideal Whitehead graph is also
a conjugacy class invariant, IW (Gk) = IW (G) for each k.

Suppose gk is a proper full fold of E over E′ for some edges E,E′ ∈ EΓk−1. Then (tt-pff-i) is
satisfied because E and E′ must emanate from the same vertex of Γk−1 and the colored subgraph
is the disjoint union of the LW (fk−1). If both E and E′ labeled purple vertices, then both E
and E′ would be periodic directions for fk−1, meaning that they would be fixed by some (fk−1)

m.
But, because E and E′ are folded, they have the same image under Dgk, hence under D(fk−1)

m,
contradicting that E ̸= E′. Thus (tt-pff-ii) holds. Finally, (tt-pff-iii) holds because fk−1 is a tt map
and (tt-pff-iv) holds by our assumption that gk is a proper full fold of E over E′.

It is possible that gn is a tight homeomorphism that is not the identity map. A tight homeomor-
phism will be a graph isomorphism, so we are left to show gn induces a color-preserving (possibly
black edge orientation-reversing) graph isomorphism Gn−1 → Gn. This follows from Lemma 8.4.

□

While each loop in the automata will describe a tt map and has the potential to define a fully
singular tt representative of a fully irreducible φ ∈ Out(Fr), the loop may not compose enough of
the right kinds of generators to have the entire colored graph realized as turns taken or to identify
enough directions, for example. Thus, the following lemma is needed to establish the necessary
criteria for a loop to define a fully singular tt representative of a fully irreducible φ ∈ Out(Fr) with
the desired ideal Whitehead graph.

Lemma 8.6. Suppose G0
g1−→ G1

g2−→ . . .
gn−→ Gn = G0, where each Gk

gk+1−−−→ Gk+1 is either a tt-
friendly symmetry map or tt-friendly pff. Suppose that Γk is the underlying graph of Gk for each
k, with Γ0 = Γn also denoted by Γ. And denote also G0 = Gn by G. Then

(a.) gn ◦ · · · ◦ g1 : Γ → Γ is a tt map and
(b.) each turn of τ∞(g) is represented by a colored edge in G.

If g additionally

(1) has no PNPs, and
(2) has that each LW (g, v) is graph isomorphic to the appropriate components of the colored

graph of the ltt structure, and
(3) has a PF transition matrix, and
(4) has ≥ 3 periodic directions at each vertex
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then, appropriately marked, g is a fully singular tt representative of an ageometric fully irreducible
φ ∈ Out(Fr).

If further yet,

(5) Image(Dg) is precisely the set of purple directions of G,

then:

(i.) IW (φ) = ⊔SW (G, v) and
(ii.) the red vertex directions are precisely those not in Image(DgR) for a rotationless power R.

Proof. For each k ∈ Zk≥0, let gk = gk (mod n) so that, for example, g1,mn = gm. We proceed by
proving inductively the following holds for each k:

(1) gk,1(e) is tight for each e ∈ EΓ and
(2) each turn of τ(g1,k) is represented by a colored edge in Gk.
Suppose the inductive hypothesis holds and that e ∈ EΓ is arbitrary. Suppose that gk,1(e) =

E1 . . . EN . Then gk+1,1(e) = gk+1(E1 . . . EN ) = gk+1(E1) . . . gk+1(EN ). Thus, to show that
gk+1,1(e) is tight, we need that gk+1 is tight (which it is because graph isomorphisms and proper

full folds are) and that each {gk+1(Eℓ), gk+1(Eℓ+1)} is nondegenerate. We prove now the latter.
Each {Eℓ, Eℓ+1} is a gk,1-taken turn and so, by (2) in the inductive hypothesis, is represented by
a colored edge in Gk. As in the notation of the tt-friendly pff definition, we suppose gk+1 maps
E over E′, i.e. E 7→ E′E. In other words, Dgk+1 : E 7→ E′ and fixes each other direction of Γk.
Thus, in order for {Eℓ, Eℓ+1} to be degenerate, one would need that {Eℓ, Eℓ+1} = {E,E′}, where
we are still considering turns to be unordered. Since {Eℓ, Eℓ+1} is a colored edge of G, this would
imply that {E,E′} is a colored edge of G. However, this would contradict (tt-pff-iii). So (1) of the
inductive hypothesis holds for k + 1.

We are left to prove that each turn of τ(g1,k+1) is represented by a colored edge in Gk. Suppose

that {d1, d2} ∈ τ(g1,k+1). Then there exists an e ∈ EΓ and ℓ such that {d1, d2} = Eℓ, Eℓ+1,
where gk+1,1(e) = E1 . . . EN . In the case that gk+1 is a tt-friendly symmetry map, then there are
E′

1, . . . , E
′
N ∈ EΓ such that E1 . . . EN = gk+1(E

′
1) . . . gk+1(E

′
N ). So in the case that gk+1 is a tt-

friendly symmetry map, the result follows from (maps-iv). We now assume that gk+1 is a tt-friendly
proper full fold and again assume the notation of the definition, i.e. gk+1 maps E over E′, so that
gk+1 : E 7→ E′E and Dgk+1 : E 7→ E′. Now, Dgk+1(E) takes the turn {E,E′} and Dgk+1(e) = e
for each e ∈ Γk\{E,E′}. This gives us that, if gk+1(e) = gk(E1) . . . gk(EN ), then the only turns

taken by gk+1(e) are the {Dgk(Ej), Dgk(Ej+1)} and possibly {E,E′}. But (maps-iv) implies that

each {Dgk(Ej), Dgk(Ej+1)} is a colored edge in f · G and {E,E′} is red by (maps-iii).
If g additionally satisfies (1)-(4), then Proposition 3.1 implies g represents an ageometric fully

irreducible φ ∈ Out(Fr).
Since g has ≥ 3 periodic directions at each vertex and has no PNPs, each vertex of Γ is principal

and g is fully singular.
We now assume that (5) additionally holds and prove (i-ii). By (3), we know that the components

of the colored graph of G correspond to the local Whitehead graphs of g so that we are left to
show that the g-periodic directions are precisely the purple vertices of G. By (6), Image(Dg) is
precisely the set of purple directions of G. Now, by definition, tt-friendly proper full folds cannot
identify two purple directions (and tt-friendly symmetry maps are a bijection on directions), so
|Image(Dg)| = |Image(Dgk)| for each k. Further, since D(gk) = Dg(Dgk−1), we have that
Image(Dgk) ⊆ Image(Dg). So Image(Dgk) = Image(Dg) for each k and, since red and purple
directions are complementary sets, the proof is complete.

□
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9. False singularities & Pff decomposition among multiple Stallings fold
decompositions

9.1. Merging outer automorphisms & false singularities. Recall from Proposition 7.3 that
a fully singular tt representative or an ageometric fully irreducible either has a pff decomposition
or a representative with a tripod fold. Since a tripod fold increases the number of vertices, a
Stallings fold decomposition of a fully singular tt representative that contains a tripod fold will
necessarily also contain a complete fold of 2 edges (identifying 2 vertices). Further, all turns at the
vertex v created by a tripod fold are taken, ensuring they are not folded by further folds in the
decomposition. However, v is not in the image of a vertex. We thus call these vertices created by
tripod folds in Stallings fold decompositions of fully singular tt representatives false singularities.
We more generally call a vertex created in a Stallings fold decomposition, not in the image of a
vertex, vanishing. We do not discuss such vertices and decompositions beyond this section, but
find them intriguing enough to compel our naming them upon their discovery.

We call an ageometric fully irreducible outer automorphism in which no fully singular tt repre-
sentative has a pff decomposition merging. We conjecture that merging outer automorphisms are
rare, and particularly that most fully singular tt representative have a pff decomposition. With
this in mind, we focus here on pff decompositions of fully singular tt representatives.

9.2. Pff decomposition among multiple Stallings fold decompositions. We conclude this
section with an example of how a tt representative of an ageometric fully irreducible outer auto-
morphism can have multiple Stallings fold decompositions, some of which have vanishing vertices
and one of which does not. In fact, one Stallings fold decomposition is a pff decomposition.

Example 9.1. Consider the map S on the 3-petaled rose defined by

(19) S :


a 7→ cbca

b 7→ cbc

c 7→ ac

The map S is a tt map with 2 illegal turns and multiple Stallings fold decompositions, only one of
which is a pff decomposition. The images of edges are indicated on each graph to illuminate which
edge segments have the same image (so can be folded). The map S runs from the upper left-hand
corner to the lower right-hand corner.

The first 2 lower folds can combine into a single fold, and then going down the left side and then
along the bottom row yields a Stallings fold decomposition where the number of vertices increases
and then decreases, indicating the existence of vanishing vertices.
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The upper 3 folds combine to a single proper full fold, starting the pff decomposition of S that
runs along the top row and then down the right-hand side:

This pff decomposition indicates the creation of vanishing vertices is unnecessary in this particular
example. Unlike in the circumstance of a tripod proper full fold in Proposition 7.3, these vanishing
vertices are a result of a partial fold chosen over a proper full fold.

Proposition 9.2. There exists a PNP-free tt representative of an ageometric fully irreducible
φ ∈ Out(F3) that has both a pff decomposition and a Stallings fold decomposition including a
complete fold of an edge pair.

Proof. We prove that S represents an ageometric fully irreducible φ ∈ Out(F3) by proving the
conditions of the Proposition 3.1 are satisfied.

We know g is a tt map because the images of positively oriented edges only contain positively
oriented edges. The direction map is defined by

DS : a 7→ c 7→ a DS : a 7→ a
DS : b 7→ c 7→ a DS : b 7→ c
DS : c 7→ a 7→ c DS : c 7→ c

Thus, the illegal turns are {a, b} and {b, c} and all directions but b and b are periodic. Further,
τ(S) = {{c, b}, {b, c}, {c, a}, {a, c}}. And applying DS, we obtain τ(S2) = {{c, c}, {c, a}, {a, a}}
and applying DS2 we obtain τ(S2) = {{c, a}, {c, c}, {a, c}}. Since S2 fixes all periodic directions,

τ∞(S) = {{c, b}, {b, c}, {c, a}, {c, c}, {a, c}, {a, a}}.

Thus, the only local Whitehead graph is connected, the red edges of G(S) are [c, b] and [b, c], and
the purple edges of G(S) are [c, a], [c, c], [a, c], and [a, a].

For S2 each edge is in the image of each edge so that the transition matrix M(S) is PF and we
are left to show that S has no PNPs, or rather that no power has an iNP.

If some Sk had an iNP ρ, there would exist legal paths ρ1 and ρ2 so that ρ = ρ1ρ2 and {Dρ1, Dρ2}
is an illegal turn. In particular, we repeatedly use Lemma 2.3 and Lemma 2.2 to prove such a ρ
cannot exist.

As established in §2.6, for each k we let fk = sk ◦ · · · ◦ s1 ◦ sn ◦ · · · ◦ sk+1, i.e. fk = sk,1 ◦ sn,k+1.
We will use the below chart summarizing relevant data.

We begin by assuming {Dρ1, Dρ2} = {a, b}, so that there exist edges ei, e
′
j ∈ EΓ so that

ρ1 = ae2 . . . en and ρ2 = be′2 . . . e
′
m. Note that each turn of ρ1 and ρ2 must be S-taken. Now

s1(ρ1) = s1(ae2 . . . en) = bas1(e2) . . . s1(en) and
s1(ρ2) = s1(be

′
2 . . . e

′
m) = bs1(e

′
2) . . . s1(e

′
m).

So we need that {a, s1(e′2)} is either degenerate or an illegal turn for f1, i.e. s1(e
′
2) = a or s1(e

′
2) = c.

Since a /∈ Image(Ds1) and only Ds1(c) = c, we have e′2 = c, i.e. ρ2 = bce′3 . . . e
′
m. So

S2,1(ρ1) = S2,1(ae2 . . . en) = baS2,1(e2) . . . S2,1(en) and
S2,1(ρ2) = S2,1(bce

′
3 . . . e

′
m) = bacS2,1(e

′
3) . . . S2,1(e

′
m).

So we need that {S2,1(e2), c} is either degenerate or an illegal turn for f2, i.e. S2,1(e2) = b or
S2,1(e2) = c. Since c /∈ Image(DS2,1), and only DS2,1(a), DS2,1(b) = b, and {a, b} /∈ τ∞(S), we
have e2 = a, i.e. ρ1 = aae3 . . . en. So

S3,1(ρ1) = S3,1(aae3 . . . en) = cbacbaS3,1(e3) . . . S3,1(en) and
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f0 = S f1 f2 f3

illegal turns {a, b}, {b, c} {a, c}, {b, c} {b, c}, {b, c} {a, b}, {b, c}

Unachieved directions b & b a & b c & b b & b

S1,1 = s1 S2,1 S3,1 S4,1 = S

a 7→ ba a 7→ ba a 7→ cba a 7→ cbca
b 7→ b b 7→ b b 7→ cb b 7→ cbc
c 7→ c c 7→ ac c 7→ ac c 7→ ac

S3,1(ρ2) = S3,1(bce
′
3 . . . e

′
m) = cbacS3,1(e

′
3) . . . S3,1(e

′
m).

So we need {b, S3,1(e
′
3)} is either degenerate or an illegal turn for f3, i.e. S3,1(e

′
3) = b or S3,1(e

′
3) = a.

Since b /∈ Image(DS3,1) and only DS3,1(c) = a, we have e′3 = c, i.e. ρ2 = bcce′4 . . . e
′
m. So

S4,1(ρ1) = S4,1(aae3 . . . en) = cbcacbcaS4,1(e3) . . . S4,1(en) and
S4,1(ρ2) = S4,1(bcce

′
4 . . . e

′
m) = cbcacacS4,1(e

′
4) . . . S4,1(e

′
m).

Cancellation ends with {a, b}, which is an illegal turn for S, so we apply s5 = s1 to reach
S5,1(ρ1) = cbcbacbcbaS5,1(e3) . . . S5,1(en) and
S5,1(ρ2) = cbcbacbacS5,1(e

′
4) . . . S5,1(e

′
m).

Now cancellation ends at {a, c}, which is an illegal turn for f1, so we apply s6 = s2:
S6,1(ρ1) = acbacbaacbacbaS6,1(e3) . . . S6,1(en) and
S6,1(ρ2) = acbacbaacbaacS6,1(e

′
4) . . . S6,1(e

′
m).

Cancellation has again ended at {a, c}, but {a, c} is not an illegal turn for f2. So we have reached
a contradiction with Lemma 2.3.

So we instead assume {Dρ1, Dρ2} = {b, c} and now
S(ρ1) = S(be2 . . . en) = cbcS(e2) . . . S(en) and
S(ρ2) = S2,1(ce

′
2 . . . e

′
m) = caS(e′2) . . . S(e

′
m).

But then cancellation ends with {b, a}, which is not an illegal turn for S, and so the PNP ρ could
not have existed. □

10. Lone axis train track automata

Examples of lone axis train track automata are introduced in [Pfa15a], [GP23], and [AHLP24].
We provide a general description of them here before generalizing further to train track automata
encoding more general pff decompositions. A unique aspect of the lone axis situation is that one
has that all Stallings fold decompositions of all tt representatives of all lone axis fully irreducible
outer automorphisms are fold-conjugate to tt representative Stallings fold decompositions realized
as loops in the automata. For this we need the following lemma.
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Lemma 10.1 (Lone Axis LTT Structures). Suppose φ ∈ Out(Fr) is a lone axis fully irreducible
outer automorphism, then each tt representative of φ is partial-fold conjugate to a tt map g : Γ → Γ
satisfying:

(a) the disjoint union of the purple graphs in G(g) is the ideal Whitehead graph, and
(b) all but one direction in Γ is g-periodic and this direction is at a vertex of Γ with valence

> 3, and
(c) the nonperiodic direction is contained in precisely 1 turn taken by g.

Proof. Following the first three paragraphs of the proof of [AHLP24, Lemma 3.2], using [MP16,
Corollary 3.8] and via a partial fold, we obtain a tt representative g of a rotationless power φR for
which all vertices and periodic directions are fixed and have ≥ 3 fixed directions. Again, since φ
and φR are lone axis fully irreducible outer automorphisms, this fold is within the shared axis A

of all tt representative of φR. Thus, all tt representatives of φR are fold-conjugate to g.
Since φ ∈ Out(Fr) is a lone axis fully irreducible, its ideal Whitehead graph IW(φ), hence also

IW(φk) for each k ∈ Z>0, has no cut vertices. Thus, by [MP16, Lemma 4.5], no tt representative
τ of any φk has a PNP. Thus, IW (φk) is the disjoint union of the SW (τ, v) having ≥ 3 vertices.
Since each vertex of gR has ≥ 3 fixed directions, each vertex of g has ≥ 3 periodic directions. And
so the disjoint union of the purple graphs is the ideal Whitehead graph, proving (a).

We now prove (b). By [MP16, Lemma 3.6], g, and each gk, has precisely one illegal turn and this
illegal turn contains the unique nonperiodic direction. Since each vertex is principal, each vertex
has ≥ 3 periodic directions. Since one direction in the illegal turn is the nonperiodic direction, the
vertex with the illegal turn must then have > 3 vertices.

(c) follows from Lemma 5.1. □

In light of Lemma 10.1, we call an ltt structure satisfying all of (a)-(c) of Lemma 10.1 a lone axis
ltt structure. And by a lone axis ltt structure G we will mean an abstract ltt structure for which:

(ltt-vii) there is precisely one red vertex, which we denote vr, and
(ltt-viii) the index satisfies I(G) = 3

2 − r, and
(ltt-ix) no component of IW (G) has a cut vertex.

Since vr is the only red vertex, it must be contained in precisely one (necessarily red) colored edge,
which we denote er.

10.0.1. Folds induce maps of lone axis ltt structures. Suppose G is a lone axis ltt structure with
underlying graph Γ and that f is a proper full fold in Γ of e1 over e2. Suppose further that either
vr = e1 or vr = e2 in G. Then f · G is the lone axis ltt structure with underlying graph Γ, and
vr = e1, and er = [ē2, e1], and there is a purple edge [Df(ej), Df(ek)] precisely when [ej , ek] is a
colored edge of G.

Lemma 10.2 (Images of ltt structures). Suppose φ ∈ Out(Fr) is a lone axis fully irreducible outer

automorphism and Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn is a pff decomposition of a tt representative

g : Γ → Γ of φ. Let g′ : Γ1 → Γ1 denote gk,1 ◦ gn,k+1. Then G(g′) = gk,1 · G.

Proof. This is a special case of Lemma 8.3. □

10.1. Lone axis lamination train track (ltt) automata A(G) definition. There will be an
automaton A(G) for each “lone axis ideal Whitehead graph” G: A rank-r lone axis ideal Whitehead
graph is a finite simplicial graph

(1) with 2r − 1 vertices, and
(2) such that no connected component has a cut vertex, and
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(3) such that each component has ≥ 3 vertices.

Given a rank-r lone axis ideal Whitehead graph G, the lamination train track (ltt) automaton for
G, denoted A(G), is the disjoint union of the strongly connected components of the finite directed
graph (V,E) defined by

(Vertices) V is the set of all birecurrent lone axis ltt structures G such that IW (G) = G and the black
edges are labeled with {e1, · · · , en}, where |EΓ| = n for the underlying graph Γ of G, and

(Edges) E ⊆ V×V is the set of all ordered pairs (G, f ·G) such that f is either a tt-friendly symmetry
map or a tt-friendly proper full fold.

Remark 10.3. While not included as part of the definition, it makes more sense in practice to
exclude any strongly connected component for which some nontrivial subgraph of the underlying
graph is left invariant by all loops in the component. The only real argument for leaving such
components in is that they are excluded from consideration anyway by the conditions in Theorem
10.4 and Theorem 10.6 and are only detected after their construction (by the support of the maps
defining the edges).

10.2. Lone axis tt automata encode all tt representatives.

Theorem 10.4. Suppose G is a lone axis ideal Whitehead graph and A(G) its ltt automaton.

Suppose further that L : G0
g1−→ G1

g2−→ . . .
gn−→ Gn = G0 is a loop in A(G). Suppose that Γk is the

underlying graph of Gk for each k, with Γ0 = Γn also denoted by Γ. And denote also G0 = Gn by G.
Then g = gn ◦ · · · ◦ g0 : Γ → Γ is a tt map. If g

(1) takes each turn of Gn = G0, and
(2) has no PNPs, and
(3) has that its local Whitehead graphs correspond to the colored graph of the ltt structure, and
(4) has a PF transition matrix, and
(5) has that Image(Dg) is precisely the set of purple directions of g

then, appropriately marked, g is a fully singular tt representative of an ageometric fully irreducible
φ ∈ Out(Fr) such that IW (φ) = ⊔SW (G, v) and the red vertex directions are precisely those not
in Image(DgR) for a rotationless power R. In particular, φ is a lone axis fully irreducible outer
automorphism.

Proof. Lemma 8.6 covers everything except that φ is a lone axis fully irreducible outer automor-
phism. Since G(g) is a lone axis ltt structure, (ltt-vii) has precisely one red direction, thus precisely
one nonperiodic direction, i.e. DS(g) = 1. By Proposition 7.2, we then have i(φ) + r − 1 = 1

2 . So

i(φ) = 3
2 − r. By (ltt-ix), no component of IW (G) has a cut vertex. Thus, φ is a lone axis fully

irreducible outer automorphism, as desired.
□

Lemma 10.5. Suppose g is a tt representative of a lone axis fully irreducible φ ∈ Out(Fr). Then
the Stallings fold decomposition of g is partial-fold conjugate to the pff decomposition of a fully
singular tt representative of φ.

Proof. By following precisely the first three paragraphs of the proof of [AHLP24, Lemma 3.2], one
sees that g is partial-fold conjugate to a fully singular tt representative h of φ. Since h is fully
singular and lone axis (so only has one illegal turn, thus cannot have a tripod fold), it has a pff
decomposition. Since φ is a lone axis fully irreducible, this is the only Stallings fold decomposition
of h. Since g and h represent the same lone axis fully irreducible, this partial-fold conjugation
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is along their common axis, meaning that in fact the original Stallings fold decomposition of g is
partial-fold conjugate to the pff decomposition of h.

□

Theorem 10.6. Suppose g is a tt representative of a lone axis fully irreducible φ ∈ Out(Fr). Then
the Stallings fold decomposition of g is partial-fold conjugate to one determining a directed loop in
a lone axis ltt automaton, more precisely A(IW (φ)).

Proof. By Lemma 10.5 the Stallings fold decomposition of g is partial-fold conjugate to a pff
decomposition

Γ0
h1−→ Γ1

h2−→ · · · hn−1−−−→ Γn−1
hn−→ Γn

of some tt representative h of φ. Let G = G(h), let fk = hk,1 ◦ hn,k+1, and let Gk = G(fk). Then
by Lemma 10.2, for each k, we have Gk = hk,1 · G. Further, each fk is another fully singular tt
representative of the same lone axis fully irreducible φ, so has a lone axis ltt structure with the
same ideal Whitehead graph. Thus,

G = G0
h1−→ G1

h2−→ · · · hn−1−−−→ Gn−1
hn−→ Gn = G

forms a loop in the lone axis ltt automaton A(IW (φ)).
□

11. Pff train track automata

11.1. There are many kinds of red edges. The following example highlights three phenomena
one may initially believe cannot occur for the ltt structures of a pff decomposition of an ageometric
fully irreducible outer automorphism, but are proved to occur in Proposition 11.2.

Example 11.1. Let g = g28 ◦ · · · ◦ g1, where σ reverses the orientation on b (i.e. b 7→ b and b 7→ b)
and then we define g14+k := σ−1 ◦ gk ◦ σ for each k ∈ {1, 2, . . . , 14}.

Proposition 11.2 (Pff Stallings fold decomposition pathologies). Suppose φ ∈ Out(Fr) is ageo-

metric fully irreducible with a pff decomposition Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn of a fully

singular tt representative g : Γ → Γ. Then each of the following may occur:
1. the number of red edges in the ltt structure may vary during the pff decomposition, and
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2. a red edge may connect 2 red directions, and
3. a red direction may be contained in 2 red edges.

Proof. It suffice to show that the map g above is a tt representative of an ageometric fully irreducible
outer automorphism with the indicated ltt structure. We use Proposition 3.1 for the former.

All periodic directions of g are fixed and the only directions not in the image of Dg are a and a.
The illegal turns for g are {a, b} and {a, c}, as one can see because Dg1 identified the directions a
and b and then the only other fold gk identifying 2 directions in the image of D(gk+1 ◦ g1) is g6.

Using [GP23, Lemma 1], the first two charts below give the turns taken to be those of the ltt
structure. Note that the only local Whitehead graph is indeed connected. By tracing edge images,
one can also see that the transition matrix is PF. We are thus left to show that g has no PNPs.

g1 g2 g3 g4 g5 g6 g7 g8 g9
a 7→ ba c 7→ ac b 7→ cb a 7→ ba a 7→ ca c 7→ ac c 7→ ac b 7→ cb b 7→ ab

New {a, b} {a, c} {b, c} {a, b} {a, c} {a, c} {a, c} {c, b} {a, b}

Dgk(τk) {a, b} {a, b} {b, b} {b, b} {b, b}, {a, c} {b, b}, {a, c} {c, b}, {a, c} {a, a}, {a, c}

{a, c} {b, c} {b, c} {b, a} {b, a}, {a, b} {c, a}, {a, b} {c, a}

{a, c} {a, c} {a, c} {a, c}, {a, a} {a, c}, {a, a} {a, c}

{c, b} {a, b} {a, c} {a, c}

g10 g11 g12 g13 g14
b 7→ cb c 7→ bc c 7→ bc a 7→ ba a 7→ ca

New {b, c} {b, c} {b, c} {a, b} {a, c}

Dgk(τk) {a, a}, {a, c} {a, a}, {a, c} {a, a}, {a, c}, {b, b} {a, b}, {a, c}, {b, b} {c, b}, {c, c}, {b, b}

{c, a}, {a, c} {b, a}, {a, c} {b, a}, {a, c} {b, a}, {b, c} {b, c}, {b, c}

{a, c} {a, b}, {b, c} {a, b}, {b, c} {b, c}, {b, c} {b, c}, {a, b}

To show there are no PNPs we use the third chart below. We repeatedly use Lemma 2.3 and
Lemma 2.2 for this.

Suppose for the sake of contradiction that ρ were a PNP. By Lemma 2.3, ρ = ρ1ρ2 for some
dangerous long turn {ρ1, ρ2}.
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g1 g2 g3 g4 g5 g6
a 7→ ba c 7→ ac b 7→ cb a 7→ ba a 7→ ca c 7→ ac

f0 = g f1 f2 f3 f4 f5

illegal turns {a, b}, {a, c} {a, c}, {a, c} {b, c}, {a, c} {a, b}, {a, c} {a, c}, {a, c} {a, c}, {a, b}

g1,1 = g1 g2,1 g3,1 g4,1 g5,1 g6,1

a 7→ ba a 7→ ba a 7→ cba a 7→ cbba a 7→ cbbca a 7→ cabbaca
b 7→ b b 7→ b b 7→ bc b 7→ bc b 7→ bc b 7→ bac

c 7→ c c 7→ ac c 7→ ac c 7→ bac c 7→ bcac c 7→ bacaca

The 2 illegal turns of g are {a, b} and {a, c}. Suppose first the dangerous long turn illegal turn
was {a, c}. Since

g6,1(a) = acabbac and
g6,1(c) = acacab,

cancellation ends with {c, c}, which cannot be a pff decomposition illegal turn in light of Lemma
5.1d. This contradicts Lemma 2.3.

Now suppose the dangerous long turn illegal turn was {a, b}. Then, in light of Lemma 2.3b,
there exist edges ei, e

′
j ∈ EΓ so that ρ1 = ae2 . . . en and ρ2 = be′2 . . . e

′
m. Note that each turn of ρ1

and ρ2 must be g-taken. Now
g1(ρ1) = g1(ae2 . . . en) = bag1(e2) . . . g1(en) and
g1(ρ2) = g1(be

′
2 . . . e

′
m) = bg1(e

′
2) . . . g1(e

′
m).

So we need that {a, g1(e′2)} is either degenerate or an illegal turn for f1, i.e. g1(e
′
2) = a or g1(e

′
2) = c.

Since a /∈ Image(Dg1) and only Dg1(c) = c, we have e′2 = c, i.e. ρ2 = bce′3 . . . e
′
m. So

g2,1(ρ1) = g2,1(ae2 . . . en) = ba g2,1(e2) . . . g2,1(en) and

g2,1(ρ2) = g2,1(bce
′
3 . . . e

′
m) = bac g2,1(e

′
3) . . . g2,1(e

′
m).

So we need that {g2,1(e2), c} is either degenerate or an illegal turn for f2, i.e. g2,1(e2) = b or

g2,1(e2) = c. Since c /∈ Image(Dg2,1), only Dg2,1(a), Dg2,1(b) = b, and {a, a} /∈ τ∞(g), we have

e2 = b, i.e. ρ1 = abe3 . . . en. So
g3,1(ρ1) = g3,1(abe3 . . . en) = cbacb g3,1(e3) . . . g3,1(en) and

g3,1(ρ2) = g3,1(bce
′
3 . . . e

′
m) = cbac g3,1(e

′
3) . . . g3,1(e

′
m).

So we need {b, g3,1(e′3)} is either degenerate or an illegal turn for f3, i.e. g3,1(e
′
3) = b or g3,1(e

′
3) = a.

Since b /∈ Image(Dg3,1) and only Dg3,1(c) = a, we have e′3 = c, i.e. ρ2 = bcce′4 . . . e
′
m. So

g4,1(ρ1) = g4,1(abe3 . . . en) = cbbacb g4,1(e3) . . . g4,1(en) and

g4,1(ρ2) = g4,1(bcce
′
4 . . . e

′
m) = cbbacbac g4,1(e

′
4) . . . g4,1(e

′
m).

Cancellation ends with {g4,1(e3), a}. So we need {g4,1(e3), a} is either degenerate or an illegal turn
for f4, i.e. g4,1(e3) = a or g4,1(e3) = c. Since a /∈ Image(Dg5,1) and only Dg4,1(c) = c, we have

e3 = c, i.e. ρ1 = abce4 . . . en. So
g5,1(ρ1) = g5,1(abce4 . . . en) = cbbcacbcacb g5,1(e4) . . . g5,1(en) and
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g5,1(ρ2) = g5,1(bcce
′
4 . . . e

′
m) = cbbcacbcac g5,1(e

′
4) . . . g5,1(e

′
m).

Cancellation ends with {a, a}, which again cannot be a pff decomposition illegal turn in light of
Lemma 5.1d. So we have reached a contradiction with Lemma 2.3.

So ρ could not have existed and g has no PNPs. □

11.2. Fully singular pff ltt automata definition. There will be an automaton A(G) for each
“fully singular ideal Whitehead graph” G: A rank-r fully singular ideal Whitehead graph is a finite
simplicial graph with

(1) 1 ≤ c ≤ 2r − 1 connected components each having ≥ 3 vertices and
(2) 2r − 1 ≤ V Γ ≤ 6r − 5 vertices total.

Given a rank-r fully singular ideal Whitehead graph G, the lamination train track (ltt) automaton
for G, denotedA(G), is the disjoint union of the strongly connected components of the finite directed
graph (V,E) defined by

(Vertices) V is the set of all birecurrent abstract ltt structures G such that IW (G) = G and the black
edges are labeled with {e1, · · · , en}, where |EΓ| = n for the underlying graph Γ of G, and

(Edges) E ⊆ V×V is the set of all ordered pairs (G, f ·G) such that f is either a tt-friendly symmetry
map or a tt-friendly proper full fold.

11.3. Fully singular pff ltt automata encode all fully singular pff decompositions.

Theorem 11.3. Suppose G0
g1−→ G1

g2−→ . . .
gn−→ Gn = G0 is a loop in A(G) for some fully singular

ideal Whitehead graph G. Then

(a.) gn ◦ · · · ◦ g1 : Γ → Γ is a tt map and
(b.) each turn of τ∞(g) is represented by a colored edge in G0.

If g additionally

(1) has no PNPs, and
(2) has that each LW (g, v) is graph isomorphic to the appropriate components of the colored

graph of the ltt structure, and
(3) has a PF transition matrix, and
(4) has ≥ 3 periodic directions at each vertex

then, appropriately marked, g is a fully singular tt representative of an ageometric fully irreducible
φ ∈ Out(Fr).

If further yet,

(5) Image(Dg) is precisely the set of purple directions of G0,

then g is a fully singular tt representative of an ageometric fully irreducible φ ∈ Out(Fr) such that
IW (φ) = G.

Proof. This theorem is basically a direct application of Lemma 8.6. □

Theorem 11.4. Suppose g is a fully singular tt representative of an ageometric irreducible φ ∈
Out(Fr). And suppose that Γ0

g1−→ Γ1
g2−→ . . .

gn−→ Γn = Γ0 is a pff decomposition of g. Let

Gk := G(fk) for each k, and G := ltt(g). Then G0
g1−→ G1

g2−→ . . .
gn−→ Gn = G0 is a directed loop in a

pff ltt automaton, more precisely A(IW (φ)).

Proof. By Lemma 8.3, Gk = gk,1 ·G = G(fk). Thus, by Lemma 8.1 and recalling that the rotationless
index is an outer automorphism conjugacy class invariant, each Gk is a birecurrent abstract ltt
structure with underlying graph Γk. In fact, since the ideal Whitehead graph is also a conjugacy
class invariant, IW (Gk) = IW (G) for each k.
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That the ideal Whitehad graph satisfies (1)-(2) of the definition of a rank-r fully singular ideal
Whitehead graph follows from a computation using that each vertex has ≥ 3 directions, one vertex
has ≥ 4 directions, the Euler characteristic satisfies 1− r = χ(Γ) = |V Γ|− |EΓ|, and |DΓ| = 2|EΓ|.

That the proper full folds and homeomorphism of a pff decomposition are, respectively, tt-friendly
proper full folds and a tt-friendly symmetry map follows from Lemma 8.5.

□

11.4. Paths in fully singular pff ltt automata yield geodesics in CVr.

Theorem 11.5. Suppose . . .G−1
g−1−−→ G0

g1−→ G1
g2−→ . . . is a bi-infinite path in A(G) for some fully

singular rank-r ideal Whitehead graph G such that each gk is a proper full fold. Then the sequence
of folds . . . g−2, g−1, g0, g1, g2 . . . defines a geodesic in CVr.

Proof. We will want to apply Proposition 4.1, but Proposition 4.1 only applies to fold rays.
The complication to defining a metric on the graphs only arises in the folding direction because

one might worry that one is trying to fold a shorter edge over a longer edge. This aspect of deter-
mining a path in CVr is resolved by first assigning edge-lengths for the fold sequence g0, g1, g2 . . .
and then adding (and renormalizing) lengths in the reverse direction.

Now suppose that there is some integer k so that gk, gk+1, gk+2 . . . does not define a geodesic.
We reach a contradiction by finding a conjugacy class α in Fr so that, for each i ≥ k, the realization
αi of α in Γi−1 is not folded by gi. We take a smooth loop ℓ in Gk−1 that contains every colored
edge in Gk−1. This loop ℓ determines a loop in Γk−1 and gk(ℓ) determines a loop in Gi−1, so cannot
be folded by gi because colored turns are never folded in A(G). The loop ℓ defines α.

□
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