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Abstract — In a previous work [7], we introduced
and studied the properties of a binary communication
channel with memory whose additive noise process
is generated according to a finite queue. The queue
operates in two modes — a uniform mode and a
non-uniform mode — resulting in uniform and non-
In this
work, the capacities of the uniform and non-uniform

uniform queue-based channels, respectively.

queue-based channels are compared analytically and
numerically with the capacity of the Gilbert-Elliott
burst-noise channel. We also consider the problem of
fitting our queue-based channels to a typical binary
modulated correlated Rayleigh fading channel. This
is achieved by estimating the parameters of the
queue-based channels that best characterize the error
sequence generated by the Rayleigh fading channel.

Keywords: Channel modeling, binary channels with
additive burst-noise, error statistics, capacity, correlated
Rayleigh fading channel.

1 Introduction

It is well known that the real-world communication
channel has memory, often introducing noise distortion
in a bursty fashion. In order to design effective commu-
nication systems for such a channel, it is important to
thoroughly understand its behavior. This is achieved
via channel modeling, where the primary objective is
to provide a model whose properties are both complex
enough to closely capture the real channel statistical
characteristics and simple enough to allow mathemati-
cally tractable system analysis.

In an attempt to address the above challenging problem,
Gilbert initiated in [4] the study of finite-state Markov
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Figure 1: The Gilbert-Elliott channel model.

models for channels with memory by proposing a simple
two-state (with one good state and one bad state) model.
In the bad state, the channel behaves like a binary sym-
metric channel (BSC) with a high crossover probability,
and in the good state, it behaves like a noiseless BSC.
The transitions between the states are governed by a
Markov chain. Elliott [2] then suggested a modification
to Gilbert’s model by introducing a parameter, which
denotes the probability of correct reception when the
channel is in the good state. The Gilbert-Elliott channel
(GEC) is thus a time varying BSC as designed in Fig. 1,
where pg and pp are the crossover probabilities in
the good and bad states, respectively, and g and b are
the Markov chain transition probabilities. In a related
work, Mushkin and Bar-David introduced a method
for calculating tight upper and lower bounds for the
capacity of the GEC [5]. Furthermore, Pimentel and
Blake expressed the parameters of the GEC as a simple
function of the probability of the basis sequences and
used the GEC to model a nonfrequency-selective Rician
fading channel [6].

In this paper, we extend our investigation of a binary



communication channel with memory introduced in [7].
The additive noise process of the channel is based on a
finite queue with length M. The channel is considered
in two cases: a uniform queue-based mode (UQBC)
where we experiment on the cells of the queue with
equal probability 1/M, and a non-uniform queue-based
mode (NQBC) where we experiment on the cells of
the queue with different probabilities, ¢; on cell 1 and
a=01-q)/(M-1), for cells | = 2,3,... M. It was
shown in [7] that the resulting binary noise process
{Z;} is a stationary ergodic Mth-order Markov source
with the property that each noise sample Z; depends
only on the sum of the previous M noise samples
(Zi—1,Zi—2,-++,Zi—p). The UQBC is completely char-
acterized by three parameters (¢, p and M), while the
NQBC is described by four parameters (g, p, M and ¢;)
[7]. It was also demonstrated in [7] that for the same bit
error rate, correlation coefficient and memory, the UQBC
is actually statistically equivalent to the finite-memory
Polya contagion channel introduced in [1].

This paper has the following organization. Section 2
compares the capacities of the UQBC and the NQBC
with the capacity of the GEC analytically and numer-
ically. The problem of fitting our queue-based channels
to a typical binary modulated correlated Rayleigh fading
channel (RayFC) is considered in Section 3. We estimate
the parameters of the queue-based channel models that
best characterize the error sequence generated by the
RayFC and compare the queue-based channel models
with the GEC model based on two distance measures. A
summary is given in Section 4.

2 Capacity Comparisons with the GEC
2.1 UQBC vs GEC

We compare the capacity Cgapc of the GEC with the
capacity CUMQBC of the UQBC. Cggc can be computed
by evaluating the (asymptotically) tight upper and lower
bound introduced in [5]. Unlike the GEC, the capacity
(as well as the block transition probability) of the UQBC
admits a simple analytical expression [7] in terms of its
three parameters (g, p and M). We first get the following
theorem.

Theorem 1 For M = 1, and for the same bit error
rate (BER) and noise correlation coefficient (Cor),
Capc > CloBe-

When M > 1, only numerical results are obtained. For
example, the capacity C{/;5¢ of the UQBC is slightly
larger than Cgpc for Cor = 0.1 (see Figure 2) and

C%:gc is less than Cgpc for Cor = 0.9 (see Figure 3).
Thus, for the same BER, the capacity of the UQBC
can be either smaller or bigger than that of the GEC,
depending on the value of Cor. To see the effect of Cor
more clearly, we plot capacity vs Cor in Figure 4 for the
GEC and UQBC channels. From Figure 4, we see that
CioBo < Capc when Cor > 0.87 and O3 > Carc
when Cor < 0.87.

2.2 NQBC vs GEC

We next compare numerically the capacity C%?:gc of
the UQBC and the capacity Cgrpc of the GEC with
the capacity Cf\‘,/fggc of the NQBC (with all channels
having the same BER and Cor). The results of capacity
vs BER are shown in Figures 2 and 3. At a low Cor
(Cor = 0.1), the three channels have almost identical
capacities. For a high Cor (Cor = 0.9), the NQBC has
the smallest capacity. Additional results are provided
in Table 1. Finally, we remark that in the extreme case
where the cell probability ¢; tends to one, we get the
following two results.

Theorem 2 For ¢ — 1, for the same BER and
Cor,and for any M =1,2,--,
(1)

M M
Cngsc < Cugpe, M'=1,2,---.

Proof Eq. (1) can be obtained directly by observ-
ing that NQBC (with any value of M) converges to
the UQBC with memory M' = 1 as ¢¢ — 1 [7] (so
CMope — CMoGe as @ — 1) and from the fact that
memory increases capacity for channels with stationary
ergodic Markov additive noise (C} 5% < CHL) 5 for all
M'>1).

Theorem 3 For ¢ — 1, for the same BER and
Cor,and for any M =1,2,---,
(2)

CNose < Carc-

Proof Eq. (2) can be obtained directly from Theorem
1 and Theorem 2 (with M’ = 1). O

The above two theorems are illustrated in Figure
4 where ¢¢ = 0.999. Indeed, we remark that the
curves for CN53o and Cf53c are identical and that
CNoBe < Cligpe and CNGEc < Capc (exact capacity
values for Cor = 0.1 and 0.9 are given in Table 1).



3 Modeling of Correlated RayFC

We consider modeling a binary orthogonal frequency-
shift keying (FSK) modulated correlated RayFC using
our queue-based channels. The same RayFC was studied
in [6]. This is achieved by deriving an expression for the
probability of an error sequence of length n for the over-
all RayFC (used with non-coherent demodulation) and
choosing the parameters of the queue-based channels that
yield the closest statistical behavior. For example, if the
UQBC is used, we need to choose the UQBC parame-
ters that minimize the Kullback-Leibler distance (or di-
vergence)

D(PYope || Prayrc)

A M P(]]WQBC(en)
= Z PUQBC(en) log 5———~, ()
€,.c{0,1}n PRayFC (en)
and the variational distance
dy(PiGpc(€n), Prayrc(en))
= Jopc(€n) = Prayrc(en) |, (4)
> IR

e,c{0,1}~

where P/t 50 (e,) is the block transition probability of
the UQBC [7]. Prqyrc(er) is the probability of an error
sequence of length n generated by the correlated RayFC,
obtained directly from Eq. (44) [6] (with Kr = —ocodB),
and is expressed by

1 1 n (_1)lk+5k
Puscten = 3 3 (I52)
l1=e; l k=1

n=€n

1
X = )
det(I + 5= C « F)

(5)

where I is the identity matrix, F' is a diagonal matrix
defined as F = diag(lllﬁ, e lnlﬁ) and C is the normal-
ized covariance matrix with entries C;; = Jo(2nfpT|i —

D, 1< i,j < n, where Jo(z) = Y52 (—1)F(55)? is
the zero-order Bessel function of the first kind, fp is the
maximum Doppler frequency experienced by the moving
vehicle, T" is the symbol interval, E; is the symbol en-
ergy and Ny/2 denotes the variance per dimension of the

additive Gaussian noise [6].

We consider two cases by choosing the normalized
Doppler frequency fpT = 0.03 (which is a representa-
tive value for fast fading [6]) and fpT = 10~* (slow fad-
ing) with the average signal-to-noise ratio Ey/Ny equal
to 15dB. For these two cases, the evaluated parame-
ters of the queue-based channel models minimizing the
Kullback-Leibler distance and the variational distance
when n = 13 are given in Tables 2 and 3.

We also compare the queue-based channel models with
the GEC model [6] under the same above conditions. We
estimate the parameters of the GEC by fitting the corre-
lated RayFC according to the method mentioned in [6].
The exact GEC parameter values are given in Tables 2
and 3. The comparison is based on the Kullback-Leibler
and variational distance measures between the probabil-
ity of error sequences generated by the model and the
one generated by the RayFC. The smaller the values of
each distance are, the better the model agrees with the
RayFC.

The comparison results, shown in Figures 5 and 6, are
consistent with respect to the two distance measures.
In all cases the GEC model is the best approximation
to the RayFC and the UQBC with M = 1 is the worst
one. This can be explained by the fact that we have
limited the memory to M = 2 in our queue-based
channel models while the GEC (whose noise process is a
hidden Markov source) has infinite memory. We expect
that the queue-based models will better approximate
the RayFC for larger values of M (which necessitate
the use of larger values of the block length n). In
the case of fast fading the NQBC with M = 2 does
slightly better than the UQBC with M = 2 (see Figures
5 and 6). For slow fading an interesting situation
occurs. The curves for the UQBC and the NQBC with
M = 2 are almost identical (see Figures 7 and 8);
this is due to the fact that in this case the NQBC be-
haves like the UQBC since ¢; is close to 1/2 (see Table 3).

4 Summary

In this work we extended our investigation of a binary
burst-noise channel based on a finite queue. First, we
compared the capacities of the UQBC and the NQBC
with the capacity of the GEC analytically and numer-
ically.  We observed that the capacity of the UQBC
(CgIQBC) is smaller than that of the GEC (Cggc) for
the same BER and Cor when memory is 1. In the ex-
treme case where the cell probability ¢; — 1, we observed
that the capacity of the NQBC (Cyyp) is smaller than
that of the UQBC (C’%QBO) and that of the GEC (Cgrc)
for the same BER and Cor and for any memory.

Finally, we considered the problem of fitting our queue-
based channels to a typical binary modulated correlated
RayFC. We estimated the parameters of the queue-based
channel models that best characterize the error sequence
generated by the RayFC and compared the queue-based
channel models with the GEC model based on two dis-
tance measures.

In future work, we intend to systematically evaluate the
effectiveness of the channel models (including the GEC)



for a wide range of signal-to-noise ratios and for vari-
ous values of fading bandwidth. We are also interested
in comparing our proposed queue-based models with the
Fritchman channel model [3].
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Figure 2: Capacity vs BER for Cor=0.1; M=2 (for UQBC
and NQBC), ¢:=0.9 (for NQBC), and pg=0.00002 and
p=0.92 (for GEC).
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Figure 3: Capacity vs BER for Cor=0.9; M=2 (for UQBC
and NQBC), ¢1=0.9 (for NQBC), and pe=0.00002 and
p=0.92 (for GEC).

T T T T T T T T
— NQBC,M=2 1
—&—- UQBC,M=1
—— UQBC,M=2
- - GEC

0.96 -

Figure 4: Capacity vs Cor for BER=0.03; q1=0.999
NQBC), and p¢=0.00002 and pp=0.92 (for GEC).
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Figure 5: Kullback-Leibler distance for fpT = 0.03.
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Figure 6: Variational distance for fp7 = 0.03.

Rayleigh channel, slow fading
T T

= e UQBC(memory=1, n=13)

—— UQBC(memory=2, n=13)

O NQBC(memory=2, n=13)
GEC

I L L L L
2 4 6 8 10 12
n

Figure 7:

Rayleigh channel, slow fading
T T

Kullback-Leibler distance for fpT = 107*.

14

UQBC(memory=1, n=13)

| —— UQBC(memory=2, n=13)
© NQBC(memory=2, n=13)
! - GEC

Channel
models | M = M =2 M=3
C{JWQBC 0.8098 0.8133 0.8162
CNopc | 0.8098 0.8098 0.8098
Cor | (1 = 1) (@1 =0.999) | (g1 =0.999)
=0.1 | Cgpc | 0.8098 0.8123 0.8141
(¢ =0.55) | (q1 =0.4)
CaEc 0.8098
C{}%BC 0.9576 0.9699 0.9747
C’%QBC 0.9576 0.9576 0.9576
Cor | (n = 1) (@1 =0.999) | (q1 =0.999)
=0.9 | CNgpc | 0.9576 0.9681 0.9727
(g1 = 0.55) (@1 =0.4)
CeEc 0.9759

Table 1: Capacity results for various values of ¢;, M and

Cor; BER = 0.03.

Queue-based | Minimizing Kullback- | Minimizing Varia-
models Leibler Distance tional Distance
UQRBC p =0.02974 p =0.02974
M=1 e =0.2420 e = 0.3449
uQBC p =0.02974 p = 0.02974
M =2 e =10.3135 e = 0.3565
NQ@BC p =0.02974 p = 0.02974
M=2 e =0.3099 e =0.3528

¢1 = 0.6145 q1 = 0.6378
b = 0.02338433266528
GEC g = 0.27367536719134
pp = 0.34225066080835
pe = 0.00303925823200

Table 2: Parameters of queue-based channel models and
GEC for Rayleigh fading and fpT = 0.03.

Queue-based | Minimizing Kullback- | Minimizing Varia-
models Leibler Distance tional Distance
vQBC p = 0.02974 p = 0.02974
M=1 e = 0.2507 e = 0.6542
UQBC p = 0.02974 p = 0.02974
M =2 e = 0.4905 e = 0.6681
NQ@BC p = 0.02974 p = 0.02974
M=2 e =0.5116 e = 0.6689

q1 = 0.4182 q1 = 0.4799
b = 0.00000033902448
GEC g = 0.00000479118095
pp = 0.33925727777651
pa = 0.00784038925804
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Figure 8: Variational distance for fpT = 104

14

Table 3: Parameters of queue-based channel models and
GEC for Rayleigh fading and fpT = 10~%.




