Problem Set #14
Due: 17 January 2020 at 3:00 p.m.

1. (a) In the set $T := \mathbb{R} \cup \{\infty\}$ define “addition” by

$$v + w := \min(v, w)$$

for all $v, w \in T$. Determine which of the axioms of a vector space that relate to addition only (the first 4 axioms) are satisfied for this operation.

(b) Prove that the set $P := \{x \in \mathbb{R} \mid x > 0\}$, with addition and scalar multiplication defined by

$$v + w := vw, \quad \lambda v := \nu^\lambda$$

for all $v, w \in P$ and all $\lambda \in \mathbb{R}$, is a real vector space.

2. (a) Give an example of a nonempty subset U in \mathbb{R}^2 such that U is closed under multiplication by scalars, but U is not a linear subspace of \mathbb{R}^2.

(b) Give an example of a nonempty subset W in \mathbb{R}^2 such that W is closed under addition, but W is not a linear subspace of \mathbb{R}^2.

3. Let V be a vector space and let W_1 and W_2 be subspaces of V.

(a) Prove that $W_1 \cap W_2$ also is a subspace of V. Is $W_1 \cup W_2$ always a subspace of V?

(b) Let $W = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}$. Prove that W is a subspace of V. This subspace is denoted by $W_1 + W_2$.