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Through an ingenious combination of the two approaches by Hecke and
Deuring, Heilbronn has succeeded in proving the long-supposed theorem that
the class number h(d) of the imaginary quadratic number field of discriminant
d becomes infinite with |d|. It is natural to ask for a more accurate lower bound
for h(d). The following is the expected asymptotic formula

(1) log h(d)∼ log
Æ

|d|

to be proven. Dirichlet proved that

π|d|−
1
2 h(d) = Ld(1) (d < −4),

where

Ld(s) =
∞
∑

n=1

�

d
n

�

n−s,

thus, (1) is equivalent to the statement

(2) log Ld(1) = o(log |d|).

One will assume that (2) also holds for positive discriminants d; and this will
also be proved. Indeed, if ϵd means the fundamental unit, then according to
Dirichlet,

2d−
1
2 h(d) logϵd = Ld(1) (d > 0),

and, consequently, the relationship

log(h(d) logϵd)∼ log
p

d

1This is a translation of Siegel, C. L., Über die Classenzahl quadratischer Zahlkörper." Acta
Arith. 1 (1935) pp. 83-86. It is available at https://mast.queensu.ca/∼dnguyen/translations
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is the analogue of (1) for real quadratic fields. One shall further ask whether
(2) could be generalized to arbitrary algebraic number fields. Since Ld(1) is
equal to the residue of the zeta function of the quadratic number field of dis-
criminant d, then, on the basis of Dedekind’s class number formula, for any
algebraic number field of fixed degree with discriminant d, class number h,
and regulator R, one expects that

(3) log(hR)∼ log
Æ

|d|

holds true. Using class field theory, the method presented here could be used
to reduce the task of proving (3) to the set of all solvable fields with respect
to an arbitrary fixed algebraic number field. The general case however could
well be inaccessible as long as the decomposition laws of non-solvable fields
remain unknown.

For the proof of (2) it seems appropriate to modify Heilbronn’s idea in such
a way that the asymptotic expansion of the series

∑∞
n=−∞(an2+ bn+ c)−s orig-

inating from Deuring is no longer needed for 4ac − b2 →∞ and instead the
Hecke estimate is transferred to that of the zeta function of a biquadratic field
composed of two quadratic number fields.

Let R be an algebraic number field of degree n with discriminant d; of its
conjugates, let r1 be the number of real and r2 of complex conjugate pairs.
For brevity, let r1 + r2 = q. If x1, . . . , xq are positive variables and x r2+ℓ = xℓ
(ℓ= r1+1, . . . , r1+ r2), set

∏n
k=1 xk = N x and

∑n
k=1 xk = σ(x). Let ζ(s,R) be

the zeta function of R and let χ be its residue at s = 1, further set

(4) (2π)−r2 |d|
1
2χ = λ.

Lemma 1:
In the entire complex plane,

2−r2sπ−
n
2 s|d|

s
2 Γ r1

� s
2

�

Γ r2(s)ζ(s,R) =
λ

s(s− 1)
+(5)

+
∑

a

∫

N x≥1

· · ·
∫

�

N x
s
2 + N x

1−s
2

�

e−π(Na)
2
n |d|−

1
nσ(x) d x1

x1
. . .

d xq

xq
,

where a runs through all integral ideals of R.
The proof follows directly from the integral representation of ζ(s,R), which

Hecke used to prove the functional equation.
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Lemma 2:
Let 0< s < 1 and ζ(s,R)≤ 0. Then

(6) χ > s(1− s)2−ne−2nπ|d|
s−1

2 .

Proof: For real s, all terms of the infinite series on the right side of (5) are
positive. The term with a = 0 is reduced if the q-fold integral is only over the
q-dimensional cube |d|

1
n ≤ xℓ ≤ 2|d|

1
n (ℓ = 1, . . . , q); but in this the integrand

is at least |d|
s
2 e−2nπ2−q|d|−

q
n . Hence the infinite series is at least |d|

s
2 e−2nπ2−n.

If 0< s < 1 and ζ(s,R)≤ 0, then by Lemma 1,

λ

s(s− 1)
+ |d|

s
2 e−2nπ2−n < 0.

So, by (4), the assertion (6) is proven.
Let d be the discriminant of a quadratic number field R1. If D is the discrim-

inant of a quadratic number field different from R1 and t is the discriminant
of the field generated by

p
dD, then t−1dD is an integer, i.e.,

(7) |t|≦ |dD|.

Let R2 be the biquadratic number field generated by
p

d and
p

D. As a
special case of well-known theorems of class field theory, we have

Lemma 3: The discriminant of R2 is equal to dDt and

ζ(s,R1) = ζ(s)Ld(s),
ζ(s,R2) = ζ(s)Ld(s)LD(s)Lt(s).

Furthermore, one obtains by partial summations the following

Lemma 4:
We have

Ld(1)< 3 log |d|.

Using the last three lemmas, the proof of (2) can now be carried out as
follows. If (2) were false, then there would be a positive ε < 1 and |d| of any
size, such that Ld(1)> |d|ε or Ld(1)< |d|−ε . Suppose

(8) 3 log |d|< |d|ε.
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Then, by Lemma 4, the case must be

(9) Ld(1)< |d|−ε.

Also,

(10) |d|
ε
2 >

4e4π

ε(1− ε)
,

so (9) yields the inequality

Ld(1)< (1− ε)ε2−2e−4π|d|−
ε
2 .

According to Lemmas 2 and 3 then ζ(1−ε,R1)> 0. Furthermore, fix a d that
satisfies the inequalities (8) and (10).

The function ζ(s,R1) becomes negatively infinite when s tends towards 1.
So it has a root σ in the interval 1 − ε < σ < 1. According to Lemma 3,
ζ(σ,R2) = 0. If one applies Lemma 2 with R = R2 and uses Lemma 3, one
obtains the equation

Ld(1)LD(1)Lt(1)> σ(1−σ)2−4e−8π|dDt|
σ−1

2 .

According to (7) and Lemma 4, it therefore holds that

LD(1)>
σ(1−σ)

32 · 24 · e8π log |d| log |dD|
|dD|σ−1,

and, consequently, becauseσ−1> −ε for all sufficiently large |D|, the estimate

LD(1)> |D|−ε

is valid. So (9) can only hold for finitely many d, contradicting the assumption
that (2) is false.

(Received December 4, 1934.)
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