Assignment #11
Due: 5 December 2019

1. Let R be a Principal Ideal Domain. What is the minimal number of generators of the R-module

$$R^k \oplus R/(m_1) \oplus R/(m_2) \oplus \cdots \oplus R/(m_s) \quad \text{where} \quad 0 \neq (m_1) \subset (m_2) \subset \cdots \subset (m_s) \neq R?$$

Prove your answer!

2. Let F be a subfield of K and let A and B be $n \times n$ matrices with entries in F. Assume that there exists an invertible matrix Q with entries in K such that $B = QAQ^{-1}$. Prove that there is an invertible matrix R with entries in F such that $B = RAR^{-1}$.

3. (a) Let A be a 3×3 matrix with rational entries such that $A^8 = I_3$. Prove that $A^4 = I_3$.
 (b) Write down a 3×3 matrix B with real entries such that $B^4 \neq I_3$ but $B^8 = I_3$.

4. (a) In $F_{19}[x]$ the polynomial $x^5 - 1$ decomposes into irreducibles as $x^5 - 1 = (x - 1)(x^2 - 4x + 1)(x^2 + 5x + 1)$. Write down (up to similarity) all 2×2 matrices A with entries in F_{19} such that $A^5 = I_2$.
 (b) Write down representatives of the conjugacy classes in the group $GL_3(F_2)$.

5. Let V be a finite dimensional vector space over the algebraically closed field F and let $T : V \rightarrow V$ be a linear transformation.
 (a) Prove that T can be written as $T = S + N$ where S is diagonalizable, N is nilpotent, and $SN = NS$.
 (b) Prove that there exists $p(x), q(x) \in F[x]$ such that $S = p(T)$ and $N = q(T)$.
 (c) Prove that the transformations S and N from (a) are unique.
 (d) Give an example of linear transformation of a real vector space which does not admit a decomposition as in (a).