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Abstract

We build higest weight representations of the Virasoro algebra with highest weight vectors tau-functions
of Toda deformations of Laguerre polynomials. Then we describe all rationals solutions of the Toda sys-
tem and prove that the corresponding tau-functions are highest weight vectors of irreducible degenerate
representations of the Virasoro algebra with central charge c = 1.
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Introduction

The present work is inspired by recent development in the mathematical aspects of 2d-quantum
gravity. It was found (see [3] and [4]) that the partition function of descrete 2d-quantum
gravity on one hand is a tau-function of Toda deformations of Hermite polynomials and on
the other hand generates a highest weight representation of the Virasoro algebra V ir with
highest weight c = 1 and h = 0. For a detailed presentation of above mentioned questions see
also [7].

In [5] Haine and Horozov considered the partition functions of the matrix models

Zα
n (t) =

∫
eα log trM−tr(M+V (M))dM , α > −1,

where M is a positive definite Hermitian matrix and V (x) =
∑

tkx
k. They showed that

these functions are tau-functions of Toda deformations of Laguerre polynomials {pα
n(x)}∞n=0

with α > −1 (for precise definitions see below). Again these partition functions provide
highest weight representations of the Virasoro algebra but now the energy h can be any non-
negative number. It is a natural question if the tau-functions of the other Laguerre polynomials
(α ≤ −1) provide representations of V ir. The present work answers this question.

The Laguerre polynomials are defined via [2]:

pα
n(x) = (−1)nexx−α dn

dxn
(e−xxn+α). (0.1)
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When α > −1 they are orthogonal with respect to the measure dσα = xαe−xdx on the interval
[0,∞) (see also [1]). (Actually in [5] this is used as a definition). Unfortunately, in the case
α ≤ −1 there is no positive definite integral measure dσα such that {pα

n}∞n=0 are orthogonal
basis with respect to it. In fact there exists non-degenerate bi-linear form < ◦, ◦ >α in the
space of all polynomials C[x] such that {pα

n}∞n=0 are orthogonal basis with respect to < ◦, ◦ >α.
This observation allows us to state that the Toda deformations of all Laguerre polynomials
provide highest weight representations of V ir with (c, h) = (1, α2

4
).

A natural question arises: what is the structure of these representations. They turn out to
be quite closely connected with the structure of < ◦, ◦ >α.

There are two different cases: α ≤ −1 non-integer and α negative integer. When α is
non-integer the form < ◦, ◦ >α is defined via the integral measure considered in [5]. However,
when α = −m is negative integer, C[x] splits into direct sum of the m-dimensional space
span {1, x, . . . , xm−1} and the infinite dimensional xmC[x] which are mutually orthogonal with
respect to < ◦, ◦ >α. The tau-functions corresponding to the space span {1, x, . . . , xm−1} are
exactly the Schur polynomials which are described in [6] to be highest weight vectors of V ir.
The tau-functions produced from xmC[x] coincide with the tau-functions obtained in [5] with
α = m.

Notice that the above mentioned Schur polynomials provide rational solutions to the Toda
system. Moreover, we prove that all rational solutions to the Toda lattice hierarchy are given
by these polynomials. As it is known [6] the representations with (c, h) = (1, α2

4
) when α is

non-integer are irredusible and isomorphic to the Verma representation V (1, α2

4
). The case of

integer α is more complicated.The representations obtained by Haine and Horozov are almost
all redusible (apart from these with Zα

0 (t) ≡ 1). As we noted above the tau-functions in
the case of negative integer α are of two kinds: In the first case Schur polynomials provide
irredusible representations of V ir (see [6]). In the second one — these studied by Haine and
Horozov — provide redusible representations of V ir.

Thus we explicitely state the conection between the rational solutions to the Toda system
and irredusible representations of the Virasoro algebra (see Theorem 2.2 and Theorem 3.1).

Acknowlegements: I would like to thank E. Horozov for introducing me into the theme
as well as L. Haine for helpful discussions conserning the Toda lattice hierarchy.

1. Toda hierarchy and its tau-functions

In this section we briefly recall the construction of tau-functions of Toda deformations of any
orthogonal polynomials. We strictly follow [5] ommiting some of details.

Consider a measure dσ0(x) on an interval (a, b) . Define the deformed measure

dσt(x) = e−V (x)dσ0(x), (1.1)

where V (x) =
∑∞

k=1 tkx
k.

Let pn(x; t) = xn + · · · (n ≥ 0) be the system of monic polynomials orthogonal with respect
to (1.1). Then {pn}∞n=0 satisfies

∫ b

a
pm(x; t)pn(x; t)dσt(x) = hm(t)δmn. (1.2)
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As with any system of orthogonal polynomials, the operator of multiplication by x in the
basis {pn(x; t)} is represented by an infinite tridiagonal matrix Q(t) = (Qmn(t))m,n≥0 :

xpn(x; t) = pn+1(x; t) + Qnn(t)pn(x; t) + Qn−1,n(t)pn−1(x; t). (1.3)

Q provides a solution to the infinite dimensional Toda lattice hierarchy:

∂Q

∂tj
= [Q, (Qj)+], (1.4)

where (Qj)+ is the strictly upper part of Qj. Define

τn(t) = h0(t) · · ·hn−1(t) (1.5)

and by convention τ0(t) = 1. It is well-known that the ellements of Q(t) are given by

Qn−1,n(t) =
τn−1(t)τn+1(t)

τ 2
n(t)

, Qnn(t) =
∂

∂t1
log

τn(t)

τn+1(t)
. (1.6)

Consider the wave matrix W (t) = (Wij(t))i,j≥0 which is given by pk(t) =
∑∞

k=1 wikx
k, k =

0, 1, . . . 1. The following formulas can be found in [5].

Proposition 1.1 For each n ≥ 0, we have (up to a constant):

τn(t) = < exp(
∞∑

k=1

tkΛ
−k)W (0) ◦ Φn, Φn > (1.7)

= < exp(−
∞∑

k=1

tkΛ
k)W ∗(0) ◦ Φ∗

n, Φ
∗
n > (1.8)

= < exp(−
∞∑

k=1

tkΛ
k)M(0) ◦ Φ∗

n, Φ∗
n > (1.9)

= Dn(t), (1.10)

where Φn and Φ∗
n are the vacuum and the dual vacuum vectors in the in the Fock space of

free fermions and in the dual Fock space respectively and ◦ in (1.7), (1.8) and (1.9) is to be
understood as a group action on the vacuum vector Φn and Φ∗

n; W ∗(0) = (W (0)T )−1; M(t) is
defined with

Mij =

{
δij i < 0 or j < 0

µi+j(t) i ≥ 0 and j ≥ 0,
(1.11)

where

µk(t) =
∫ b

a
xkdσt(x), (1.12)

and Dn(t) = det(µi+j(t))0≤i,j≤n−1.

1In the sequel when the dependence on t of Q(t), L(t), p = n(x; t), etc. is not emphasized we shall just write Q, L, pn(x), etc.
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Remark. Formulas (1.7) – (1.9) represent τn(t) as determinants — formula (1.7) as infinite
and (1.8) and (1.9) — as finite determinants.

In the rest of this section we specialize on the case of Laguerre polynomials; defined by (0.1).
In the case α > −1 they are orthogonal with respect to the measure

dσα
0 (x) = xαe−xdx, x ∈ (0,∞). (1.13)

As it is proved in [5] the flag {Wα
n } = Wα

0 ⊃ Wα
1 ⊃ · · · defined with

W α
n = span{pα

n(x), pα
n+1(x), . . .} is invariant under the action of the operator A = −x

d

dx
+ x

, i.e.
Apn = pn+1 + bnpn. (1.14)

Also the flags {Wα
n } with α > −1 are shown to be the unique Toda flags (i.e. flags spaned

by polynomials with tri-term relation (1.3)) which are invariant under the action of A with
the additional condition b0 > 0. It is possible to avoid this condition. We give below a full
describtion of the Toda flags invariant under A:

Proposition 1.2 Every Toda flag {Wn}, Wn = span{qn, qn+1, . . .}, invariant under A is
either
(i) spanned by Laguerre polynomials {pα

n} for some α, or
(ii) b0 = −m is a negative integer; qn = p−m

n for n = 0, 1, . . . ,m; qn = xm ˜qn−m for n ≥ m and

the flag {W̃n} spanned by {q̃n} is invariant under A as well.

The proof is based on a careful modification of the similar proof of the above mentioned
theorem in the case b0 > 0 and that is why we omit it here.

What we are going to do is to perform the whole construction of τn(t) as a tau-function
of a Toda deformation of the Laguerre polynomials in the case α ≤ −1. Although they are
not orthogonal with respect to any measure (as it will be seen below) it is possible to adapt
the construction from [5] to the case of interest. Proposition 1.2 and the formulas (1.7) show
that the flags described in the Proposition 1.2 (ii) do not give new tau-functions. In other
words, the functions studied in [5] and those we are going to obtain (i.e. tau-functions of Toda
deformations of the Laguerre polynomials) are the unique tau-functions of Toda deformations
of flags invariant under the action of A.

2. Laguerre polynomials. Case α ≤ −1

In this section we are going to introduce a bi-linear symetric form < ◦, ◦ >α on the space C[x]
such that {pα

n(x)}, α ≤ −1 is orthogonal basis in C[x] with respect to < ◦, ◦ >α. Having this
form we can define the function τn(t) as a tau-function of the Toda deformation of Laguerre
polinomials. This definition allows us to use the techniques developed in [5] to prove that
τn(t) provides highest weight representation of V ir.

Now we define the form < ◦, ◦ >α. There are two principally different cases: integer α and
non-integer α. Let α = −m be a negative integer. Then

< p(x; t), q(x; t) >α=
(−1)

m(m−1)
2

(m− 1)!

dm−1

dxm−1
(pqe−x−V (x)) |x=0 +

∫ ∞

0
xmp̃q̃e−x−V (x))dx (2.1)
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where the wave is the operator which cuts off all powers up to m− 1, i.e.

p̃ = amxm + am+1x
m+1 + . . . , ifp = a0 + a1x + . . . .

Now let α < −1 be non-integer and −m− 1 < α < −m. Define

< p(x; t), q(x; t) >α=
(−1)m

(α + 1) . . . (α + m)

∫ ∞

0
xα+m dm

dxm
(pqe−x−V (x))dx. (2.2)

Theorem 2.1 Let α ≤ −1. Then the bi-linear form < ◦, ◦ >α is non-degenerate and the
Laguerre polynomials (0.1) are the orthogonal basis in the space of all complex polynomials.

Remark. We call the system of monic polynomials {qn}∞n=0, where degqn = n, orthogonal
basis with respect to the form < ◦, ◦ > if qn is the unique monic polynomial of degree n, such
that < qn, q >= 0 for every polynomial q with degq < n.

Proof. The case of non-integer α is easy to treat . Suppose α > −1 and consider the scalar
product assosiated with the measure (1.1):

< P,Q >α =
∫ ∞

0
xαP (x)Q(x)e−x−V (x)dx

= − 1

α + 1

∫ ∞

0
xα+1 d

dx
(P (x)Q(x)e−x−V (x))dx = . . .

= − (−1)m

(α + 1) . . . (α + m)

∫ ∞

0
xα+m dm

dxm
(P (x)Q(x)e−x−V (x))dx. (2.3)

Since {pα
n}∞n=0, α > −1 is orthogonal basis with respect to (2.3) and the dependence on α of

pα
n is polynomial it follows that {pα

n}∞n=0, α < −1 and α — non-integer, is orthogonal basis
with respect to (2.2).

The case of negative integer α is more complicated. Let α = −m and {qn(t)}∞n=0 be
the orthogonal basis with respect to (2.1) (it will be seen below that < ◦, ◦ >α is non-
degenerate and hence such a basis exists). From the definition (2.1) it is clear the subspace
span{1, x, . . . , xm−1} and xmC[x] of C[x] are mutually arthogonal and hence qn divides by xm

and
qn = xmp−α

n−m(x; t), if n ≥ m. (2.4)

On the other hand it is a simple computation to check that pα
n(x; t) = xmp−α

n−m(x; t).
Let us concentrate on n < m. By the end of this section whenever we omit the argument t

it means that it is taken at t = 0. It is easy to see (following the well-known procedure) that
{qn}m−1

n=0 provides a solution to the finite Toda lattice hierarchy:

xqn(x; t) = qn+1(x; t) + Qn,nqn(x; t) + Qn−1,n(t)qn−1(x; t). (2.5)

Define µα
n(t) with

µα
n(t) =< xn, 1 >α= (−1)

m(m−1)
2 Sm−1−n(−1− t1,−t2, . . .), (2.6)

where Sk(t) are the standard Schur polynomials and Dn(t) = det(µα
i+j(t))0≤i,j≤n−1, D0(t) = 1.

The non-degeneracy of < ◦, ◦ >α is equivalent to the condition Dn(t) 6= 0 for n = 0, 1, . . . ,m−
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1. In the sequel we shall compute explicitely Dn(0) and see that < ◦, ◦ >α is non-degenerate.
Suppose in a moment it is done. Then [1]

qn(x; t) =
1

Dn(t)

µ0(t) . . . µn(t)
...

...
µn−1(t) . . . µ2n−1(t)

1 . . . xn

(2.7)

and hn(t) =< qn(x; t), qn(x; t) >α=
Dn+1(t)

Dn(t)
for n < m. Now it is a standard procedure to

find

Qn,n+1(t) =
hn+1(t)

hn(t)
, if n < m− 1

Qm−1,m(t) = 0

Qn,n(t) =
∂

∂t1
log

1

hn(t)
, if n < m− 1.

(2.8)

What we need to end the proof is to compute the coefficients from (2.8) at t = 0 and compare
them with these representing the multiplication by x in the basis {pα

n}m−1
n=0 :

xpα
n(x) = pα

n+1(x) + (2n + 1 + α)pα
n(x) + n(n + α)pα

n−1(x). (2.9)

From (2.6) we find

µα
n =





(−1)
m(m−1)

2
+m−1−n

(m− 1− n)!
, if n < m

0 , if n ≥ m.

(2.10)

Then Dn = (−1)
m(m−1)

2 (−1)
n(n−1)

2
1!2! . . . (n− 1)!

(m− 1)! . . . (m− n)!
, if n ≤ m.

Hence hn =
Dn+1

Dn

= (−1)n n!

(m− n− 1)!
and

Qn,n+1 =
hn+1

hn

= −(n + 1)(m− n− 1), if n < m− 1 (2.11)

and Qm−1,m = 0. To compute Qn,n we use

Dn(t) = (−1)
m(m−1)

2 (−1)
n(n−1)

2 Sm− n, . . . ,m− n︸ ︷︷ ︸
n times

(−1− t1,−t2, . . .), if n ≤ m− 1, (2.12)

with the standard Schur polynomials Sj1,...,js(t). Then

∂

∂t1
Dn(t) | t=0 = (−1)

m(m−1)
2 (−1)

n(n−1)
2 Sm− n, . . . , m− n− 1︸ ︷︷ ︸

n times

(−1− t1,−t2, . . .), if n ≤ m− 1

6
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and
∂

∂t1
Dm(t) | t=0 = 0. Finaly

Qn,n = − ∂

∂t1
log

Dn+1

Dn

=
1

Dn

log Dn − 1

Dn+1

log Dn+1

= n(m− n)− (n + 1)(n−m− 1) = (2n + 1−m). (2.13)

Comparing (2.11) and (2.13) with (2.9) we conclude that qn = pα
n for n < m. This ends the

proof of the theorem.

Remark. There is no non-degenerate integral measure dµ such that {p−m
n }∞n=0 be orthog-

onal with respect to it. Indeed if it exists then p−m
m = xm and x2m ∈ span{p−m

m , p−m
m+1, . . .}

and hence

0 6=
∫

p−m
m p−m

m dµ =
∫ 2m∑

k=m

ckp
−m
k dµ =

2m∑

k=m

ck

∫
1.p−m

k dµ = 0.

Now we are in position to state the following

Theorem 2.2 Let τα
N(t) be the functions

τα
N(t) = h0(t) . . . hN−1(t), τα

0 (t) = 1. (2.14)

Then

(i) (L
(α,n)
j +

∂

∂tj+1

)τα
n (t) =

α2

4
δ0jτ

α
n (t) ; j = 0, 1, . . . (2.15)

where

L
(α,n)
0 =

(µα
n)2

2h
+

∞∑

k=1

ktk
∂

∂tk

L
(α,n)
j =

1

2h

j−1∑

k=1

∂2

∂tk∂tj−k

+
µα

n

h

∂

∂tj
+

∞∑

k=1

ktk
∂

∂tk+j

(j ≥ 1)

(2.16)

with h = 1
2

and µα
n = −(n + α

2
).

(ii) Let α = −m be negative integer. Then

τα
n (t) =





(−1)
m(m−1)

2
+

n(n−1)
2 Sm− n, . . . , m− n︸ ︷︷ ︸

n times

(−1− t1,−t2, . . .), n < m

τm
−m+n(t) n ≥ m.

The proof of statement (ii) is contained in the proof of Theorem 2.1 while the proof of (i)
is simply a repetition of a similar proof from [5] when the integral scalar product is replaced
by the bi-linear form (2.1) or (2.2).
Remark. Put

L
(α,n)
−j =

h

2

j−1∑

k=1

k(j − k)tktj−k + µα
njtj +

∞∑

k=j+1

ktk
∂

∂tk−j

, j = 1, 2, . . . (2.17)
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Then the operators Lα,n
j from (2.16) and (2.17) satisfy the commutation relations of the

Virasoro algebra with central charge c = 1. Notice that by the shift t → t + 1 the operators

Lj (j ≥ 0) transform into L̃j = L
(α,n)
j +

∂

∂tj+1

. Thus Theorem 2.2 simply claims that τα
N

provides highest weight representation of the Virasoro algebra and τα
n (t) with α negative

integer and n < −α are the well-known (see [6]) Schur polynomials which are highest weight
vectors.

Before finishing the section we remind two result about the representations from Theorem
2.2 (see [6]): The representations with (c, h) = (1, α2

4
) being highest weight representations are

irreducible for any non-integer α. In the case of integer α the representations from Theorem
2.2 are irreducible when n = 0 or α = −m is negative integer and n ≤ m. In the next section
we connect this fact with a theorem of uniqueness of rational solutions to the Toda hierarchy
equations.

3. Rational solutions to the Toda lattice hierarcly

Consider the infinite Toda system (1.4) where

Q =




Q00 Q01 0 0 . . .
1 Q11 Q12 0 . . .
0 1 Q22 Q23 . . .

0 0 1 Q33
. . .

...
...

...
. . . . . .




=




B1 A1 0
1 B2 A2

1 B3 A3

1 B4
. . .

0
. . . . . .




(3.1)

It is well-known that every set of monic orthogonal polynomials provides a solution to
(1.4). Here we briefly recall this constuction: Let dσ0(x) be some measure on an interval
(a, b). Define the measure dσt(x) = exp (−∑∞

k=1 tkx
k)dσ0(x). Associated with it, consider the

time dependent system of monic orthogonal polynomials (in x) pn(x; t) with respect to dσt(x),
satisfying ∫ b

a
pm(x; t)pn(x; t)dσt(x) = hm(t)δmn.

As with any system of orthogonal polynomials, multiplication by x in the basis {pn(x; t)}∞n=0

is represented by an infinite tridiagonal matrix Q(t) = (Qmn(t))m,n≥0:

xpn(x; t) = pn+1(x; t) + Qnn(t)pn(x; t) + Qn−1,n(t)pn−1(x; t).

Then (see [7]) Q(t) provides a solution to (1.4).
We need to reverse the above construction for our purposes. Let (3.1) be a solution to

(1.4). We define a set of time-dependent polynomials of x with

p0(x; t) = 1

xpn(x; t) = pn+1(x; t) + Bn+1(t)pn(x; t) + An(t)pn−1(x; t).
(3.2)

Put
hn(t) = A1(t) . . . An(t)h0(t), (3.3)

8
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where h0(t) is defined by

h0(0) = 1,
∂h0

∂ti
= −(Qi)00h0. (3.4)

Lemma 3.1 The function h0(t) exists.

Proof. The existence of h0 is equivalent to the existence of log f(t) such that (f(t) = −h0(t)):

∂

∂ti
log f(t) = (Qi)00.

To prove this it is sufficient to see that

∂

∂tj
(Qi)00 =

∂

∂ti
(Qj)00

if Q(t) is a solution to (1.4). We have

∂Qj

∂ti
= [Qj, Qi

+]

and hence
∂Qj

∂ti
= [Qj, Qi

+] = [Qj
+ + Qj

−, Qi
+] = [Qj

+, Qi
+] + [Qj

−, Qi
+] and

∂Qi

∂tj
= [Qi, Qj

+] = [Qi, Qj −Qj
−] = [Qj

−, Qi] = [Qj
−, Qi

+ + Qi
−] = [Qj

−, Qi
+] + [Qj

−, Qi
−].

The observation that [Qj
+, Qi

+] is strictly upper matrix and [Qj
−, Qi

−] — strictly lower matrix
completes the proof of the lemma.

Here we state a lemma which will be used below:

Lemma 3.2
∂hn

∂ti
= −(Qi)nnhn. (3.5)

Proof. For n = 0 the statement (3.5) is just the definition (3.4). Let ∂hn

∂ti
= −(Qi)nnhn. Then

∂hn+1

∂ti
=

∂(hnAn+1)

∂ti
=

∂hn

∂ti
An+1 + hn

∂An+1

∂ti
= −(Qi)nnhnAn + [Q,Qi

+]n−1,nhn.

Now (3.5) is equivalent to

[Q,Qi
+]n,n+1 = (Qi

nn −Qi
n+1,n+1)An+1.

The last equality is a property of tridiagonal matrices of the type (3.1).

Suppose < ◦, ◦ > is a bi-linear symetric form on the space of complex polynomials C[x].
The condition

< pn(x; t), pm(x; t) >= δnmhn(t) (3.6)

9
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uniquelly defines the quantities µij =< xi, xj >. It follows from (3.2), (3.3) and (3.6) that
< xpn, pm >=< pn, xpm >. The polynomials {pn}∞n=0 form a basis in C[x] and thus

< xP,Q >=< P, xQ >

for arbitrary polynomials P and Q. In particular

µi+1,j =< x.xi, xj >=< xi, x.xj >= µi,j+1

which means that µij = µi+j,0. Further we shall use µn = µn0 instead of µij. We have

µn =< 1, xn >=< xn ◦ p0, p0 >

where xn ◦ p0 is the action of the n−th degree of the operator of multiplication by x on the
polynomial p0. This means

µn(t) = (Qn)00h0(t). (3.7)

Put
∂pk

∂ti
=

∑

j≤k−1

Ljkpj. It is a simple calculation that

∂Qlk

∂ti
= [Q,L]lk. (3.8)

Comparing (3.8) with (1.4) we obtain [Q,L] = [Q,Qi
+]. Since L and Qi

+ are strictly upper
matrices, this yields

L = Qi
+. (3.9)

We also need the equality
Qi

klhk = Qi
lkhl. (3.10)

Indeed

Qi
klhk =< xi ◦ pl, pk >=< pl, x

ipk >=< xp
l , pk >=< pl, x

i ◦ pk >= Qi
lkhl,

where ◦ stands for the action of the operator of multiplication by xi in the basis {pn}∞n=0.
Now (3.5), (3.9) and (3.10) give

∂hk

∂ti
δkl = Llkhl + Lklhk − (Qi)lkhl, or

∂

∂ti
< pk, pl > = <

∑

j

Ljkpj, pl > + <
∑

j

Ljlpj, pk > − < xipk, pl >

= <
∂pk

∂ti
, pl > + < pk,

∂pl

∂ti
> − < xipk, pl > .

From the fact that {pn}∞n=0 form a basis in C[x] we get

∂

∂ti
< P, Q >=<

∂P

∂ti
, Q > + < P,

∂Q

∂ti
> − < xiP,Q >

10
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for arbitrary polynomials P and Q. In particular,

∂

∂ti
µn(t) =

∂

∂ti
< xn, 1 >= − < xixn, 1 >= −µn+i(t). (3.11)

Before we state the main theorem we want to comment the structure of the solutions of
(1.4). Suppose An(0) 6= 0 for every n. Then from (1.4) we get

∂Bn

∂t1
= An−1 − An,

∂An

∂t1
= An(Bn −Bn+1).

The last formulas show that B1(t) determines completely the solution Q(t). In the case
of An = 0 for some n the system (1.4) splits into two (or more) solutions to Toda lattice
hierarchies. Then B1(t) determines the first solution.

On the other hand,

B1(t) = − ∂

∂t1
log h0(t) (3.12)

and that is why h0(t) determines the solution.
Now we can state the main theorem of this section:

Theorem 3.1 The only rational solutions to the Toda lattice hierarchy are given by

µ0(t) = c Sn(−t1 + α1, . . . ,−tn + αn) (3.13)

with some constants c, α1, . . . , αn.

Proof. It is obvious that the solution given by µ0 of the type (3.13) are rational.
Let Q(t) be a rational solution to (1.4). Then B1(t) depends only on a finite number of

t1, t2, . . .. Let
B1(t) = B1(t1, . . . , tN).

Then
Q(t) = Q(t1, . . . , tN). (3.14)

Put f(t) = µ0(t). Then (3.11) gives

∂|s|

∂t(s)
f(t) =

∂|ν|

∂t(ν)
f(t) (3.15)

where s = (s1, . . . , sp) and ν = (ν1, . . . , νq) are multi-indeces with | s |= s1 + . . . + sp =

ν1 + . . . + νq =| ν | and
∂

∂t(s)
=

∂

∂ts1

∂

∂ts2

. . .
∂

∂tsp

. Now equation (3.4) and (3.14) shows that

log f(t) is a linear function of the variables tN+1, tN+2, . . ., i.e.

log f(t) = F (t1, . . . , tN) +
∞∑

k=N+1

ck(t1, . . . , tN)tk. (3.16)

11
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Using (3.12) and the fact that B1 does not depend on tN+1, tN+2, . . ., etc. we conclude that
ck does not depend on t1.

From (3.15) we get
∂

∂tN+2

f(t) =
∂2

∂t1∂tN+1

f(t),

which means

cN+2f(t) = cN+1
∂

∂t1
f(t)

or
cN+2 = cN+1B1(t).

Since cN+2 and cN+1 do not depend on t1 we have either cN+1 = cN+2 = 0 and in a similar
way ck = 0 for k > N or B1 does not depend on t1. The second asumption yields A1 = 0 and
that is why this case is not interesting. Thus we proved that f(t) is a function of t1, t2, . . . , tN .

From

0 =
∂f

∂tN+i

=
∂

∂ti

∂

∂tN
f for i = 1, 2, . . . , N

we have
∂

∂tN
f = const.

Now it is a simple check to show that from (3.15) it follows that

µ0(t) =
N∑

k=0

ckSk(−t). (3.17)

Without abuse of generosity we suppose cN 6= 0. Then

µ0(t) = c
N∑

k=0

akSk(−t) with aN = 1. (3.18)

Consider

E = exp((−t1 + α1)x + (−t2 + α2)x
2 + . . . + (−tN + αN)xN − tN+1x

N+1 − . . .).

we have

E =
∞∑

k=0

Sk(−t1 + α1,−t2 + α2, . . . ,−tN + αN ,−tN+1, . . .)x
k. (3.19)

On the other hand

E = exp(α1x + α2x
2 + . . . , αNxN) exp(−V (x))

=
∞∑

k=0

Sk(α1, . . . , αN , 0, . . .)
∞∑

l=0

Sl(−t)xk+l. (3.20)

Comparing the coefficients in front of xN in (3.19) and (3.20) we get

SN(−t1 + α1, . . . ,−tN + αN) =
N∑

s=0

SN−s(α1, . . . , αN)Ss(−t).

12
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Equations SN−s(α1, . . . , αN) = as, s = 0, . . . , N determines uniquely α1, . . . , αN and hence
there exists α1, . . . , αN ; c such that

µ0(t) = c Sn(−t1 + α1, . . . ,−tn + αn)

which ends the proof of Theorem 3.1.

References

[1] Akhiezer N. I., The classical moment problem and some related questions in analysis,
Hafner publishing company, New York, 1965.

[2] Bateman H., Erdelyi A., Higher transcedental functions, Mc Graw-Hill, New York, 1953.

[3] Dijkgraaf R., Verlinde E., Verlinde H., Loopequations and Virassoro constants in non-
perturbative two-dimensional quantum gravity, Nucl. Phys. B 348 (1991) 435-456.

[4] Fukuma M.,Kawai H., Nagajama R., Continium Schwinger-Dyson equations and universal
structures of two-dimensional quantum gravity, Int. J. Mod. Phys. A6 (1991) 1385-1406.

[5] Haine L., Horozov E., Toda orbits of Laguerre polynomials and representations of the
Virasoro algebra, Bull. des Sci. Math. 1993. (to appear)

[6] Kac V. G.,Raina A.K., Bombay lectures on highest weight representation of infinite di-
mensional Lie algebras, Adv. serires in Math. Phys. vol.2, World Scientific, 1987.

[7] van Moerbeke P., Integrable foundations of string theory, Proc of the CIMPA Summer
School (1991), to appear.

13


