Colourful theorems and indices of homomorphism complexes

Gábor Simonyi∗
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
H-1364 Budapest, P. O. Box: 127
Hungary
simonyi.gabor@renyi.mta.hu

Claude Tardif†
Royal Military College of Canada
PO Box 17000 Station Forces”
Kingston, Ontario
Canada, K7K 7B4
Claude.Tardif@rmc.ca

Ambrus Zsbán‡
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
H-1521 Budapest, P. O. Box: 91
Hungary
ambrus@math.bme.hu

Submitted: May 1, 2012; Accepted: XX; Published: XX
Mathematics Subject Classifications: 05C15, 05C55

Abstract

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi, G. Tardos, Local chromatic number, Ky Fan’s theorem, and circular colorings, Combinatorica 26 (2006), 587–626] and [G. Simonyi, G. Tardos, Colorful subgraphs of Kneser-like graphs, European J. Combin. 28 (2007), 2188–2200]. to more general topological settings. We give examples showing that the hypotheses are indeed more general. We use our results to show that the topological bounds on chromatic numbers of digraphs with tree duality are at most one better than the clique number. We investigate combinatorial and complexity-theoretic aspects of relevant order-theoretic maps.

∗The first author’s research is partially supported by the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. K76088 and NK78439
†The second author’s research is supported by grants from NSERC and ARP
‡The third author’s research is partially supported by the Hungarian Foundation for Scientific Research Grant and by the National Office for Research and Technology (Grant number OTKA 67651)
Keywords: Topological bounds, Chromatic numbers

1 Introduction

For any proper colouring c of a graph G and any linear ordering of the colours, G contains a path with $k = \chi(G)$ vertices all of which have different colours, appearing in increasing order along the path. Indeed this is a consequence of the classical result of Gallai on colourings and orientations: If we orient each edge towards its endpoint with the larger colour, we get an acyclic orientation of a k-chromatic graph, which must contain a directed k-path, that is, a path with k colours appearing in increasing order. Furthermore if c uses only $k = \chi(G)$ colours, we can say more: According to an exercise in Douglas West's textbook [26], if T is any tree on k vertices labeled by the colours, then G contains a coloured copy of T.

These are elementary examples of “colourful subgraph” theorems. The existence of graphs with large girth and large chromatic number shows that trees cannot be replaced by other types of graphs in these results. Also, the existence of graphs with local chromatic number 3 and large chromatic number (see [8]) shows that if c uses more than $k = \chi(G)$ colours, then G is not even guaranteed to contain a claw using four different colours. So these two colourful subgraph results cannot be extended in the general case.

Nonetheless, the context of the local chromatic number prompted the authors of [22, 23] to investigate analogous results involving colourful complete bipartite subgraphs. They had to restrict their attention to classes of graphs with suitable structural properties. As their results show, effective criteria exist among the topological obstructions to small chromaticity, measured by indices and coindices of complexes associated with graphs, in the spirit of [6, 15, 16].

Theorem 1 (Zig-zag theorem [22]). Let G be a graph such that $\text{coind}(B_0(G)) + 1 \geq t$. Let c be a proper colouring of G by an arbitrary number of colours. We assume the colours are linearly ordered. Then G contains a complete bipartite subgraph $K_{\lceil t/2 \rceil, \lfloor t/2 \rfloor}$ such that c assigns distinct colours to all t vertices of this subgraph and these colours appear alternating on the two sides of the bipartite subgraph with respect to their order.

The parameter $\text{coind}(B_0(G))$ used in this result is the “coindex of the box complex $B_0(G)$”; for its definition see Section 3. The inequality $\chi(G) \geq \text{coind}(B_0(G)) + 1$ belongs to a hierarchy of topological lower bounds for $\chi(G)$ that will also be discussed in Section 3. When the bound is tight, more can be said about the structure of colourings:

Theorem 2 (Colourful $K_{l,m}$ theorem [23]). Let G be a graph for which $\chi(G) = \text{coind}(B_0(G)) + 1 = t$. Let $c: V(G) \to \{1, \ldots, t\}$ be a proper colouring of G and let $A, B \subseteq \{1, \ldots, t\}$ form a bipartition of the colour set, i.e., $A \cup B = \{1, \ldots, t\}$ and $A \cap B = \emptyset$.

Then there exists a complete bipartite subgraph $K_{l,m}$ of G with sides L, M such that $|L| = l = |A|$, $|M| = m = |B|$, and $\{c(v) : v \in L\} = A$, and $\{c(v) : v \in M\} = B$. In particular, this $K_{l,m}$ is completely multicoloured by c.
Theorems 1 and 2 were proved using results from algebraic topology, namely Ky Fan’s theorem for Theorem 1 and the Tucker-Bacon theorem for Theorem 2 (both of which are equivalent versions of the celebrated Borsuk-Ulam theorem, see [1]). Here we present extensions of Theorems 1 and 2 using the parameter \(\text{ind}(\text{Hom}(K_2, G)) + 2 \) instead of \(\text{coind}(B_0(G)) + 1 \). Our extension of Theorem 1 is purely discrete and order-theoretic, while the extension of Theorem 2 (communicated to us by Carsten Schultz) uses the continuum in an essential way.

The paper is structured as follows: In Section 2, we present order-theoretic prerequisites, and an order-theoretic version of Theorem 1. Then we move on to topological spaces in Section 3, where we prove the main results. In Section 4 we apply our results to the class of digraphs with tree duality, to show that for these digraphs all the standard topological lower bounds on the chromatic number give a bound at most one better than the clique number. In Section 5, we revisit the order-theoretic context, and prove a weak version of Theorem 2. Finally in Section 6, we explore the complexity aspects of the order-theoretic context.

2 \(\mathbb{Z}_2 \)-posets

Two sets \(A, B \) of vertices of a graph \(G \) are said to be totally joined if every vertex of \(A \) is adjacent to every vertex of \(B \). We denote \(\text{Hom}(K_2, G) \) the set of ordered couples \((A, B) \) of totally joined nonempty sets of vertices of \(G \). There is a natural ordering \(\leq \) on \(\text{Hom}(K_2, G) \), defined by \((A, B) \leq (A', B') \) if \(A \subseteq A' \) and \(B \subseteq B' \). We also consider the inversion \(\text{inv} \) on \(\text{Hom}(K_2, G) \) defined by \(-(A, B) = (B, A) \). \(\text{Hom}(K_2, G) \) endowed with \(\leq \) and \(\text{inv} \) is a \(\mathbb{Z}_2 \)-poset, that is, an ordered set with a fixed-point free automorphism \(\psi \) of order 2. A \(\mathbb{Z}_2 \)-map between \(\mathbb{Z}_2 \)-posets \(P \) and \(Q \) is an order-preserving map \(\phi : P \to Q \) such that \(\phi(-x) = -\phi(x) \).

The notation \(\text{Hom}(K_2, G) \) stands for the homomorphism complex of \(K_2 \) in \(G \): For every \((A, B) \in \text{Hom}(K_2, G) \), we get a homomorphism of the complete graph \(K_2 \) (with vertex-set \(\{0, 1\} \)) to \(G \) by selecting any pair of elements \(a \in A, b \in B \) as respective images of 0 and 1. For graphs \(G \) and \(H \), if there exists a homomorphism \(\psi : G \to H \), then we can define a \(\mathbb{Z}_2 \)-map \(\psi : \text{Hom}(K_2, G) \to \text{Hom}(K_2, H) \) by \(\psi(A, B) = (\psi(A), \psi(B)) \).

For an integer \(n \geq 0 \), let \(Q_n \) be the \(\mathbb{Z}_2 \)-poset on the \(2(n+1) \)-element set \(\pm 0, \pm 1, \ldots, \pm n \) with its natural inversion and the order defined by \(x < y \) (in \(Q_n \)) if \(|x| < |y| \) (in \(\mathbb{N} \)). For a \(\mathbb{Z}_2 \)-poset \(P \), we denote \(\text{Xind}(P) \) the smallest \(t \) such that \(P \) admits a \(\mathbb{Z}_2 \)-map to \(Q_t \). \(\text{Xind}(P) \) is called the cross-index of \(P \), because of the connection between \(Q_n \) and the cross-polytope that will be presented in the next section.

Let \(K_{n+2} \) be the complete graph with vertex-set \(\{0, \ldots, n+1\} \). Then \(\text{Hom}(K_2, K_{n+2}) \) is just the set of pairs \((A, B) \) of disjoins nonempty subsets of \(V(K_{n+2}) \). There exists a \(\mathbb{Z}_2 \)-map \(\phi : \text{Hom}(K_2, K_{n+2}) \to Q_n \) defined by

\[
\phi(A, B) = \begin{cases}
|A \cup B| - 2 & \text{if } \min(A \cup B) \in A \\
-(|A \cup B| - 2) & \text{if } \min(A \cup B) \in B.
\end{cases}
\]

Therefore, for any graph \(G \) with chromatic number \(n + 2 \) and any colouring \(c : V(G) \to \{0, \ldots, n+1\} \),
$V(G) \to V(K_{n+2})$, $\phi \circ \hat{c}$ is a \mathbb{Z}_2-map of Hom(K_2, G) to Q_n. Thus we have $\chi(G) \geq Xind(Hom(K_2, G)) + 2$.

Lemma 3. Let G be a graph such that $Xind(Hom(K_2, G)) + 2 \geq t$, and let c be a proper colouring of G by an arbitrary number of colours. We assume the colours are linearly ordered. Then G contains a complete bipartite subgraph $K_{\lceil \frac{t}{2} \rceil, \lfloor \frac{t}{2} \rfloor}$ such that c assigns distinct colours to all t vertices of this subgraph and these colours appear alternating on the two sides of the bipartite subgraph with respect to their order.

Proof. For $(A, B) \in Hom(K_2, G)$, there exists a longest sequence x_1, \ldots, x_ℓ alternating between elements of A and elements of B, and such that $c(x_1) < \cdots < c(x_\ell)$. The sequence itself may not be unique; however we can assume without loss of generality that $c(x_1)$ is the minimal colour used on $A \cup B$. We put $\ell(A, B) = \ell$, $\sigma(A, B) = +$ if $c(x_1)$ is used in A, and $\sigma(A, B) = -$ if $c(x_1)$ is used in B. We define $\phi : Hom(K_2, G) \to Q_{|V(G)|-2}$ by

$$
\phi(A, B) = \begin{cases}
\ell(A, B) - 2 & \text{if } \sigma(A, B) = +, \\
-(\ell(A, B) - 2) & \text{if } \sigma(A, B) = -.
\end{cases}
$$

Then ϕ is a \mathbb{Z}_2-map. If $Xind(Hom(K_2, G)) + 2 \geq t$, then $\phi(Hom(K_2, G)) \not\subseteq Q_{t-3}$, hence there exists $(A, B) \in Hom(K_2, G)$ such that $\phi(A, B) \not\subseteq Q_{t-3}$. By definition of ϕ, there exists a sequence x_1, \ldots, x_ℓ alternating between elements of A and elements of B, and such that $c(x_1) < \cdots < c(x_\ell)$.

The conclusion of Lemma 3 is the same as that of Theorem 1. In the next section, we will see that $Xind(Hom(K_2, G)) + 2 \geq \text{coind}(B_0(G)) + 1$, hence the hypothesis is more general.

3 The hierarchy of topological bounds

To any poset P, one can associate a simplicial complex whose simplices are the chains of P. We denote \hat{P} the geometric realization of this complex, that is, the set of functions $f : P \to [0, 1]$ such that $\{p \in P : f(p) > 0\}$ is a chain, and $\sum_{p \in P} f(p) = 1$. In particular, \hat{Q}_n is the n-dimensional cross polytope, which is homeomorphic to the n-dimensional sphere S_n (see [15]). More generally, if P is a \mathbb{Z}_2-poset, then \hat{P} is a \mathbb{Z}_2-space, that is, a topological space with a continuous fixed-point free involution $-$. A \mathbb{Z}_2-map between \mathbb{Z}_2-spaces X, Y is a continuous map $f : X \to Y$ such that $f(-x) = -f(x)$. Note that the natural homeomorphism between \hat{Q}_n and S_n is in fact a \mathbb{Z}_2-homeomorphism.

The **index** $\text{ind}(X)$ of a \mathbb{Z}_2-space X is the least n such that there exists a \mathbb{Z}_2-map from X to S_n, and its **coindex** $\text{coind}(X)$ is the largest n such that there exists a \mathbb{Z}_2-map from S_n to X. By the Borsuk-Ulam theorem (see [15]), we always have $\text{coind}(X) \leq \text{ind}(X)$.

Any \mathbb{Z}_2-map between \mathbb{Z}_2-posets P and Q lifts naturally to a \mathbb{Z}_2-map between the \mathbb{Z}_2-spaces \hat{P} and \hat{Q}. Therefore since \hat{Q}_n admits a \mathbb{Z}_2-homeomorphism to S_n, we always have $Xind(P) \geq \text{ind}(\hat{P})$. (See Section 6 for examples where this inequality is strict.) We will write $\text{ind}(P)$ for $\text{ind}(\hat{P})$.

In the case of a graph G, Lemma 3 has the following consequence.
Theorem 4. Let G be a graph such that $\text{ind}(\text{Hom}(K_2, G)) + 2 \geq t$, and let c be a proper colouring of G by an arbitrary number of colours. We assume the colours are linearly ordered. Then G contains a complete bipartite subgraph $K_{\lceil \frac{t}{2} \rceil, \lfloor \frac{t}{2} \rfloor}$ such that c assigns distinct colours to all t vertices of this subgraph and these colours appear alternating on the two sides of the bipartite subgraph with respect to their order.

To compare this result to Theorem 1, we will need to introduce the parameters corresponding to the box complex $B_0(G)$. In a slightly unconventional manner, we will define $B_0(G)$ to be $\text{Hom}(K_2, G^+)$, where G^+ is the graph obtained from G by adding a universal vertex adjacent to all the vertices of G. The reader is referred to [3, 4, 5, 16] for the “conventional” definition of $B_0(G)$, and the homotopy equivalence with $B_0(G)$ as defined here. The hierarchy of “topological bounds” on the chromatic number of a graph G is the following.

$$
\chi(G) \geq \text{ind}(\text{Hom}(K_2, G)) + 2 \geq \text{ind}(B_0(G)) + 1 \\
\geq \text{coind}(B_0(G)) + 1 \geq \text{coind}(\text{Hom}(K_2, G)) + 2 \geq \omega(G).
$$

In particular, this implies that $\text{ind}(\text{Hom}(K_2, G)) + 2 \geq \text{coind}(B_0(G)) + 1$, hence Theorem 4 generalises Theorem 1. The same hypothesis can also be used to generalise Theorem 2. We present below the proof communicated to us by Carsten Schultz [21].

Theorem 5. Let G be a graph for which $\chi(G) = \text{ind}(\text{Hom}(K_2, G)) + 2 = t$. Let $c : V(G) \to \{1, \ldots, t\}$ be a proper colouring of G and let $A, B \subseteq \{1, \ldots, t\}$ form a bipartition of the colour set, i.e., $A \cup B = \{1, \ldots, t\}$ and $A \cap B = \emptyset$.

Then there exists a complete bipartite subgraph $K_{l,m}$ of G with sides L, M such that $|L| = l = |A|$, $|M| = m = |B|$, and $\{c(v) : v \in L\} = A$, and $\{c(v) : v \in M\} = B$. In particular, this $K_{l,m}$ is completely multicoloured by c.

Proof. The colouring $c : G \to K_t$ lifts naturally to a \mathbb{Z}_2-map \hat{c} from the geometric realization of $\text{Hom}(K_2, G)$ to that of $\text{Hom}(K_2, K_t)$. It is known that the geometric realization of $\text{Hom}(K_2, K_t)$ is \mathbb{Z}_2-homeomorphic to the sphere S_{t-2}. Hence, since $\text{ind}(\text{Hom}(K_2, G)) = t - 2$, \hat{c} must be surjective.

For the partition A, B of $V(K_t)$, the characteristic function $\xi_{(A,B)}$ of the singleton $\{(A,B)\}$ is an element of the geometric realization of $\text{Hom}(K_2, K_t)$. Therefore there exists an element f of the geometric realization of $\text{Hom}(K_2, G)$ such that $\hat{c}(f) = \xi_{(A,B)}$. For $(X,Y) \in \text{Hom}(K_2,G)$, \hat{c} transfers the weight $f(X,Y)$ to $(c(X),c(Y))$. Therefore, for all (X,Y) such that $f(X,Y) > 0$, we have $c(X) = A, c(Y) = B$. Whence there exist $L \in X, M \in Y$ such that $|L| = l = |A|, |M| = m = |B|$, and $c(L) = A, c(M) = B$. \(\square\)

According to [6], the condition $\text{ind}(\text{Hom}(K_2, G)) + 2 \geq l + m$ alone guarantees the existence of some $K_{l,m}$ in G, without reference to colourings. The idea of lifting a colouring $c : G \to K_t$ to a \mathbb{Z}_2-map \hat{c} from the geometric realization of $B_0(G)$ to that of $B_0(K_t)$ appeared in Xuding Zhu’s presentation [27] of some results of [17, 22]. It can be used to prove the colourful $K_{l,m}$ theorem with the hypothesis $\chi(G) = \text{ind}(B_0(G)) + 1 = t$. (This was also observed by Carsten Schultz [20].) The present proof uses the fact that the
geometric realization of \(\text{Hom}(K_2, K_t) \) is also \(\mathbb{Z}_2 \)-homeomorphic to the sphere \(S_{t-2} \), which is not obvious, but elementary.

Our last result of this section will show that the hypotheses \(\chi(G) = \text{ind}(\text{Hom}(K_2, G)) + 2 \) and \(\chi(G) = \text{ind}(B_0(G)) + 1 \) are different. Csorba [5] proved that the difference between \(\text{ind}(\text{Hom}(K_2, G)) + 2 \) and \(\text{ind}(B_0(G)) + 1 \) is at most 1, and there are graphs \(G \) such that \(\text{ind}(\text{Hom}(K_2, G)) + 2 > \text{ind}(B_0(G)) + 1 \). (Note that this could still allow the equality \(\chi(G) = \text{ind}(\text{Hom}(K_2, G)) + 2 \) to never hold for graphs with this property.) No “combinatorial” construction of such graphs is known.

Proposition 6. For every odd integer \(t \geq 5 \) there exists a graph \(H_t \) such that

\[
t = \chi(H_t) = \text{ind}(\text{Hom}(K_2, H_t)) + 2 > \text{ind}(B_0(H_t)) + 1 = t - 1.
\]

Proof. By results of Csorba [2], for every odd \(t \geq 5 \) there exists a graph \(G_t \) such that \(\text{ind}(\text{Hom}(K_2, G_t)) + 2 = t \) and \(\text{ind}(B_0(G_t)) + 1 = t - 1 \). However \(\chi(G_t) \) could be larger than \(t \). (See also [5] for the case \(t = 5 \).)

Let \(H_t \) be the categorical product \(G_t \times K_t \); that is, the vertex set of \(H_t \) is \(V(G_t) \times V(K_t) \) and the edges of \(H_t \) join the pairs \((u, v), (u', v')\) such that \(\{u, v\} \in E(G_t) \) and \(\{u', v'\} \in E(K_t) \). Then we have \(\chi(H_t) \leq t \). In fact, if \(\chi(G_t) = t \), then there are homomorphisms both ways between \(G_t \) and \(H_t \), hence \(\text{ind}(\text{Hom}(K_2, H_t)) = \text{ind}(\text{Hom}(K_2, G_t)) \) and \(\text{ind}(B_0(H_t)) = \text{ind}(B_0(G_t)) \).

If \(\chi(G_t) > t \), then there is no homomorphism from \(G_t \) to \(K_t \), hence no homomorphism from \(G_t \) to \(H_t \). However, since \(\text{ind}(\text{Hom}(K_2, G_t)) = t - 2 \), there exists a \(\mathbb{Z}_2 \)-map \(f \) from the geometric realization of \(\text{Hom}(K_2, G_t) \) to \(S_{t-2} \). Also, there exists a \(\mathbb{Z}_2 \)-homeomorphism \(g \) from \(S_{t-2} \) to the geometric realization of \(\text{Hom}(K_2, K_t) \). Hence \((\text{id}, g \circ f)\) is a \(\mathbb{Z}_2 \)-map from the geometric realization of \(\text{Hom}(K_2, G_t) \) to that of \(\text{Hom}(K_2, G_t) \times \text{Hom}(K_2, K_t) \subseteq \text{Hom}(K_2, G_t \times K_t) = \text{Hom}(K_2, H_t) \). Since the first projection on \(G_t \times K_t \) is a homomorphism from \(H_t \) to \(G_t \), we conclude that there exist \(\mathbb{Z}_2 \)-maps both ways between the geometric realizations of \(\text{Hom}(K_2, G_t) \) and \(\text{Hom}(K_2, H_t) \), therefore \(\text{ind}(\text{Hom}(K_2, H_t)) + 2 = \text{ind}(\text{Hom}(K_2, G_t)) + 2 = t \). Since there is a homomorphism from \(H_t \) to \(G_t \), we also have \(\text{ind}(B_0(H_t)) + 1 \leq \text{ind}(B_0(G_t)) + 1 = t - 1 \).

\[\square\]

4 Digraphs with tree duality

A directed tree \(\vec{T} \) is a tree with an orientation on every edge. In [18], it is shown that for every directed tree \(\vec{T} \), there exists a directed graph \(D(\vec{T}) \) which is the “dual” of \(\vec{T} \) in the following sense:

For any directed graph \(\vec{G} \), there exists a homomorphism of \(\vec{G} \) to \(D(\vec{T}) \) if and only if there is no homomorphism of \(\vec{T} \) to \(\vec{G} \).

More generally, a directed graph \(\vec{H} \) is said to have tree duality if for any directed graph \(\vec{G} \), there exists a homomorphism of \(\vec{G} \) to \(\vec{H} \) if and only if there is no directed tree \(\vec{T} \) which admits a homomorphism to \(\vec{G} \) but not to \(\vec{H} \).
The chromatic number of directed graphs with tree duality has been studied in [19] and [9]. In this context, \(\chi(\vec{H}) \) is defined as the chromatic number of the undirected graph \(H \) obtained by ignoring the orientation of the arcs of \(\vec{H} \); we use the same convention for all other graph parameters. In particular \(\omega(\vec{H}) \) can be interpreted in terms of homomorphisms of directed paths to the tree obstructions of \(\vec{H} \). No better lower bound for \(\chi(\vec{H}) \) is known in terms of the structural properties of the tree obstructions of \(\vec{H} \). It is natural to ask whether topological parameters can refine this bound.

In particular, the so-called “shift graphs” are well-known examples of directed graphs with arbitrarily large chromatic number and no short odd cycles. For \(1 \leq k < n \), the shift graph \(\delta^k(\vec{K}_n) \) is the directed graph whose vertices are the vectors \((a_0, a_1, \ldots, a_k)\) such that \(1 \leq a_0 < a_1 < \cdots < a_k \leq n \) and whose arcs join consecutive vectors \((a_0, a_1, \ldots, a_k)\), \((a_1, a_2, \ldots, a_{k+1})\). It is well known (see [12]) that \(\chi(\delta^k(\vec{K}_n)) \approx \log_2(k)(n) \) while \(\omega(\delta^k(\vec{K}_n)) = 2 \) (when \(0 < k < n - 1 \)). In [10] it is shown that the shift graphs have tree duality. In [24] the zig-zag theorem is used to show that \(\text{coind}(B_0(\delta^k(\vec{K}_n)))) + 1 = 3 \). This generalises as follows.

Theorem 7. Let \(\vec{H} \) be a directed graph with tree duality. Then

\[
\omega(\vec{H}) \leq \text{ind}(\text{Hom}(K_2, \vec{H}))) + 2 \leq \omega(\vec{H}) + 1.
\]

Proof. Let \(\vec{P}_n \) be the directed path with vertices \(0, 1, \ldots, n \) and arcs \((0, 1), \ldots, (n - 1, n)\). It is well known that \(D(\vec{P}_n) \) is the transitive tournament \(\vec{K}_n \) with vertices \(1, \ldots, n \) and arcs \((i, j)\) such that \(i < j \). That is, a directed graph \(\vec{G} \) admits a homomorphism to \(\vec{K}_n \) if and only if there is no homomorphism from \(\vec{P}_n \) to \(\vec{G} \). Now, since \(\vec{H} \) has tree duality, \(\vec{H} \) has no directed cycles, hence \(\omega(\vec{H}) \) is the largest \(n \) such that \(\vec{K}_n \) admits a homomorphism to \(\vec{H} \). By tree duality of \(\vec{H} \), this corresponds to the largest \(n \) such that no tree obstruction \(\vec{T} \) of \(\vec{H} \) admits a homomorphism to \(\vec{K}_n \). By tree duality of \(\vec{K}_n \), this in turn corresponds to the largest \(n \) such that \(\vec{P}_n \) admits a homomorphism to every tree obstruction \(\vec{T} \) of \(\vec{H} \). Therefore \(\omega(\vec{H}) \) is the largest \(n \) such that \(\vec{P}_n \) admits a homomorphism to every tree obstruction \(\vec{T} \) of \(\vec{H} \).

Let \(\vec{B}_m \) be the directed complete bipartite graph with vertices \(0, 1, \ldots, m \) and arcs \((i, j)\) such that \(i < j \) and \(i, j \) have different parities. By Theorem 4, for \(m = \text{ind}(\text{Hom}(K_2, \vec{H}))) + 2 \), \(\vec{H} \) contains a copy of \(\vec{B}_m \), since there exists a colouring \(c : V(\vec{H}) \rightarrow \mathbb{N} \) such that if \((u, v)\) is an arc of \(\vec{H} \) then \(c(u) < c(v) \). Now, for \(n = \omega(\vec{H}) \), there exists a tree obstruction \(\vec{T} \) of \(\vec{H} \) which does not contain a homomorphic image (that is, a copy) of \(\vec{P}_{n+1} \). Therefore there exists a homomorphism of \(f_1 : \vec{T} \rightarrow \vec{K}_{n+1} \). Also, since \(\vec{T} \) is bipartite, there exists a two-colouring \(f_2 : \vec{T} \rightarrow K_2 \). Therefore, \((f_1, f_2) : \vec{T} \rightarrow \vec{K}_{n+1} \times K_2 \) is a homomorphism. Note that there exists a homomorphism \(f_3 : \vec{K}_{n+1} \times K_2 \rightarrow \vec{B}_{n+2} \) defined by

\[
f_3(i, \epsilon) = \begin{cases} 2 \lfloor i/2 \rfloor + 1 & \text{if } \epsilon = 1, \\ 2 \lceil i/2 \rceil & \text{if } \epsilon = 2. \end{cases}
\]

Therefore \(f_3 \circ (f_1, f_2) \) is a homomorphism of \(\vec{T} \) to \(\vec{B}_{n+2} \). Since \(\vec{T} \) is an obstruction of \(\vec{H} \), this means that \(\vec{H} \) does not contain a copy of \(\vec{B}_{n+2} \). Therefore, \(m \leq n + 1 = \omega(\vec{H}) + 1 \). \(\square \)
5 \(\mathbb{Z}_2 \)-posets revisited

Theorems 4 and 5 both use the hypothesis \(\text{ind}(\text{Hom}(K_2, G)) + 2 \geq t \). It is interesting to note that while the proof of Theorem 5 uses an argument of continuity, the proof of Theorem 4 is essentially discrete, based on the weaker hypothesis \(\text{Xind}(\text{Hom}(K_2, G)) + 2 \geq t \). In the next section we give examples of posets \(P \) such that \(\text{Xind}(P) > \text{ind}(P) \), though we do not have an example of a graph \(G \) such that \(\text{Xind}(\text{Hom}(K_2, G)) > \text{ind}(\text{Hom}(K_2, G)) \).

In particular, we cannot prove or disprove that the conclusion of Theorem 5 can be derived from the weaker hypothesis \(\text{Xind}(\text{Hom}(K_2, G)) + 2 \geq t \), or any of its discrete variations. The best we can do in this direction is the following.

Theorem 8. Let \(G \) be a graph such that \(\chi(G) = \text{Xind}(\text{Hom}(K_2, G)) + 2 = 2n \geq 4 \). Let \(c : V(G) \to \{1, \ldots, 2n\} \) be a proper colouring of \(G \). Then \(G \) contains a copy \(C \) of \(K_{n+1,n-1} \) such that \(c \) uses all \(2n \) colours on \(C \).

Proof. Suppose that \(\chi(G) = 2n \) and \(c \) is a \(2n \)-colouring of \(G \). If there are no copies \(C \) of \(K_{n+1,n-1} \) such that \(c \) uses all \(2n \) colours on \(C \), we can define a \(\mathbb{Z}_2 \)-map \(\phi : \text{Hom}(K_2, G) \to Q_{2n-3} \) as follows. We partition \(\text{Hom}(K_2, G) \) into three sets

\[
S_1 = \{(A, B) : \max\{|c(A)|, |c(B)|\} \leq n \text{ and } |c(A \cup B)| \leq 2n - 2\},
\]

\[
S_2 = \{(A, B) : \max\{|c(A)|, |c(B)|\} \geq n + 1\},
\]

\[
S_3 = \{(A, B) : (|c(A)|, |c(B)|) \in \{(n - 1, n), (n, n - 1), (n, n)\}\}.
\]

If \((A, B) \in S_1\), we put

\[
\phi(A, B) = \begin{cases}
|c(A \cup B)| - 2 & \text{if min } c(A \cup B) \in c(A), \\
-(|c(A \cup B)| - 2) & \text{if min } c(A \cup B) \in c(B).
\end{cases}
\]

Note that \(\phi \) clearly preserves the order and the inversion on \(S_1 \), and \(\phi(S_1) \subseteq \{\pm 0, \ldots, \pm 2n - 4\} \). The remaining elements on \(\text{Hom}(K_2, G) \) will be mapped to \(\pm(2n - 3) \).

If \((A, B) \in S_2\), we put

\[
\phi(A, B) = \begin{cases}
2n - 3 & \text{if } |c(A)| \geq n + 1, \\
-(2n - 3) & \text{if } |c(B)| \geq n + 1.
\end{cases}
\]

Clearly, \(\phi \) preserves the order and inversion on \(S_1 \cup S_2 \). It remains to define \(\phi \) on \(S_3 \). Here we use the hypothesis that there is no colourful copy of \(K_{n+1,n-1} \), which implies that no element of \(S_3 \) is below an element of \(S_2 \). For \((A, B) \in S_3\), let \((X_{A,B}, Y_{A,B})\) be the partition of \(\{1, \ldots, 2n\} \) such that \(c(A) \subseteq X_{A,B}, c(B) \subseteq Y_{A,B} \) and \(|X_{A,B}| = |Y_{A,B}| = n\). Since no copy of \(K_{n+1,n-1} \) is multicoloured by \(c \), for \((A', B') \geq (A, B) \in S_3\) we have \((A', B') \in S_3\), \(X_{A',B'} = X_{A,B}\) and \(Y_{A',B'} = Y_{A,B}\). We put

\[
\phi(A, B) = \begin{cases}
2n - 3 & \text{if } 1 \in X_{A,B}, \\
-(2n - 3) & \text{if } 1 \in Y_{A,B}.
\end{cases}
\]

Thus \(\phi : \text{Hom}(K_2, G) \to Q_{2n-3} \) is a \(\mathbb{Z}_2 \)-map, whence \(\text{Xind}(\text{Hom}(K_2, G)) \leq 2n - 3 \). \qed
The question whether \(\text{coind}(\text{Hom}(K_2, G)) + 2 \geq 2k \) implies also the existence of a completely multicoloured \(K_{k-1,k+1} \) subgraph of \(G \) in every proper colouring is also posed in [25]. Note that although the conclusion in this statement is identical to the conclusion of our Theorem 8, the hypotheses are not comparable: in Theorem 8 the topological condition is weaker but we insist on using the minimum number of colours.

6 Complexity aspects of the cross-index

Some remarks on complexity aspects of topological lower bounds on the chromatic number can be found in Kozlov’s survey paper [13] (at the end of Subsection 1.1.3) and also in his book [14] (on page 295). He mentions that while Lovász’s original lower bound expressed in terms of connectivity of a simplicial complex is difficult to compute, another lower bound based on the so-called Stiefel-Whitney characteristic classes is polynomially computable. (The latter bound also depends on a \(\mathbb{Z}_2 \)-space and when it is chosen to be \(\text{Hom}(K_2, G) \), then it can be expressed as \(h(\text{Hom}(K_2, G)) + 2 \), where \(h(\text{Hom}(K_2, G)) \) is the so-called Stiefel-Whitney height of \(\text{Hom}(K_2, G) \), cf. page 328 in [14]. It is shown on page 123 of [14] that if \(X \) is any \(\mathbb{Z}_2 \)-space, then \(\text{coind}(X) \leq h(X) \leq \text{ind}(X) \) holds.)

As the value of \(\text{Xind}(\text{Hom}(K_2, G)) \) can be found by a finite computation it is natural to ask the computational complexity of this parameter. Although we do not know the precise complexity of this question, in the context of \(\mathbb{Z}_2 \)-posets, we have the following.

Theorem 9. For an integer \(d \geq 0 \), the problem of determining whether an input \(\mathbb{Z}_2 \)-poset \(P \) satisfies \(\text{Xind}(P) \leq d \) is polynomial if \(d = 0 \) and NP-complete otherwise.

Proof. It is obvious that the problem is in NP, for you can verify that a mapping from the elements of \(P \) to the elements of \(Q_d \) is a \(\mathbb{Z}_2 \)-map in time polynomial in the size of \(P \).

First, let us examine the case when \(d = 0 \). In this case \(Q_d \) has only two elements, \(+0\) and \(-0\), and they are incomparable. Consider the comparability graph of the poset \(P \). This is a graph whose vertices are the elements of \(P \), and \(\{x, y\} \) is an edge iff \(x < y \) or \(y < x \). We claim that the \(\mathbb{Z}_2 \)-map to \(Q_0 \) exists if and only if no element \(x \) is connected to its mirror image \(-x \) by a path in this graph. To prove this, suppose first that there is a \(\mathbb{Z}_2 \)-map \(\phi \). If now \(\{x, y\} \) is an edge then necessarily \(\phi(x) = \phi(y) \) (because \(Q_0 \) does not have comparable but unequal elements), so the same must be true for any two path connected vertices \(x \) and \(y \) as well. However, if there was a path from some element \(x \) to \(-x \), that would imply that \(\phi(x) = \phi(-x) \), but that is a contradiction since we also know \(\phi(-x) = -\phi(x) \). Now suppose for the other hand that there is no such path, and we want to construct the \(\mathbb{Z}_2 \)-map. For this, notice that \(\{x, y\} \) being an edge implies \(\{-x, -y\} \) also being an edge, so the connected components of the graph can be grouped into pairs where the pair of a component consists of the mirror image of the vertices of the component. We can then take each such pair of components and let \(\phi \) map the vertices of one of them to \(+0\) and the vertices of the other one to \(-0\). The two required identities are now obvious: \(\phi(-x) = -\phi(x) \), and for any \(x, y \in P \) if \(x \leq y \) then \(\phi(x) \leq \phi(y) \) (in fact they are equal). As the graph can be constructed from the poset and the condition of no paths from \(x \) to
$-x$ can be checked in polynomial time, we have proved that the problem corresponding to $d = 0$ is polynomially decidable.

The following consequence of the first part of the proof is worth remembering. The only obstacle that can exclude a \mathbb{Z}_2-map to Q_0 is a sequence of elements $x_0, y_0, x_1, y_1, \ldots, x_{k-1}, y_{k-1}, x_k = -x_0$ such that $x_i < y_i$ and $x_{i+1} < y_i$ for each i. As a special case, for $k = 1$ this obstacle is simply two elements such that $x < y$ and $-x < y$, which is the reason why there is no $Q_1 \rightarrow Q_0$ map.

Now we shall prove that the problem is NP-hard if $d = 1$. For this, we give a Karp reduction from the satisfiability problem of boolean expressions in conjunctive normal form (CNF; for the definition and the NP-completeness of this problem, see, e.g., [11]). What this means is that our proof will have three parts: given a boolean formula in CNF, we first construct a \mathbb{Z}_2-poset P from it in polynomial time, then we show how to construct a \mathbb{Z}_2-map from P to Q_1 if we are given an evaluation of the variables that satisfies the formula, and finally we show the reverse construction of such an evaluation from a \mathbb{Z}_2-map.

To define P, we will give the list of its elements and the involution, and we will give some defining relations in the form $x < y$. The partial order $<$ is then understood to be the least defined transitive relation invariant to the involution and satisfying these defining relations (this is analogous to defining a poset with its Hasse diagram). One can compute the full table for this relation from the defining relations by first adding the relation $-x < -y$ for each axiom $x < y$ given, then taking the transitive closure. This computation can indeed be done in polynomial time. It will be obvious from the construction that it generates the list of defining relations from the formula in polynomial time, and that the partial order we get is indeed irreflexive. Now if P is given this way, and we have a mapping ϕ from P to Q_1, if we want to verify that this is indeed a \mathbb{Z}_2-map, it is enough to check two identities: namely that $\phi(-x) = -\phi(x)$ for all $x \in P$, and that $\phi(x) \leq \phi(y)$ for each defining relation $x < y$ (i.e., we don’t need to check all pairs x, y).

Let the boolean variables used be x_1, \ldots, x_N, and the formula $C^1 \land \cdots \land C^K$. Each clause C^k has the form $x_{n_1} \lor \overline{x}_{n_2} \lor \cdots \lor \overline{x}_{n_m}$. Here each variable independently may or may not be negated; the list n_i and its length m actually depend on k but we omit that index for readability; and we assume for convenience that no variable occurs twice in any one clause. The poset P we define has four elements for each variable and four more elements for each term in each clause. Namely, for each variable x_n, we take four elements called $p_n, -p_n, q_n, -q_n$, and for each clause C^k, we take $4m$ new elements, namely $r^k_1, -r^k_1, r^k_2, -r^k_2, \ldots, r^k_m, -r^k_m$, and $s^k_1, -s^k_1, s^k_2, -s^k_2, \ldots, s^k_m, -s^k_m$. For defining the partial order, we first need an auxiliary definition. For every variable x_n, define T_n as the set of all elements r^k_t where the i-th term of C^k is x_n, and define F_n as the set of all elements r^k_t where the i-th term of C^k is \overline{x}_n. (We depend on the order of terms in the clauses we fixed.) Notice that each of the r^k_t elements is a member of exactly one of the $2K$ sets defined here. Now we list all the defining relations of the partial order. Firstly, each variable x_n will have two corresponding relations for each occurrence in a term: $t < p_n$ and $t < q_n$ for each $t \in T_n$, and $f < p_n$ and $-f < q_n$ for each $f \in F_n$, respectively. Secondly, each clause C^k has two relations corresponding to each of the m terms in it: $s^k_i < r^k_t$ for each
1 ≤ i ≤ m; and s_{k+1}^i < r_i^k for each 1 ≤ i < m, and additionally −s_1^k < r_m^k. (One may notice that the two groups contain the same number of relations, in fact each r_i^k occurs twice in the first group and twice in the second group.)

An example for this construction is shown on the figure, which lists some clauses of the CNF expression we consider, and shows part of the Hasse diagram of the poset, except that we use the convention that each element and its negation is drawn as only one point, and a crossed out edge means −x < y where x is the endpoint of the edge that is lower on the diagram.

Let us examine some properties of this construction. Firstly, (though this does not really help us) notice that there always exists a Z_2-map from P to Q_2: namely the one that maps p_n → +2; q_n → +2; r_i^k → +1; s_i^k → +0. Now suppose that there also is a Z_2-map φ : P → Q_1. Observe that we may assume that this takes any p_n or q_n to ±1 without loss of generality: indeed it is easy to amend φ to have this property by changing the image of such an element from ±0 to +1, and changing the image of its mirror image to −1 accordingly. Similarly, we may assume that any s_i^k is always brought to ±0. Now observe that for any fixed k, at least one of the elements r_1^k, r_2^k, ..., r_m^k must be mapped to ±1: indeed in the sequence s_1^k, r_1^k, s_2^k, r_2^k, ..., s_m^k, r_m^k each element is comparable to the next one, and together with −s_1^k < r_m^k they form the exact kind of obstacle we mentioned that makes it impossible to map all these points to ±0. Finally fix any n, and observe that if φ(p_n) = φ(q_n) then all elements f of F_n must be mapped to ±0, for we must keep both φ(f) ≤ φ(p_n) and φ(−f) ≤ φ(q_n). A similar statement is true in the other case when φ(p_n) ≠ φ(q_n) so necessarily φ(p_n) = −φ(q_n): namely then φ maps all elements of T_n to ±0 (the signs may vary).

Now we assume an evaluation σ of the variables x_1, ..., x_N is given and satisfies the
formula. We construct a \(\mathbb{Z}_2 \)-map \(\phi : P \to Q_1 \) the following way. Let

\[
p_n \mapsto +1, \quad q_n \mapsto +1, \quad \text{if } x_n^a \text{ is true; but}
\]
\[
p_n \mapsto +1, \quad q_n \mapsto -1, \quad \text{if } x_n^a \text{ is false.}
\]

Consider a clause \(C^k \). The evaluation \(\sigma \) satisfies this clause, so at least one of its terms
\(x_{n_1}, \overline{x}_{n_2}, \ldots, x_{n_m} \) must be evaluated to true: so choose \(j \) to be an index of one such term
\(x_{n_j} \) or \(\overline{x}_{n_j} \). Let \(\phi \) act on the elements corresponding to this clause the following way.

\[\begin{align*}
r_1^k \mapsto +0, & \quad \ldots, \quad r_{j-1}^k \mapsto +0, \quad r_j^k \mapsto +1, \quad r_{j+1}^k \mapsto -0, \quad \ldots, \quad r_m^k \mapsto -0; \\
s_1^k \mapsto +0, & \quad \ldots, \quad s_{j-1}^k \mapsto +0, \quad s_j^k \mapsto +0, \quad s_{j+1}^k \mapsto -0, \quad \ldots, \quad s_m^k \mapsto -0.
\end{align*}\]

It is easy to see that these latter assignments satisfy the requirements that \(\phi(s_i^k) \leq \phi(r_i^k) \) and \(\phi(s_{i+1}^k) \leq \phi(r_i^k) \) and \(-\phi(x_i^k) \leq \phi(r_i^k) \). We must now check the restrictions given by the first group of defining relations of \(P \). These, for elements of \(T_n \), are that
\(\phi(r_i^k) \leq \phi(p_{n_i}) \) and \(\phi(r_i^k) \leq \phi(q_{n_i}) \) if the \(i \)-th term of the clause \(C^k \) is \(x_{n_i} \). If \(i \neq j \) then these are satisfied automatically, because then \(\phi(r_i^k) = \pm 0 \). If, however, \(i = j \), then use the fact that we chose \(j \) such that \(x_{n_j} \) is true, thus \(\phi(p_{n_i}) = \phi(q_{n_i}) = \phi(r_i^k) = +1 \). The defining relations involving the elements of \(F_n \) can be verified in a very similar way: if the \(i \)-th term of \(C^k \) is \(\overline{x}_{n_i} \), then we need \(\phi(r_i^k) \leq \phi(p_{n_i}) \) and \(-\phi(r_i^k) \leq \phi(q_{n_i}) \), but \(\phi(r_i^k) = \pm 0 \) unless \(i = j \), in which case \(x_{n_i} \) is false because of the choice of \(j \), so \(\phi(p_{n_i}) = \phi(r_i^k) = +1 \) and \(\phi(q_{n_i}) = -1 \) satisfy the restrictions. This proves that \(\phi \) is indeed a \(\mathbb{Z}_2 \)-map.

As the last part of the proof for the \(d=1 \) case, we have to prove that if there exists a \(\phi : P \to Q_1 \) mapping, then that induces an evaluation of the variables that satisfies the boolean expression. We construct the evaluation \(\sigma \) the following way: for any \(n \), if \(\phi(p_n) = \phi(q_n) \) then let \(x_n^a \) be true, otherwise \(\phi(p_n) = -\phi(q_n) \) and let \(x_n^a \) be false. Recall our earlier observations stating that \(\phi \) takes all members of \(F_n \) to \(\pm 0 \) in the former case, but all members of \(T_n \) to \(\pm 0 \) in the latter case. On the other hand, consider any clause \(C^k \) and the elements corresponding to it: we have observed that for at least one \(j \), the element \(r_j^k \) is not mapped to \(\pm 0 \). If the term corresponding to this index \(j \) in \(C^k \) is \(x_n \) then this element \(r_j^k \in T_n \), so together with the above this means \(x_n \) is true; whereas if that term is \(\overline{x}_n \) then similarly \(r_j^k \in F_n \) which implies \(x_n \) is false. In either case, we have found a term in the clause \(C^k \) that is true in \(\sigma \), and this can be repeated for each clause, thus \(\sigma \) indeed satisfies the boolean expression.

All that remains now is to prove that the cases of \(1 < d \) are also NP-complete. This we do by modifying the above Karp reduction. The simple observation we need for this is the following: if we modify any \(\mathbb{Z}_2 \)-poset \(P \) by adding two extra elements \(y \) and \(-y \) that are greater than all other elements of the poset, then the cross-index of the resulting \(\mathbb{Z}_2 \)-poset \(P^* \) is exactly one greater than the cross-index of the original. Indeed, we can extend a \(P \to Q_d \) map to a \(P^* \to Q_{d+1} \) map by setting the image of \(y \) to be \(+(d+1) \); and conversely, by any \(P^* \to Q_{d+1} \) map, no point other than \(y \) or \(-y \) can be mapped to \(\pm (d+1) \), thus restricting it to \(P \) gives a \(P \to Q_d \) map. Thus, applying the reduction given in the \(d=1 \) case then iterating this transformation \(d-1 \) times gives a \(\mathbb{Z}_2 \)-poset that can be mapped to \(Q_d \) if and only if the original expression is satisfiable, and this construction still can be realized by a polynomial time computation. \(\square \)
Remark. While $\text{Xind}(P)$ for the poset P constructed in the above proof depends on the satisfiability of the boolean formula from which it is constructed, one can prove that $\text{ind}(\hat{P})$ is always at most 1. The reason is that any two dimensional face appearing in \hat{P} is a triangle which has at least one side that does not belong to any other two dimensional face. This makes it possible to retract \hat{P} into a 1-dimensional complex.

Acknowledgements
The results discussed above are supported by the grant TÁMOP - 4.2.2.B-10/1-2010-0009.

References

