Shifted convolutions and applications

David Nguyen
(Queen's University, Kingston)

December 3, 2023
2023 CMS, Montréal
Number Theory by early career researchers

Motivation: Moments

- 1859: B. Riemann: RH.
- 1908: E. Lindelöf: LH. $(\mathrm{RH} \Longrightarrow \mathrm{LH}$; $\mathrm{LH} \nRightarrow \mathrm{RH}$.)

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll(1+|t|)^{\epsilon} \quad(\forall \epsilon>0) .
$$

Lindelöf: exponent $1 / 4$ (convexity bound).

- 1916: Hardy, Littlewood (via Weyl's differencing method): Weyl's bound (exponent 1/6). Different approach: Via moments: Drop all but 1 term: $T<t \leq 2 T, T \rightarrow \infty$,

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq\left(\int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t\right)^{\frac{1}{2 k}}(\stackrel{\forall k}{\Longrightarrow} \mathrm{LH}) .
$$

- 1917: Hardy, Littlewood: 2nd moment of zeta (used AFE for $\zeta(s)$).

Theorem A.-Suppose that H and K are positive constants, and
(1.11)

$$
s=\sigma+i t, \quad-H \leqslant \sigma \leqslant H
$$

$$
\begin{equation*}
x>K, \quad y>K, \quad 2 \pi x y=|t| . \tag{1.12}
\end{equation*}
$$

Then (i)

$$
\begin{equation*}
\xi(s)=\sum_{n<x} n^{-s}+\chi \sum_{n<y} n^{s-1}+R \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi=2(2 \pi)^{s-1} \sin \frac{1}{2} s \pi \Gamma(1-s) \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
R=O\left(x^{-\sigma}\right)+O\left(y^{\sigma-1}|t|^{\frac{1}{2}-\sigma}\right) \tag{1.15}
\end{equation*}
$$

$$
\int_{-T}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim 2 T \log T
$$

This result was proved in our memoir "Contributions", Acta Mathematica, Vol. 41 (1917), pp. 119-196 (pp. 151-156).

- 1926: Ingham: 4th moment (used AFE for $\left.\zeta(s)^{2}\right)$.

$$
\zeta^{2}\left(\frac{1}{2}+t i\right)=\sum_{1}^{t / 2 \pi} d(n) n^{-\frac{1}{2}-t i}+i\left(\frac{t}{2 \pi e}\right)^{-2 \pi t} \sum_{1}^{t \cdot \frac{2}{2} \pi} d(n) n^{-\frac{b}{i}+i}+O(\log t),
$$

Theorem B. We have, as $T \rightarrow \infty$,

$$
\int_{0}^{r}\left|\dot{\zeta}\left(\frac{1}{2}+t i\right)\right|^{4} d t=\frac{1}{2 \pi^{2}} T \log ^{4} T+O\left(T \log ^{3} T\right)
$$

- 1979: Heath-Brown: 4th moment with power saving error term (used AFE for $|\zeta(s)|^{2}$).

Lemma 1. Let $k \geqslant 1$ be an integer. There exist constants $c, \alpha(u, v)$, and an integer U, all depending on k, such that $c \geqslant 1$ and

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k}=\sum_{m n \leqslant c T^{t}} d_{k}(m) d_{k}(n)(m n)^{-\frac{1}{2}}(m / n)^{i l} K(m n, t)+O\left(T^{-2}\right),
$$

Theorem 1. There exist constants $a_{4}, a_{3}, a_{2}, a_{1}, a_{0}$ such that, for $T \geqslant 2$ and $\varepsilon>0$,

$$
\begin{array}{r}
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t=a_{4} T(\log T)^{4}+a_{3} T(\log T)^{3}+a_{2} T(\log T)^{2} \\
+a_{1} T \log T+a_{0} T+O\left(T^{7 / 8+\varepsilon}\right) . \tag{2}
\end{array}
$$

Shifted convolutions

Heath-Brown 1979, Thm. 2
$\exists c_{0}(h), \cdots, c_{2}(h)$ such that, uniformly for $h \leq X^{5 / 6}$,

$$
\sum_{n \leq X} \tau_{2}(n) \tau_{2}(n+h)=\sum_{i=0}^{2} c_{i}(h) X \log ^{i} X+O\left(X^{\frac{5}{6}+\epsilon}\right)
$$

Precise guess for higher moments not known until
1984: Conrey, Ghosh conjectured

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{6} d t \sim 42 a_{6} T \frac{(\log T)^{9}}{9!} \quad(T \rightarrow \infty)
$$

Need full asymptotic with sharp error term for

$$
\sum_{n \leq x} \tau_{3}(n) \tau_{3}(n+h), \quad\left(1 \leq h \leq X^{1 / 3}\right) .
$$

Bottle-neck

2001: Conrey, Gonek conjectured

$$
\sum_{n \leq X} \tau_{3}(n) \tau_{3}(n+h)=m_{3}(X, h)+O\left(X^{1 / 2+\epsilon}\right),\left(1 \leq h \leq X^{1 / 2}\right)
$$

2016: N. Ng: Smoothed ternary shifted convolutions \Longrightarrow full asymptotic for 6th moment of zeta (with power-saving error term).
2022: I provided numerical evidence for a special case of Conrey-Gonek's conjecture [arXiv:2206.05877]. Find/compute five numerical constants b_{0}, \ldots, b_{4} such that

$$
\begin{equation*}
\sum_{n \leq X} \tau_{3}(n) \tau_{3}(n+1)-X\left(b_{4} \log ^{4} X+b_{3} \log ^{3} X+\cdots+b_{0}\right) \leq C(\epsilon) X^{\frac{1}{2}+\epsilon} \tag{1}
\end{equation*}
$$

I numerically verify (1) for $X \leq 10^{6}$ (and $\epsilon=0.01$).

```
b}\mp@subsup{b}{4}{}=0.05444467915488409458075187852986170328269943875033898441206910088090662277806315513
b
b}\mp@subsup{b}{2}{}=2.021196057879877779433242407847538094670915083699177892670406035
b
b}=0.2872366477466194172216646178146459501660362743972222496189139074
```

Mathematica file: https://aimath.org/~dtn/papers/correlations/Proof_of_Cor_1.nb or https://github.com/nguyen-d-8/correlations

- solid blue is data $\sum_{n \leq x} \tau_{3}(n) \tau_{3}(n+1)$
- dashed green is leading order term $\frac{1}{4} \prod_{p}\left(1-\frac{4}{p^{2}}+\frac{4}{p^{3}}-\frac{1}{p^{4}}\right) X \log ^{4} X$

- dotted red is prediction
- solid blue is data $\sum_{n \leq x} \tau_{3}(n) \tau_{3}(n+1)$

What about the error term?

- jagged blue is the error: $\sum_{n \leq x} \tau_{3}(n) \tau_{3}(n+1)$ - prediction.
- dashed red is the bounds $\pm 1050 X^{0.51}$

I believe $\sum_{n \leq X} \tau_{3}(n) \tau_{3}(n+h)$ is "too strong" for certain applications.
Suppose (A) and (C) are two statements, possibly conjectures, with $(A) \Longrightarrow(C)$. We say that (A) is "too strong" for (C) if there exists a statement (B) such that, (i), (B) is easier to prove than (A), and, (ii), the following diagram of implications holds:

I propose to study the following modified weaker shifted convolution

$$
\begin{equation*}
\sum_{n \leq X-h} \tau_{3}(n) \tau_{3}(n+h) \tag{2}
\end{equation*}
$$

I showed that this sum (2) is close to its expected value in an L^{2} sense, and that this is enough for certain problems.

I proved, with a power-saving error term, that the second moment of (2) is small:

$$
\begin{equation*}
\sum_{h<X}\left(\sum_{n \leq X-h} \tau_{3}(n) \tau_{3}(n+h)-\operatorname{MT}(X, h)\right)^{2} \ll X^{3-1 / 100} \tag{B}
\end{equation*}
$$

As an application of the above bound (B), we obtain the full asymptotic for the variance of the ternary 3-fold divisor function in arithmetic progressions, averaged over all residue classes (not necessarily coprime) and moduli: There exist computable numerical constants c_{0}, \ldots, c_{8} such that

$$
\begin{equation*}
\sum_{q \leq X} \sum_{1 \leq a \leq q}\left(\sum_{\substack{n \leq x \\ n \equiv a(q)}} \tau_{3}(n)-\operatorname{MT}(X ; q, a)\right)^{2}=X^{2}\left(c_{8} \log ^{8} X+\cdots+c_{0}\right)+O\left(X^{2-1 / 300}\right) \tag{C}
\end{equation*}
$$

for some explicit main term $\operatorname{MT}(X ; q, a)$.
[arXiv:2302.12815] (To appear: Proc. Edinb. Math. Soc.)

- Quantities of the form (C) are of Barban-Davenport-Halberstam type and have their roots in the celebrated Bombieri-Vinogradov Theorem.
- Barban-Davenport-Halberstam type inequalities have many applications in number theory. For instance, a version of this inequality (with $\Lambda(n)$ replaced by related convolutions over primes) was skillfully used by Yitang Zhang (2014) in his spectacular work on bounded gaps between primes.

Lemma 10. Suppose that $\beta=(\beta(n))$ satisfies $\left(A_{2}\right)$ and $R \leq x^{-\varepsilon} N$. Then for any q
we have

$$
\sum_{r \sim R} \varrho_{2}(r) \sum_{l(\bmod r)}^{*}\left|\sum_{\substack{n=l(r) \\(n, q)=1}} \beta(n)-\frac{1}{\varphi(r)} \sum_{(n, q r)=1} \beta(n)\right|^{2} \ll \tau(q)^{B} N^{2} \mathcal{L}^{-100 A} .
$$

- In their work in 2017, Heath-Brown and Li proved a version of Barban-Davenport-Halberstam inequality in their Corollary 2 as an ingredient to show that the sparse sequence $a^{2}+p^{4}$, where a is a natural number and p is a prime, contains infinitely many primes.

Theorem 2 For any $Q \in \mathbb{N}$, let

$$
\mathcal{E}\left(N_{1}, N_{2}, Q_{0}\right)=\sum_{q \leq Q} \sum_{a(\bmod q)}^{*}\left|\mathcal{E}\left(a, q ; N_{1}, N_{2}, Q_{0}\right)\right|^{2} .
$$

Then,

$$
\mathcal{E}\left(N_{1}, N_{2}, Q_{0}\right) \ll\left(Q+\frac{N_{1} N_{2}}{Q_{0}}\right)(\log Q)\left\|\gamma \tau^{1 / 2}\right\|^{2}\left\|\delta \tau^{1 / 2}\right\|^{2} .
$$

