Solutions #9

1. (a) Let R be Noetherian and let $I \subset R$ be an ideal. Prove that R/I is Noetherian.
 (b) Prove that $\mathbb{Z}[\sqrt{-5}]$ is Noetherian. In particular it is a Noetherian ring which is not a Unique Factorization Domain.

 Solution. (a) Set $\overline{R} := R/I$. By the Fourth Isomorphism Theorem, the ideals \overline{I} of \overline{R} are in a bijection with the intermediate ideals $I \subset J \subset R$. Given $\overline{J} \subset \overline{R}$, consider the corresponding $J \subset R$. Since R is Noetherian, J is finitely generated, i.e., $J = (a_1, a_2, \ldots, a_n)$ for some $a_i \in R$. Then clearly $\overline{J} = (\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n)$ where $\overline{a}_i = a_i + I \subset \overline{R}$. This proves that \overline{J} is finitely generated.

 (b) We first establish that $\mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[x]/(x^2 + 5)$. Indeed, define $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[\sqrt{-5}]$ by $\varphi(f) := f(\sqrt{-5})$. It is clear that φ is a surjective homomorphism. Let $f \in \mathbb{Z}[x]$. Divide f by $x^2 + 5$:

 \[f(x) = q(x)(x^2 + 5) + r(x), \quad \text{where} \quad r(x) = \alpha x + \beta. \]

 Then

 \[f \in \text{Ker } \varphi \iff f(\sqrt{-5}) = 0 \iff r(\sqrt{-5}) = 0 \iff \alpha \sqrt{-5} + \beta = 0 \iff r = 0 \iff f \in (x^2 + 5), \]

 i.e., $\text{Ker } \varphi = (x^2 + 5)$. Thus $\mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[x]/(x^2 + 5)$. Since \mathbb{Z} is Noetherian (being a PID), so is $\mathbb{Z}[x]$ and part (a) implies that $\mathbb{Z}[\sqrt{-5}]$ is Noetherian as well. The fact that $\mathbb{Z}[\sqrt{-5}]$ is not a Unique Factorization Domain was discussed in class. \(\square \)

2. Let \mathbb{F} be a field. The ring of polynomials of infinitely many variables x_1, x_2, x_3, \ldots over \mathbb{F} is by definition

 \[\mathbb{F}[x_1, x_2, x_3, \ldots] := \bigcup_{n \in \mathbb{Z}_{>0}} \mathbb{F}[x_1, x_2, \ldots, x_n] \]

 where $\mathbb{F}[x_1, x_2, \ldots, x_k]$ is considered as a subring of $\mathbb{F}[x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_n]$ for $k < n$ by

 \[\mathbb{F}[x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_n] = \mathbb{F}[x_1, x_2, \ldots, x_k][x_{k+1}, \ldots, x_n]. \]

 (a) Prove that $\mathbb{F}[x_1, x_2, x_3, \ldots]$ is a Unique Factorization Domain.
 (b) Prove that the ideal I of $\mathbb{F}[x_1, x_2, x_3, \ldots]$ generated by x_1, x_2, x_3, \ldots is not finitely generated. In particular $\mathbb{F}[x_1, x_2, x_3, \ldots]$ is not Noetherian.

 Solution. (a) Set $R_n := \mathbb{F}[x_1, x_2, \ldots, x_n]$ for $n \in \mathbb{Z}_{>0}$ and $R := \mathbb{F}[x_1, x_2, x_3, \ldots]$. Since $R_{n+1} = R_n[x]$ and R_0 is a field, we conclude that, for every n, R_n is a UFD. Let $f \in R_n$ then one checks immediately the following statements:

 • f is a unit if and only if $f \in \mathbb{F}^\times \subset R_0$;
 • If $m > n$ then f is irreducible in R_n if and only if f is irreducible in R_m.

 Using the fact that every factorization in R happens in some R_n, we conclude that for $f \in R$ we have

 • f is a unit if and only if $f \in \mathbb{F}^\times \subset R_0$;
 • If $f \in R_n$ then f is irreducible in R if and only if f is irreducible in R_n.

 \[\text{MATH 893: page 1 of 4} \]
Existence of factorization. Let \(f \in R \setminus \mathbb{F} \). Then \(f \in R_n \) for some \(n \) and since \(R_n \) is a UFD, \(f \) factors into a product of irreducibles in \(R_n \). By the remarks above, this is also a factorization into irreducibles in \(R \).

Uniqueness of factorization. Assume that
\[
 f = g_1 g_2 \ldots g_k = h_1 h_2 \ldots h_l
\]
be two factorizations of \(f \) into irreducibles in \(R \). There is an integer \(n \) such that all \(f, g_i, h_j \) belong to \(R_n \). Then the factorizations above are factorizations of \(f \) into irreducibles in \(R_n \). Since \(R_n \) is a UFD, we conclude that \(k = l \) and (after relabeling) \(f_i \) and \(g_i \) are associates.

(b) Assume, to the contrary, that \(I = (f_1, f_2, \ldots, f_k) \) is finitely generated and let \(n \) be an integer such that \(f_i \in R_n = \mathbb{F}[x_1, x_2, \ldots, x_n] \). Then, for \(m > n \), we have \(R_m = R_n[\{x_{n+1}, \ldots, x_m\}] \) and, as we have seen in class, the ideal of \(R_m \) generated by \(I \) equals \(I[\{x_{n+1}, \ldots, x_m\}] \). Our assumption implies that \(x_{n+1} \in I \), i.e.,
\[
 x_{n+1} = g_1 f_1 + g_2 f_2 + \ldots + g_k f_k.
\]
Let \(m > n \) be such that \(g_i \in R_m \) for every \(1 \leq i \leq k \). Then the equation above shows that \(x_{n+1} \) belongs to the ideal of \(R_m \) generated by \(I \). Since the latter ideal equals \(I[\{x_{n+1}, \ldots, x_m\}] \) we conclude that \(x_{n+1} \in I[\{x_{n+1}, \ldots, x_m\}] \). This implies that \(1 \in I \) which is a contradiction.

3. Let \(R \) be a Principal Ideal Domain and let \(Q \) be its field of fractions. Assume \(g \in R \) factors as
\[
 g = p_1^{l_1} p_2^{l_2} \ldots p_k^{l_k}
\]
where \(p_1, p_2, \ldots, p_k \) are primes in \(R \), no two of which are associates, and \(l_i \in \mathbb{Z}_{>0} \).

(a) Prove that, for any \(f \in R \) we have a decomposition
\[
 \frac{f}{g} = \frac{h_1}{p_1^{l_1}} + \frac{h_2}{p_2^{l_2}} + \ldots + \frac{h_k}{p_k^{l_k}}
\]
for some \(h_i \in R \).

(b) If \(R = \mathbb{F}[x] \) and \(\deg f < \deg g \), prove that there is a unique choice for \(h_i \) such that \(\deg h_i \leq \deg p_i^{l_i} \).

Solution. (a) Let \(g_i := \frac{g}{p_i^{l_i}} \in R \). Then \(\text{GCD}(g_1, g_2, \ldots, g_k) = 1 \) and hence \((g_1, g_2, \ldots, g_k) = R \). In particular there exist \(u_1, u_2, \ldots, u_k \in R \) such that
\[
 u_1 g_1 + u_2 g_2 + \ldots + u_k g_k = 1.
\]
Then
\[
 f = u_1 g_1 f + u_2 g_2 f + \ldots + u_k g_k f
\]
and
\[
 \frac{f}{g} = \frac{u_1 g_1 f}{g} + \frac{u_2 g_2 f}{g} + \ldots + \frac{u_k g_k f}{g} = \frac{u_1 f}{p_1^{l_1}} + \frac{u_2 f}{p_2^{l_2}} + \ldots + \frac{u_k f}{p_k^{l_k}} = \frac{h_1}{p_1^{l_1}} + \frac{h_2}{p_2^{l_2}} + \ldots + \frac{h_k}{p_k^{l_k}}.
\]
where \(h_i := u_i f \).

Remark. In the assignment the problem was stated for a Unique Factorization Domain \(R \). Unfortunately, the statement is not correct in that case. Indeed, \(\mathbb{Z}[x] \) is a Unique Factorization Domain but \(\frac{1}{x} \) cannot be decomposed as \(\frac{f}{z} + \frac{g}{x} \) for any \(f, g \in \mathbb{Z}[x] \).

(b) Let

\[
\frac{f}{g} = \frac{h_1}{p_1^{l_1}} + \frac{h_2}{p_2^{l_2}} + \ldots + \frac{h_k}{p_k^{l_k}}
\]

be a decomposition obtain in (a) and let

\[
h_i = q_i p_i^{l_i} + r_i, \quad \text{where} \quad \deg r_i < \deg p_i^{l_i}.
\]

Then we have

\[
\frac{f}{g} = (q_1 + q_2 + \ldots + q_k) + \frac{r_1}{p_1^{l_1}} + \frac{r_2}{p_2^{l_2}} + \ldots + \frac{r_k}{p_k^{l_k}}
\]

and, setting \(q := q_1 + q_2 + \ldots + q_k \), we have

\[
f = q g + r_1 g_1 + r_2 g_2 + \ldots + r_k g_k.
\]

Noting that \(\deg f < \deg g \) and

\[
\deg(r_ig_i) = \deg r_i + \deg g_i = \deg r_i + \deg g - \deg p_i^{l_i} < \deg g,
\]

we conclude that \(\deg q g < \deg g \) which implies that \(q = 0 \) and hence

\[
\frac{f}{g} = \frac{r_1}{p_1^{l_1}} + \frac{r_2}{p_2^{l_2}} + \ldots + \frac{r_k}{p_k^{l_k}}
\]

is the desired decomposition. Note that this decomposition, i.e., the one for which \(\deg r_i < \deg p_i^{l_i} \), is unique. \(\square \)

4. Consider \(f := \det \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in \mathbb{Z}[x, y, z, t] \). Prove that

(a) \((f) \) is a prime ideal.

(b) \(\mathbb{Z}[x, y, z, t]/(f) \) is not a Unique Factorization Domain.

Solution. (a) It is sufficient to prove that \(f \) is irreducible and consider it as an element of \(\mathbb{Z}[x, y, z][t] \). Assume not. Since \(z \) is a polynomial of \(t \) of degree 1, it decomposes as

\[
f = \alpha(x, y, z)(\beta(x, y, z)t + \gamma(x, y, z))
\]

where \(\alpha(x, y, z) \) and \(\beta(x, y, z)t + \gamma(x, y, z) \) are not units in \(\mathbb{Z}[x, y, z] \). Comparing coefficient we have \(x = \alpha(x, y, z)\beta(x, y, z) \). Since \(\mathbb{Z}[x, y, z]/(x) \cong \mathbb{Z}[y, z] \) is a domain, we conclude that \((x) \subset \mathbb{Z}[x, y, z] \) is a prime ideal and hence \(x \in \mathbb{Z}[x, y, z] \) is irreducible. Thus either \(\alpha \beta \) is a unit. Having assumed that \(\alpha \) is not a unit, we conclude that \(\alpha \) is an associate of \(x \). Then the identity \(-yz = \alpha \gamma \) is impossible since \(x \) does not divide \(yz \) (why?). This completes the proof that \((f) \) is a prime ideal.
(b) It is sufficient to show that the images \(\bar{x}, \bar{y}, \bar{z}, \bar{t} \) of \(x, y, z, t \) in \(\mathbb{Z}[x, y, z, t]/(f) \) are irreducible. Indeed, then the equation \(\bar{x}\bar{t} = \bar{y}\bar{z} \) gives two distinct decompositions of an element of \(\mathbb{Z}[x, y, z, t]/(f) \) into irreducibles. Because of symmetry, we will show that \(\bar{x} \) is irreducible. Assume, to the contrary, that \(\bar{x} = \bar{a}\bar{b} \). Then \(a\beta - x \in (f) \). Let \(a = a_0 + a_1 + \ldots + a_k \) and \(\beta = \beta_0 + \beta_1 + \ldots + \beta_l \) be the decomposition of \(a \) and \(\beta \) into homogeneous polynomials (by total degree). We may assume that \(a_i, \beta_j \not\in (f) \) unless they are equal to zero. Since \(f \) is homogeneous, each homogeneous component of \(a\beta - x \) belongs to \((f) \). (Why?). In particular, if \(k + l > 1 \), then \(a_\ell \beta_1 \in (f) \). Since \((f) \) is prime, either \(a_\ell \) or \(\beta_1 \) belongs to \((f) \) which contradicts our assumption. Hence \(k + l \leq 1 \) and clearly \(k + l \neq 0 \), i.e., \(k + l = 1 \). Let \(k = 0 \) and \(l = 1 \). Then

\[
a_0(\beta_0 + \beta_1) = x \in (f).
\]

Equivalently,

\[a_0\beta_0 \in (f) \quad \text{and} \quad a_0\beta_1 = x \in (f).
\]

Since both polynomials above are homogeneous of degree smaller than the degree of \(f \), we have

\[a_0\beta_0 = 0 \quad \text{and} \quad a_0\beta_1 = x = 0.
\]

Since \(x \) is irreducible in \(\mathbb{Z}[x, y, z, t] \), we conclude that \(a_0 = \pm 1, \beta_0 = 0, \) and \(\beta_1 = \pm x \), which implies that \(\bar{a} \) is a unit in \(\mathbb{Z}[x, y, z, t]/(f) \) completing the proof that \(\bar{x} \) is irreducible.

5. An \(R \)-module \(M \) is simple if the only submodules of \(M \) are 0 and \(M \). Prove:

(a) Every simple module is cyclic.
(b) (Schur’s Lemma) If \(M \) and \(N \) are simple \(R \)-modules and \(\varphi : M \to N \) is a homomorphism of \(R \)-modules then \(\varphi = 0 \) or \(\varphi \) is an isomorphism.
(c) Prove that \(\text{End}_R(M) \) is a division ring.

Solution. (a) Recall that \(M \) is cyclic if it is generated by a single element. Let \(M \) be simple and let \(m \neq 0 \) be an arbitrary element of \(M \). The submodule \(K \) of \(M \) generated by \(m \) does not equal \(0 \) since it contains \(m \neq 0 \). Thus \(K = M \), i.e., \(M \) is generated by \(m \). Notice that we proved a stronger statement: \(M \) is generated by any non-zero element.

(b) \(\ker \varphi \) is a submodule of \(M \). If \(\ker \varphi = M \) then \(\varphi = 0 \). Otherwise \(\ker \varphi = 0 \) and \(\text{im} \varphi \) is a nonzero submodule of \(N \), i.e., \(\text{im} \varphi = N \). Thus \(\varphi \) is an isomorphism.

(c) \(\text{End}_R(M) \) is readily a ring with identity. We only need to show that every nonzero \(\varphi \in \text{End}_R(M) \) is a unit. By (b) \(\varphi \) is an isomorphism. In particular \(\varphi \) is a bijection and the map \(\varphi^{-1} \) is well-defined. One checks easily that \(\varphi^{-1} \) is a homomorphism of \(R \)-modules, i.e., that it is \(R \)-linear. Thus the map \(\varphi^{-1} \) belongs to \(\text{End}_R(M) \) which completes the proof.