1. Let U be a finite dimensional vector space, and let V and W be subspaces of U. Recall that $V + W$ and $V \cap W$ are subspaces of U, see Problem 3 from Assignment 14. Prove that
\[\dim(V + W) = \dim V + \dim W - \dim(V \cap W). \]

Hint. Start with a basis of $V \cap W$, complete it to bases of V and W respectively and prove that all vectors obtained in this way form a basis of $V + W$.

2. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation through angle $\pi/3$ about the origin and let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection in the line $x = y$. Write down the standard matrices $[T], [S]$, and $[S \cdot T]$ of the linear transformations T, S, and $S \cdot T$. Verify that $[S \cdot T] = [S][T]$.

3. Let $P : \mathbb{R}^3 \to \mathbb{R}^3$ be the projection onto the plane $x + y + z = 0$. Write down the matrix $[P]$ of P and verify that $[P]^2 = [P]$. Explain why $[P]^2 = [P]$.