Problem Set #2
Due: 21 September 2018 at noon

1. Which pairs of the following vectors are parallel:
 \[
 \vec{w} = -\vec{e}_1 - 2\vec{e}_2 + 2\vec{e}_3 \quad \quad \vec{x} = -2\vec{e}_1 + 4\vec{e}_2 + 4\vec{e}_3 \\
 \vec{y} = 3\vec{e}_1 + 6\vec{e}_2 - 6\vec{e}_3 \quad \quad \vec{z} = -4\vec{e}_1 - 8\vec{e}_2 + 8\vec{e}_3
 \]

2. For all \(\vec{u}, \vec{v} \in \mathbb{R}^n \), establish that

 (a) \(\| \vec{u} - \vec{v} \| \geq \| \vec{u} \| - \| \vec{v} \| \); \\
 (b) \(\vec{u} \cdot \vec{v} = \frac{1}{4} \| \vec{u} + \vec{v} \|^2 - \frac{1}{4} \| \vec{u} - \vec{v} \|^2 \).

3. An altitude of a triangle is a line segment from a vertex that is perpendicular to the opposite side. (You may want to take a look at Figures 1.47 and 1.48 on p. 33.) Prove that the three altitudes of a triangle are concurrent. The intersection point of the three altitudes in a triangle is called orthocenter of the triangle.

 Hint: If \(H \) is the intersection point of the altitudes from \(A \) and \(B \), prove that \(\vec{CH} \) is perpendicular to \(\overrightarrow{AB} \).