
STRATIFICATION OF WEIGHTS ON CURVES

DAVID T. NGUYEN

Abstract. We give a stratification, i.e., classification of Frobenius eigenvalues according to
their sizes and multiplicities, of weights of certain sheaves, arising from analytic number theory,
on the curve Gm. As an application, we sharpen upper bounds on resulting exponential sums.

1. Introduction

This paper grows out of, and refines, a remark made by N. Katz at the end of his article [Kat87,
p. 17], which says

Remark 1 (Katz). Except in some very special and atypical cases (e.g., r = 1), this sheaf will
not be pure of weight n+ 1.

Our main result (Theorem 1) gives precisely the weights that occur as well as their multiplicities,
i.e., how many there are of each weight. Our interest in these fine details stem from connection
to the problem of reducing gaps between consecutive primes.

Denote by Vβ,α⃗,p(r;n1, . . . , nr) the subvariety of (Gm × Fp)n1+···+nr (with coordinates xj,k)
defined by the equation ∑r

j=1 αj
∏nj

k=1 (xj,k)bj,k = β, where r ≥ 1, bj,k ≥ 1, β ∈ F×
p , α⃗ = (αj)rj=1,

αj ∈ Fp (∀j), nj ≥ 1 (∀j), and · denotes multiplicative inverse modulo p. We form the following
exponential sum, which constitute the main object of the paper,

(1.1) Sβ = Sβ,α⃗,p(r;n1, . . . , nr) =
∑

x∈Vβ,α⃗,p(r;n1,...,nr)
exp

2πi
p

∑
1≤j≤r

1≤k≤nj

xj,k

 .
For ease of exposition, assume in this section that all bj,k = 1. A result of Katz [Kat87] implies

(1.2) |Sβ,α⃗,p(r;n1, . . . , nr)| ≤ C(r;n1, . . . , nr)p
n1+···+nr−1

2

for all p, and for some explicit constant C(r;n1, . . . , nr) independent of β, α⃗, and, more crucially,
p. Katz gave crudely that C(r;n1, . . . , nr) = (∏r

i=1(1 + ni)) − 1 is admissible. His Remark 1
then, in one interpretation, translates to the strict inequality that

(1.3) lim
p→∞

|Sβ,α⃗,p(r;n1, . . . , nr)|
p

n1+···+nr−1
2

<

(
r∏
i=1

(1 + ni)
)

− 1,

unless r = 1 (in which case one gets equality). Subsequent improvements to the bound (1.3)
were made by C. Chen and X. Lin [CL22a; CL22b]–see Section 1.1 for more. Our result gives
improvement to the right side of (1.3) in both the ni and r aspects.
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Corollary 1 (Number-of-variables ni aspect). We have, for r = 2 and n1 = n2 = m ≥ 1,

lim
p→∞

|S1,α⃗,p(2;m,m)|
pm− 1

2
= m2 +m

for all α1, α2 ∈ Fp with α1α2 ̸= 0. We note that ∏2
i=1(1 +m) − 1 = m2 + 2m.

Corollary 2 (Number-of-summands r-aspect). We have, as r → ∞ and n1 = · · · = nr = 2,

lim
p→∞

|Sβ,α⃗,p(r; 2, . . . , 2)|
pr−

1
2

≤ 3r
1 −

√
3
π
r−1/2


for all α1, . . . , αr ∈ Fp with α1 · · ·αr ̸= 0. We note that (∏r

i=1(1 + 2)) − 1 = 3r − 1.

These two corollaries follow from the more general Theorem 1 below. We divide into these
two cases for ease of comparison with previous results; see Table 1 below.

Table 1. Comparisons of the leading constant C(r;n1, . . . , nr) in Equation (1.2).
The smaller the sharper the result.

C(r;n1, . . . , nr) Katz [Kat87] Chen, Lin [CL22a; CL22b] Corollaries 1 and 2
C(r; 2, . . . , 2) 3r − 1 3r − 1 − c1r

2 3r − c23rr−1/2

C(2;m,m) m2 + 2m m2 + 2m− 2 m2 +m

1.1. Survey of previous results. Let notation be as above. The sum S1,α⃗,p(2; 2, 2) was first
studied by J. Friedlander and H. Iwaniec in [FI85] in the context of beating the generalized
Riemann hypothesis. About three decades later, this exact sum S1,α⃗,p(2; 2, 2) reappeared (through
an elaborate series of reductions) as a crucial ingredient to Y. Zhang’s proof [Zha14] in the
different setting of bounded gaps between primes (see [Zha14, Lemma 12, p. 1135]). The bound
needed for this sum in both of these applications is |S1,α⃗,p(2; 2, 2)| ≪ p3/2. Deligne’s Riemann
hypothesis for curves (or Weil’s bound) directly can only give |S1,α⃗,p(2; 2, 2)| ≪ p2.

B. Birch and E. Bombieri [BB85] were the first to obtain, in the Appendix to [FI85], that

|S1,α⃗,p(2; 2, 2)| ≤ c1p
3/2,

for all p ≥ c0, uniformly for any α1, α2 ∈ Fp with α1α2 ̸= 0, where c0, c1 are absolute positive
constants. Birch and Bombieri used Deligne’s Weil I [Del73] and worked with a constant sheaf
pure of weight 0 over a surface. Because of this, their proof relied on resolution of surface
singularity in positive characteristics, which made it challenging to generalize, and also does not
work for all p.

Through an insightful observation, Katz in [Kat87] fixed these issues. He took the Fourier
transform. This converts the problem to one of analyzing certain sheaves on a curve but of
higher weights. Therefore, Katz relied on Weil II [Del80]. He worked out explicitly the implied
constant for a more general class of exponential sums that includes Sβ,α⃗,p as a special case. A
specialization of [Kat87, Theorem, p. 13] gives

|S1,α⃗,p(2; 2, 2)| ≤ 8p3/2,(1.4)
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and, a bit more generally,

(1.5) |Sβ,α⃗,p(2;m,m)| ≤ (m2 + 2m)pm− 1
2

for all p, uniformly for any β ̸= 0, α1, α2 ∈ Fp with α1α2 ̸= 0.
By a completely different method, the constant 8 in Equation (1.4) and m2 + 2m in Equa-

tion (1.5) were recently improved by C. Chen and X. Lin in [CL22a, Corollary 1.2.] and [CL22b],
to 6 and m2 + 2m − 2, respectively. Chen and Lin used p-adic methods which, in particular,
include Adolphson–Sperber’s work on toric exponential sums and D. Wan’s decomposition theo-
rems. They worked with the generating function of the exponential sums over all field extensions
and determined the weights and slopes of the resulting L-functions attached to these sums.

We now briefly comment on our method of proof, and indicate how our approach differs.

1.2. Outline of the proofs. Our method uses ℓ-adic methods–so is similar to Katz’s–the dif-
ference however is that our analysis are more detailed and simplified. Specifically, we define a
sheaf on Gm and analyzed the local monodromy at missing point zero via representations of the
inertial group there.

A standard way of analyzing sheaves on curves is to prove that these sheaves, when viewed
as representations of π1, are absolutely irreducible. This implies that H2

c = 0 since, up to a
Tate twist, the H2

c are the coinvariants of these representations. Absolutely irreducibilities are,
however, often difficult to prove. We go around this difficulty by constructing a sheaf that is lisse
on Gm and totally wild at ∞, and exploit the fact that the H2

c vanishes due to wildness (see
Lemma 3). This modification simplifies our proof.

Our detailed analysis is stimulated by another remark of Katz but in another article [Kat01].
He wrote on page 130 there that “the weight drops reflect the structure of the local monodromies
at the missing points" and that “to prove these finer results requires Deligne’s detailed analy-
sis [Del80, Section 1.8.4] of local monodromy on curves, and of its interplay with weights." We
carry this out in our paper.

The proof of Theorem 1 is broken into three steps.
Step 1. Construction of the corresponding sheaf. Choose F and U so that, via the
Grothendieck–Lefschetz trace formula, the original sum turns into an alternating sum of Frobenius
eigenvalues of the shape

Sβ = (−1)n
p

( 2∑
i=0

(−1)itr
(
Frob | Hi

c (U,F)
)

+ 1
)
.

Step 2. Vanishing of H2
c. If the F is above is also lisse on U and totally wild at a point outside

of U , then one gets for free, by the wild vanishing Lemma 3 below, that H2
c (U,F) = 0.

Step 3. Stratification of weights in H1
c. We now apply the stratification Proposition 1, which

classifies and relates the weights of Frobenius eigenvalues on H1
c(U,F) to those of the stalks

of the push-forward of F at the remaining missing points. Via representation of the inertial
group at these remaining missing points, the weights on these stalks can be counted exactly by
a combinatorics lemma that we develop; see the multi Clebsch–Gordan Lemma 10 below.

Corollaries 1 and 2 follow from Theorem 1 by specializing r and ni into the leading constant
given by Equation (4.1), and applying some standard asymptotic analysis from Lemma 11.
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2. Lemmas

2.1. Algebraic lemmas.

Lemma 1. Let X be a smooth projective curve over Fp, and F a sheaf on X. If F is mixed of
weight ≤ w, then Hi(X,F) is mixed of weight ≤ i+ w.

Proof. This follows from Deligne’s fundamental Théoremè 3.3.1, p. 204, in [Del80]. �

Lemma 2 (Weights of push forward). If F0 is a lisse sheaf over U0, pointwise ι-pure of weight
β, then, for each x ∈ |S0| and every eigenvalue α of Fx on j∗F0, we have wN(x)(α) ≤ β.

Proof. This is Lemme 1.8.1, p. 175, of [Del80]. �

Theorem A (Purity of pushfowards). Let X0 be a proper and smooth curve over Fq, j : U0 → X0
the inclusion of a dense open set, and F0 a point-wise pure lisse sheaf of weight n on U0. Then,
Hi (X, j∗F) is pure of weight n+ i.

Proof. This is Théoremè 3.2.3, p. 200, of [Del80]. �

Theorem B (Weight drop). If F0 is pointwise ι-pure of weight β, then the representation
GrMi (F0η) of W (η/η) is ι-pure of weight β + i.

Proof. This is Théoremè 1.8.4, p. 175, of [Del80]. �

Lemma 3 (Wild vanishing). Let X be a smooth projective curve over Fp, U $ X a nonempty
open set, and F a lisse sheaf on U . If F is totally wild at some x ∈ X −U , then H2

c(U,F) = 0.

Proof. This is a special case of [Kat88, Lemma 2.1.1 (1), p. 28]. �

Lemma 4. The sheaf F on Gm defined by Equation (4.3) is lisse of rank
r∏
i=1

1 +
ni∑
j=1

bi,j
GCD(bi,j, p)


pure of weight n = ∑r

i=1 ni, and tame at zero.

Proof. This follows from the fact that each Kl(i) on Gm is lisse of rank

1 +
ni∑
j=1

bi,j
GCD(bi,j, p)

,

pure of weight ni, and tame at zero (cf. [Kat88, p. 4.1.1], [Kat87, Lemma 1, p. 14]). �

Lemma 5. Let F be the sheaf on Gm defined by Equation (4.3). We have

(2.1) χc (Gm,F) = −
r∏
i=1

1 +
ni∑
j=1

bi,j
GCD(bi,j, p)

 .
Proof. For β ̸= 0, every ∞-break of F is 1. Thus,

χc (Gm,F) = −Swan∞(F) = −rank(F).

Equation (2.1) then follows immediately from Lemma 4. �
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2.2. Number theory lemmas.

Lemma 6. Let Sβ and Kloos(i, a) be defined as in Equations (1.1) and (4.2), respectively. Then,
for any t ∈ Fp, we have

(2.2)
∑
β∈Fp

ψ(tβ)Sβ =
r∏
i=1

Kloos(i, αit).

Proof. The proof is elementary and makes use of the orthogonality condition of additive characters–
we include it here for completeness. For γ, γ′ ∈ Fq, we have

(2.3) 1
p

∑
β∈Fp

ψ(β(γ − γ′)) =

1, if γ = γ′,

0, otherwise.

Using Equation (2.3), we detect the condition
r∑
i=1

αi∏ni
j=1(xi,j)bi,j

= β

by
1
p

∑
β1∈Fp

ψ

(
β1

(
r∑
i=1

αi∏ni
j=1(xi,j)bi,j

− β

))
.

Thus, using the above in the definition of Sβ, we have

∑
β∈Fp

ψ(tβ)Sβ =
∑
β∈Fp

ψ(tβ)
∑

(xi,j)bi,j ∈F×
p

ψ

∑
i,j

(xi,j)bi,j

 1
p

∑
β1∈Fp

ψ

(
β1

(
r∑
i=1

αi∏ni
j=1(xi,j)bi,j

− β

))
.

Bringing the β sum inside and evaluate this sum using Eq. (2.3) once more, the above is equal
to

∑
(xi,j)bi,j ∈F×

p

ψ

∑
i,j

(xi,j)bi,j

 ∑
β1∈Fp

ψ

(
r∑
i=1

αiβ1∏ni
j=1(xi,j)bi,j

)
1
p

∑
β∈Fp

ψ(β(t− β1))

=
∑

(xi,j)bi,j ∈F×
p

ψ

∑
i,j

(xi,j)bi,j +
r∑
i=1

αit∏ni
j=1(xi,j)bi,j

 .
Since ψ is additive, the above in turns can be written as ∑

x1,j∈F×
p

ψ

∑
j

(x1j)bi,j + α1t∏
j x1,j



 ∑
x2,j∈F×

p

ψ

∑
j

(x2,j)bi,j + α1t∏
j x2j


×

· · · ×

 ∑
xr,j∈F×

p

ψ

∑
j

xrj + α1t∏
j(xr,j)bi,j


 =

r∏
i=1

Kloos(i, αit),

which is the right side of Equation (2.2). �

By Fourier inversion, we obtain the following
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Lemma 7 (Discrete Fourier inversion). Let Sβ and Kloos(i, a) be defined as in Equations (1.1)
and (4.2), respectively. Then, for any β ∈ F×

p , we have

(2.4)
∑
t∈F×

p

ψ(−tβ)
r∏
i=1

Kloos(i, αit) = pSβ − (−1)n.

Proof. By Equations (2.2) and (2.3), we have
∑
t∈Fp

ψ(−tβ)
r∏
i=1

Kloos(i, αit) =
∑
t∈Fp

ψ(−tβ)
∑
β1∈Fp

ψ(tβ1)Sβ1

=
∑
β1∈Fp

Sβ1

∑
t∈Fp

ψ(t (β1 − β)) = pSβ.

The identity (2.4) follows by noting that Kloos(i, 0) =
(∑

xj∈F×
p
ψ(xj)

)ni = (−1)ni . �

2.3. Combinatorics lemmas. In the statements of the lemmas and also later, we use the
coefficient extractor

[zn]F (z) def= fn for a power series F (z) =
∑
n

fnz
n.

Lemma 8. Let r, n ≥ 1 be positive integers. Consider a partition n = n1 + · · · +nr, where each
ni ≥ 1. Define

2

(
n1, . . . , nr

k

)
def= [tk]

r∏
i=1

ni∑
j=0

t−ni+2j.

Then, for n even, we have, for −nr ≤ 2k ≤ nr, k ∈ Z,

2

(
n1, . . . , nr

2k

)
=
(
r + n

2 − 1
r − 1

)
(2.5)

+
r∑
j=1

(−1)j
(
r

j

) ∑
ni1 +ni2 +···+nij

≤ n
2 +k−j

ni1 ≤ni2 ≤···≤nij

(
r + n

2 −∑j
s=1 nis − j − 1
r − 1

)
.

And, for n odd, we have, for −nr ≤ 2k + 1 ≤ nr, k ∈ Z,

2

(
n1, . . . , nr

2k + 1

)
=
(
r + n+1

2 − 1
r − 1

)
(2.6)

+
r∑
j=1

(−1)j
(
r

j

) ∑
ni1 +ni2 +···+nij

≤ n+1
2 +k−j

ni1 ≤ni2 ≤···≤nij

(
r + n

2 −∑j
s=1 nis − j − 1
r − 1

)
.

Here, and below, we are using the convention for the binomial coefficients that(
n

k

)
= 0 if n < 0 or k > n.

We note that this is not the convention in Maple or Mathematica.
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Proof. We have, for any positive integers r, n ≥ 1,
r∏
i=1

ni∑
j=0

t−ni+2j =
(

r∏
i=1

t−ni

)
r∏
i=1

 ni∑
j=0

t2j


= t−n

r∏
i=1

1 − (t2)ni+1

1 − t2
= t−n

( 1
1 − t2

)r r∏
i=1

(1 − t2(ni+1))

= t−n
( ∞∑
i=0

(
r + i− 1
r − 1

)
t2i
)1 +

r∑
j=1

(−1)j
(
r

j

) ∑
ni1 ≤ni2 ≤···≤nij

t2
∑j

s=1(nis +1)

 .
Extracting the coefficients of both sides of the above relation gives Equations (2.5) and (2.6). �

We record the following special cases.

Lemma 9. If one of r or m (or both) is an even positive integer, then, we have, for −mr ≤
2k ≤ mr,

2

( r times︷ ︸︸ ︷
m, . . . ,m

2k

)
=
∑
i≥0

(−1)i
(
r

i

)(
r + k + mr

2 − i(m+ 1) − 1
r − 1

)
.

For r and m both odd positive integers, we have, for −mr ≤ 2k + 1 ≤ mr,

2

( r times︷ ︸︸ ︷
m, . . . ,m

2k + 1

)
=
∑
i≥0

(−1)i
(
r

i

)(
r + k + mr+1

2 − i(m+ 1) − 1
r − 1

)
.

We apply Lemma 8 to obtain the "multi" Clebsch–Gordan rule.

Lemma 10 (Multi Clebsch–Gordan rule). Let r ≥ 2 be an integer. Let Uni
, (i = 1, . . . , r), be the

irreducible representations of sl(2,C) of highest weights ni. Assume that n1 ≤ n2 ≤ · · · ≤ nr,
then

(2.7)
r⊗
i=1

Uni
≃

K(n1,...,nr)⊕
k=0

ck(n1, . . . , nr)Un−2k

as representations of sl(2,C), where n = n1 + n2 + · · · + nr,

K(n1, . . . , nr) = n

2 − 1
2 max

(
1 − (−1)n

2 , nr − nr−1 − · · · − n1

)
,

and

(2.8) ck(n1, . . . , nr) =
k∑
j=0

(−1)j
2

(
n1, . . . , nr
n− 2k + 2j

)
,

with
2

(
n1,...,nr

·

)
given by Lemma 8.

Proof. It suffices to show that the two sides of Equation (2.7) have the same formal character.
We have

ch (Uni
) =

ni∑
j=0

t−ni+2j.
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and

ch
(

r⊗
i=1

Uni

)
=

r∏
i=1

ch (Uni
) =

r∏
i=1

ni∑
j=0

t−ni+2j.

Thus, the coefficient c0(n, r) is the number of times tn appears in the above product, i.e.,
c0(n, r) =

2

(
n1,...,nr

n

)
. Similarly, the coefficient c1(n, r) is the number of times tn−2 appears minus

the number of times tn appears in the above product, i.e., c1(n, r) =
2

(
n1,...,nr

n−2

)
−

2

(
n1,...,nr

n

)
. By

induction, we obtain Equation (2.8). �

Lemma 11. Let P (u) = u−2 + 1 + u2. Then, we have

(2.9)
∞∑
r=0

[u0]P (u)rzr = 1√
1 − 2z − 3z2

.

As a consequence, we have, as r → ∞,

(2.10) [u0]P (u)r =
√

3
π

3r
r1/2

(
1 − 1

8r + 1
128r2 +O(r−3)

)
.

Proof. We have
∞∑
r=0

(P (u)z)r = 1
1 − zP (u) .

Let u1(z) and u2(z) denote the roots of 1−zP (u) = 0 such that limz→0 u1(z) = limz→0 u2(z) =
0. Explicitly,

u1(z) =

√
−

√
−3z2 − 2z + 1

z
+ 1

z
− 1

√
2

and u2(z) = −u1(z).

By Cauchy’s integral formula for derivatives and residue theorem, we can verify that

[u0]
∞∑
r=0

(P (u)z)r = 1
2πi

∫
|u|=ϵ

du

u(1 − zP (u)) = z

(
u′

1(z)
u1(z)

+ u′
2(z)
u2(z)

)
= 2zu

′
1(z)
u1(z)

,

which, after simplifications, becomes

(2.11) 1√
−3z2 − 2z + 1

.

This verifies Equation (2.9). To derive Equation (2.10), we use the fact that

[zr](1 − z)−α = nα−1

Γ(α)

(
1 + α(α− 1)

2r + α(α− 1)(α− 2)(3α− 1)
24r2 +O

( 1
r3

))
,

and factor the denominator of Equation (2.11) as√
(−z − 1)(1

3 − z) = 1√
3

√
(−z − 1)(1 − 3z).

The closest singularity 1/3 to the origin dominates, and we obtain Eq. (2.10). �
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3. General theory

In this section, we collect known facts about totally wild pure sheaves. We follow [Kat88,
Section 7.1] closely.

3.1. Pure sheaves, totally wild at ∞. Let X be a smooth projective curve over Fp. Let
U $ X be an open set and put S = X − U . Let j : U ↪→ X be the natural inclusion.

Let F be a lisse sheaf on U , pure of weight w. We have a short exact sequence of sheaves on
X:

0 → j!F → j∗F →
⊕
s∈S

(j∗F)s → 0,

which gives the long exact cohomology sequence on X:

(3.1)

0 H0(X, j∗F)
⊕
s∈S

H0 (X, (j∗F)s)

H1
c(U,F) H1(X, j∗F) 0.

H1(X, f!F)

def

In the above sequence, the top left H0(X, f!F) = 0 because F is lisse and X is proper;
Hi
c(U,F) = 0 = Hi(X, j∗F) (∀i ≥ 3), and Hi (X, (j∗F)s) = 0 (∀i ≥ 1), for dimension rea-

sons. By Deligne’s Fundamental Theorem, and by Lemma 2, ⊕s∈S H0 (X, (j∗F)s) and H1
c(U,F),

are mixed of weights ≤ w and ≤ 1 + w, respectively. The remaining groups H0(X, j∗F) and
H1(X, j∗F) are pure of weights w and 1 + w, respectively, by Theorem A.

If, in addition, that F is totally wild at some x ∈ X − U , then H2
c(U,F) = 0 (by Lemma 3),

and (j∗F)x = 0 (see [Kat87, p. 101]), and, thus, the long exact sequence (3.1) becomes the
short exact sequence

0 →
⊕

s∈S−{x}
(j∗F)s ↪→ H1

c(U,F)� H1(X, j∗F) → 0.

Hence, in this situation, the parts of H1
c(U,F) that are pure of weight 1+w and mixed of weight

≤ w are isomorphic to H1(X, j∗F) and ⊕s∈S−{x} H0 (X, (j∗F)s), respectively. This reduces the
task of counting the lower weights in H1

c(U,F) to studying the stalks of the sheaf j∗F at the
remaining missing points s ∈ S − {x}. We summarize this discussion in the following

Proposition 1 (Stratification of weights in H1
c ; [Kat88]). Let p be an odd prime, and take ℓ = 2.

Let λ be a 2-adic place of the field E = Q(ζp), where ζp is a root of unity. Let X be a smooth
projective curve over Fp. Let U $ X be an open set and put S = X − U . Let j : U ↪→ X be
the natural inclusion. Suppose F is a lisse Eλ-sheaf on U , pure of weight w, and totally wild at
some x ∈ X − U . Then, we have the short exact cohomology sequence

0 →
⊕

s∈S−{x}
(j∗F)s ↪→ H1

c(U,F)� H1(X, j∗F) → 0,(3.2)

and in H1
c(U,F):
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(1) All weights are ≤ 1 + w.
(2) There are canonical isomorphisms of D0/I0 ≃ Gal

(
Fq/Fq

)
-modules

H1(X, j∗F) ≃ the part of H1
c(U,F) pure of weight 1 + w

and ⊕
s∈S−{x}

(j∗F)s ≃ the part of H1
c(U,F) of weight ≤ w.

(3) The multiplicity of weight 1 + w is equal to

h1
c(U,F) −

∑
s∈S−{x}

h0 (X, (j∗F)s) .

4. Application to exponential sums

In this section, we apply the method from the previous section to specific sheaves coming from
analytic number theory.

Theorem 1 (Main result). Let Sβ,α⃗,p(r;n1, . . . , nr) be defined as in Equation (1.1). For p an
odd prime, we have

|Sβ,α⃗,p(r;n1, . . . , nr)| ≤ C(r;n1, . . . , nr)p
n−1

2 +
K(r;n1,...,nr)∑

k=1
ck(r;n1, . . . , nr)pk−1,

where

(4.1) C(r;n1, . . . , nr) =
r∏
i=1

1 +
ni∑
j=1

bi,j
GCD(bi,j, p)

−
K(r;n1,...,nr)∑

k=1
ck(r;n1, . . . , nr),

where

K(r;n1, . . . , nr) = n

2 − 1
2 max

{
1 − (−1)n

2 , nr − nr−1 − · · · − n1

}
,

and

ck(r;n1, . . . , nr) =
k∑
j=0

(−1)j
2

(
n1, . . . , nr
n− 2k + 2j

)
,

with
2

(
n1,...,nr

·

)
given by Lemma 8.

We make a few remarks before presenting the proof of this theorem.

Remarks 2. (i) Interpreting cohomologically, the leading constant C(r;n1, . . . , nr) is equal
to the dimension of H1 (P1, j∗F), where F is the sheaf on Gm constructed by Equa-
tion (4.3).

(ii) The method of proof could be extended to all primes p.
(iii) Katz in [Kat87] deals with the more general exponential sum

∑
x∈Vβ,α⃗,pm

ψ

 ∑
1≤i≤r

1≤j≤ni

xi,j

 ∏
1≤i≤r

1≤j≤ni

χi,j(xi,j),
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where ψ is a non-trivial additive character of Fp and χi,j is any collection of (possibly
trivial) multiplicative characters of F×

p . In this context, the sum Sβ,α⃗,p(r;n1, . . . , nr) in
Theorem 1 corresponds to the special case m = 1, ψ(·) = ep(·) and all the χi,j are trivial.
Our proof of Theorem 1 extends directly to the case that m > 1, ψ is non-trivial, and all
the χi,j are trivial.

(iv) In the complementary case the χi,j are not all trivial, the proof of Theorem 1 could be
generalized to give an algorithm (depending on the given χi,j), as opposed to an explicit
formula, to compute the number C(r;n1, . . . , nr) of "top weights" in the theorem.

Proof of Theorem 1. We break the proof into three steps.
Step 1. Construction of the corresponding sheaf. In [Kat87], Katz constructed a sheaf on
A1 whose trace is equal to (−1)npSβ, but this sheaf is not necessarily lisse, which then requires
a special argument to show that H2

c = 0. We will construct a (slightly different) sheaf on Gm,
one that is lisse, so that the wild vanishing Lemma 3 applies directly, provided that the sheaf is
also wild at one of the missing points.

Pick a 2-adic place λ of the field E = Q(ζp), where ζp is a root of unity. Denote by Kloos(i)
the lisse Eλ-sheaf on Gm, which is denoted

Kl(ψ; 1, 1, . . . , 1︸ ︷︷ ︸
ni+1 times

; 1, bi,1, . . . , bi,ni
)

in [Kat88, Theorem 4.1.1]. Its trace function at t ∈ Gm is given by

tr (Frobt | Kloos(i)t) = (−1)niKloos(i, t),

where

(4.2) Kloos(i, a) def=
∑

xi,1,...,xi,ni
∈F×

p

ψ

 ni∑
j=1

xi,j + a∏ni
j=1(xi,j)bi,j

 , (a ∈ Fp).

Let j : Gm ↪→ P1 and j1 : Gm ↪→ A1 be the natural inclusions, and let Tαi
denote the

automorphism x 7→ αix of Gm as depicted below.

F Lψ(−βx)

Gm A1 P1j1

j

Tαi

The sheaf we are interested in is the following lisse Eλ-sheaf F , pure of weight n, on Gm defined
by

(4.3) F =
(

r⊗
i=1

T ∗
αi
Kl(i)

)
⊗
(
j1

∗Lψ(−βx)
)
,

where Lψ(−βx) is the lisse Artin–Schreier sheaf on A1 corresponding to the additive character
x 7→ ψ(−βx) of Fp. By construction, the trace function at t ∈ Gm of F is given by

tr (Frobt | Ft) = (−1)nψ(−tβ)
r∏
i=1

Kloos(i, αit).
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Summing over t ∈ Gm of the above gives, by Lemma 7,∑
t∈Gm

tr (Frobt | Ft) = (−1)n
∑
t∈Gm

ψ(−tβ)
r∏
i=1

Kloos(i, αit) = (−1)npSβ − 1.

The left side of the above, by the Lefschetz trace formula for F , is equal to
∑
t∈Gm

tr (Frobt | Ft) =
2∑
i=0

(−1)itr
(
Frob | Hi

c (Gm,F)
)
.

Hence, the original exponential sum is given by

(4.4) Sβ = (−1)n
p

( 2∑
i=0

(−1)itr
(
Frob | Hi

c (Gm,F)
)

+ 1
)
.

Step 2. Vanishing of H2
c. By Lemma 3, we have H2

c (Gm,F) = 0, as F is lisse on Gm and
totally wild at ∞ ∈ P1 −Gm. We also have H0

c (Gm,F) = 0, since F is lisse and P1 is proper.
Thus, by Equation (4.4), we obtain

(4.5) Sβ = (−1)n
p

(
−tr

(
Frob | H1

c (Gm,F)
)

+ 1
)
.

We record the next lemma for latter use.

Lemma 12. For β ̸= 0, the cohomology group H1
c (Gm,F) has dimension

(4.6) h1
c =

r∏
i=1

1 +
ni∑
j=1

bi,j
GCD(bi,j, p)

 .
Proof. For β ̸= 0, H1

c is the only non-vanishing cohomology group, so

χc (Gm,F) = −h1
c .

Equation (4.6) follows directly from the above equation. �

Step 3. Stratification of weights in H1
c. We now apply Proposition 1 with U = Gm, X = P1,

(hence, S = {0,∞}), and with F the lisse Eλ-sheaf on U , pure of weight n, totally wild at ∞,
given by Equation (4.3). Then, we have the short exact sequence

0 → (j∗F)0 ↪→ H1
c(U,F)� H1(X, j∗F) → 0,(4.7)

and in H1
c(U,F):

(1) All weights are ≤ 1 + n.
(2) There is a canonical isomorphism of Gal

(
Fq/Fq

)
-modules

(4.8) H1(X, j∗F) ≃ the part of H1
c(U,F) pure of weight 1 + n

and

(4.9) (j∗F)0 ≃ the part of H1
c(U,F) of weight ≤ n.

(3) The multiplicity of the top weight 1 + n is equal to h1
c(F) minus the dimension of the

stalk (j∗F)0.
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Thus, by Equations (4.8) and (4.9), Eq. (4.5) becomes

(4.10) Sβ = (−1)n
p

(
−tr

(
Frob | H1

(
P1, j∗F

))
− tr (Frob | (j∗F)0) + 1

)
.

By Theorem A, H1 (P1, j∗F) is pure of weight 1 + n and we have

(4.11) tr
(
Frob | H1

(
P1, j∗F

))
=

h1(P1,j∗F)∑
i=1

γi

with

|γi| = p(n+1)/2, for each i = 1, 2, . . . , h1
(
P1, j∗F

)
.

Next, by definition of F , we have

(j∗F)0 ≃
((

r⊗
i=1

j∗T
∗
αi
Kl(i)

)
⊗ j∗j

∗
1Lψ(−βx)

)
0
.

As I0-representations, the sheaves j∗T
∗
αi
Kl(i) and j∗j

∗
1Lψ(−βx) "are" a single unipotent block

Uni
, (dimUni

= 1 + ni) and an identity matrix of dimension 1, respectively. Thus,

(j∗F)0 ≃
r⊗
i=1

Uni
.

By Equation (2.7), the above tensor product decomposes to

r⊗
i=1

Uni
≃

K(n1,...,nr)⊕
k=0

ck(n1, . . . , nr)Un−2k,

where ck(n1, . . . , nr) is given explicitly by Equation (2.8). Each Un−2k is pure of (real) weight
2k and adds one dimension to the stalk (j∗F)0. Each coefficient ck(n1, . . . , nr) thus gives the
number of weights = 2k in (j∗F)0, (0 ≤ k ≤ K(n1, . . . , nr)). Thus,

tr (Frob | (j∗F)0) =
K(n1,...,nr)∑

k=0
ck(n1, . . . , nr)pk.

Hence, by the above and Equation (4.11), Eq. (4.10) becomes

Sβ = (−1)n
p

−
h1(P1,j∗F)∑

i=1
γi −

K(n1,...,nr)∑
k=0

ck(n1, . . . , nr)pk + 1

 .
Noting that, by the short exact sequence (4.7),

(4.12) h1
(
P1, j∗F

)
= h1

c (Gm,F) −
K(n1,...,nr)∑

k=0
ck(n1, . . . , nr),

where h1
c given by Equation 4.6, this completes the proof of Theorem 1. �
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Remarks 3. (i) We were lead to compute h1 (P1, j∗F), which is equal to C(r;n1, . . . , nr),
via the right side of Equation (4.12), as we were not able to compute h1 (P1, j∗F) directly.

(ii) The constant C(r;n1, . . . , nr) depends on bj,k via h1
c (Gm,F) given by Equation 4.6, but

is independent of p, β, and α⃗.
(iii) If we define the angles θj ∈ [0, 2π) by γj = p(n+1)/2eiθj , where γi given by Equation 4.11,

then the dependence on p, β, and α⃗ appears in these angles θj = θj(p, β, α⃗). Our proof
of Theorem 1, unfortunately, gives no information about the distribution of the angles
θj(p, β, α⃗) as p (or β, or α⃗) varies. We hope to investigate this problem in a future article.
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the author’s knowledge, among other things, of how to compute the local weight drops from
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