Assignment #2
Due: 24 September 2019

1. Let \(F \) be a field and let \(\text{Vect}_F \) be the category of vector spaces over \(F \).
 (a) Prove that products and coproducts in \(\text{Vect}_F \) exist.
 (b) If \(I \) is an index set and, for every \(i \in I \), \(V_i \) is a vector space, describe
 \(\prod_{i \in I} V_i \) and \(\coprod_{i \in I} V_i \).
 (c) For what \(I \) are the vector spaces \(\prod_{i \in I} V_i \) and \(\coprod_{i \in I} V_i \) isomorphic regardless of the choice of the vector spaces \(V_i \)?

2. Let \(C \) be a category and \(Z \) be an object in \(C \). Define a new category \(C_Z \) whose objects are pairs \((X, \varphi)\), where \(X \) is an object in \(C \) and \(\varphi \in \text{Hom}_C(X, Z) \) and
 \[
 \text{Hom}_{C_Z}((X, \varphi), (Y, \psi)) = \{ \theta \in \text{Hom}_C(X, Y) \mid \psi \circ \theta = \varphi \}.

 The categorical product of \((X, \varphi)\) and \((Y, \psi)\) in \(C_Z \) (if it exists) is called fibre product of \(\varphi \) and \(\psi \) in \(C \) and is denoted \(X \times_Z Y \).
 (a) Prove that in the category \(\text{Sets} \) the fibre product \(X \times_Z Y \) exists and describe it.
 (b) Describe the coproduct of \((X, \varphi)\) and \((Y, \psi)\) in \(C_Z \) in \(\text{Sets} \).

 Remark. Note that the coproduct in \(C_Z \) is not called fibred coproduct. What would be called fibred coproduct?

3. (a) Let \(G \) be a group such that \(|x| = 2 \) for every \(x \neq e \). Prove that \(G \) is abelian.
 (b) Let \(G \) be an abelian group. Prove that the set of elements of \(G \) of finite order is a subgroup of \(G \).
 (c) Consider the following elements of \(\text{GL}_2(\mathbb{R}) \):
 \[
 a = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.

 Show that \(|a| = 3, |b| = 4 \), but \(|ab| = \infty \).

4. Let \(S_{n+1} \) be the symmetric group on the set \(\{1, 2, \ldots, n, n+1\} \) and let, for \(1 \leq i \leq n \), \(s_i \) denote the transposition \((i, i+1)\).
 (a) Prove that \(s_1, s_2, \ldots, s_n \) generate \(S_{n+1} \).
 (b) Prove the relations: \(s_i^2 = e \), \(s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \), and \(s_i s_j = s_j s_i \) for \(|i-j| \geq 2 \).
 (c) Define the length \(\ell(\sigma) \) of \(\sigma \in S_{n+1} \) as the smallest \(k \) for which \(\sigma = s_{i_1} s_{i_2} \ldots s_{i_k} \).
 (Note that the expression itself is not unique: \(\ell(13) = 3 \) as \((13) = (12)(23)(12) = (23)(12)(23) \).) Prove that
 \[
 \ell(\sigma) = \# \{ (i, j) \mid i < j \text{ but } \sigma(i) > \sigma(j) \}.

5. Let \(G \) be a finitely generated group. Prove that \(G \) admits a maximal proper subgroup.