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aAbstra
t | In a previous work [7℄, we introdu
edand studied the properties of a binary 
ommuni
ation
hannel with memory whose additive noise pro
essis generated a

ording to a �nite queue. The queueoperates in two modes { a uniform mode and anon-uniform mode { resulting in uniform and non-uniform queue-based 
hannels, respe
tively. In thiswork, the 
apa
ities of the uniform and non-uniformqueue-based 
hannels are 
ompared analyti
ally andnumeri
ally with the 
apa
ity of the Gilbert-Elliottburst-noise 
hannel. We also 
onsider the problem of�tting our queue-based 
hannels to a typi
al binarymodulated 
orrelated Rayleigh fading 
hannel. Thisis a
hieved by estimating the parameters of thequeue-based 
hannels that best 
hara
terize the errorsequen
e generated by the Rayleigh fading 
hannel.Keywords: Channel modeling, binary 
hannels withadditive burst-noise, error statisti
s, 
apa
ity, 
orrelatedRayleigh fading 
hannel.1 Introdu
tionIt is well known that the real-world 
ommuni
ation
hannel has memory, often introdu
ing noise distortionin a bursty fashion. In order to design e�e
tive 
ommu-ni
ation systems for su
h a 
hannel, it is important tothoroughly understand its behavior. This is a
hievedvia 
hannel modeling, where the primary obje
tive isto provide a model whose properties are both 
omplexenough to 
losely 
apture the real 
hannel statisti
al
hara
teristi
s and simple enough to allow mathemati-
ally tra
table system analysis.In an attempt to address the above 
hallenging problem,Gilbert initiated in [4℄ the study of �nite-state Markov�This work was supported in part by NSERC of Canada and PREAof Ontario.
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hannel model.models for 
hannels with memory by proposing a simpletwo-state (with one good state and one bad state) model.In the bad state, the 
hannel behaves like a binary sym-metri
 
hannel (BSC) with a high 
rossover probability,and in the good state, it behaves like a noiseless BSC.The transitions between the states are governed by aMarkov 
hain. Elliott [2℄ then suggested a modi�
ationto Gilbert's model by introdu
ing a parameter, whi
hdenotes the probability of 
orre
t re
eption when the
hannel is in the good state. The Gilbert-Elliott 
hannel(GEC) is thus a time varying BSC as designed in Fig. 1,where pG and pB are the 
rossover probabilities inthe good and bad states, respe
tively, and g and b arethe Markov 
hain transition probabilities. In a relatedwork, Mushkin and Bar-David introdu
ed a methodfor 
al
ulating tight upper and lower bounds for the
apa
ity of the GEC [5℄. Furthermore, Pimentel andBlake expressed the parameters of the GEC as a simplefun
tion of the probability of the basis sequen
es andused the GEC to model a nonfrequen
y-sele
tive Ri
ianfading 
hannel [6℄.In this paper, we extend our investigation of a binary




ommuni
ation 
hannel with memory introdu
ed in [7℄.The additive noise pro
ess of the 
hannel is based on a�nite queue with length M . The 
hannel is 
onsideredin two 
ases: a uniform queue-based mode (UQBC)where we experiment on the 
ells of the queue withequal probability 1=M , and a non-uniform queue-basedmode (NQBC) where we experiment on the 
ells ofthe queue with di�erent probabilities, q1 on 
ell 1 andql = (1 � q1)=(M � 1), for 
ells l = 2; 3; : : :M . It wasshown in [7℄ that the resulting binary noise pro
essfZig is a stationary ergodi
 Mth-order Markov sour
ewith the property that ea
h noise sample Zi dependsonly on the sum of the previous M noise samples(Zi�1; Zi�2; � � � ; Zi�M ). The UQBC is 
ompletely 
har-a
terized by three parameters (", p and M), while theNQBC is des
ribed by four parameters (", p, M and q1)[7℄. It was also demonstrated in [7℄ that for the same biterror rate, 
orrelation 
oeÆ
ient and memory, the UQBCis a
tually statisti
ally equivalent to the �nite-memoryPolya 
ontagion 
hannel introdu
ed in [1℄.This paper has the following organization. Se
tion 2
ompares the 
apa
ities of the UQBC and the NQBCwith the 
apa
ity of the GEC analyti
ally and numer-i
ally. The problem of �tting our queue-based 
hannelsto a typi
al binary modulated 
orrelated Rayleigh fading
hannel (RayFC) is 
onsidered in Se
tion 3. We estimatethe parameters of the queue-based 
hannel models thatbest 
hara
terize the error sequen
e generated by theRayFC and 
ompare the queue-based 
hannel modelswith the GEC model based on two distan
e measures. Asummary is given in Se
tion 4.2 Capa
ity Comparisons with the GEC2.1 UQBC vs GECWe 
ompare the 
apa
ity CGEC of the GEC with the
apa
ity CMUQBC of the UQBC. CGEC 
an be 
omputedby evaluating the (asymptoti
ally) tight upper and lowerbound introdu
ed in [5℄. Unlike the GEC, the 
apa
ity(as well as the blo
k transition probability) of the UQBCadmits a simple analyti
al expression [7℄ in terms of itsthree parameters (", p and M). We �rst get the followingtheorem.Theorem 1 For M = 1, and for the same bit errorrate (BER) and noise 
orrelation 
oeÆ
ient (Cor),CGEC � CM=1UQBC .When M > 1, only numeri
al results are obtained. Forexample, the 
apa
ity CM=2UQBC of the UQBC is slightlylarger than CGEC for Cor = 0:1 (see Figure 2) and

CM=2UQBC is less than CGEC for Cor = 0:9 (see Figure 3).Thus, for the same BER, the 
apa
ity of the UQBC
an be either smaller or bigger than that of the GEC,depending on the value of Cor. To see the e�e
t of Cormore 
learly, we plot 
apa
ity vs Cor in Figure 4 for theGEC and UQBC 
hannels. From Figure 4, we see thatCM=2UQBC < CGEC when Cor > 0:87 and CM=2UQBC � CGECwhen Cor � 0:87.2.2 NQBC vs GECWe next 
ompare numeri
ally the 
apa
ity CM=2UQBC ofthe UQBC and the 
apa
ity CGEC of the GEC withthe 
apa
ity CM=2NQBC of the NQBC (with all 
hannelshaving the same BER and Cor). The results of 
apa
ityvs BER are shown in Figures 2 and 3. At a low Cor(Cor = 0:1), the three 
hannels have almost identi
al
apa
ities. For a high Cor (Cor = 0:9), the NQBC hasthe smallest 
apa
ity. Additional results are providedin Table 1. Finally, we remark that in the extreme 
asewhere the 
ell probability q1 tends to one, we get thefollowing two results.Theorem 2 For q1 ! 1, for the same BER andCor,and for any M = 1; 2; � � �,CMNQBC � CM 0UQBC ; M 0 = 1; 2; � � � : (1)Proof Eq. (1) 
an be obtained dire
tly by observ-ing that NQBC (with any value of M) 
onverges tothe UQBC with memory M 0 = 1 as q1 ! 1 [7℄ (soCMNQBC ! CM 0=1UQBC as q1 ! 1) and from the fa
t thatmemory in
reases 
apa
ity for 
hannels with stationaryergodi
 Markov additive noise (CM 0=1UQBC � CM 0UQBC for allM 0 � 1). �Theorem 3 For q1 ! 1, for the same BER andCor,and for any M = 1; 2; � � �,CMNQBC � CGEC : (2)Proof Eq. (2) 
an be obtained dire
tly from Theorem1 and Theorem 2 (with M 0 = 1). �The above two theorems are illustrated in Figure4 where q1 = 0:999. Indeed, we remark that the
urves for CM=2NQBC and CM=1UQBC are identi
al and thatCM=2NQBC � CM=2UQBC and CM=2NQBC � CGEC (exa
t 
apa
ityvalues for Cor = 0:1 and 0:9 are given in Table 1).



3 Modeling of Correlated RayFCWe 
onsider modeling a binary orthogonal frequen
y-shift keying (FSK) modulated 
orrelated RayFC usingour queue-based 
hannels. The same RayFC was studiedin [6℄. This is a
hieved by deriving an expression for theprobability of an error sequen
e of length n for the over-all RayFC (used with non-
oherent demodulation) and
hoosing the parameters of the queue-based 
hannels thatyield the 
losest statisti
al behavior. For example, if theUQBC is used, we need to 
hoose the UQBC parame-ters that minimize the Kullba
k-Leibler distan
e (or di-vergen
e) D(PMUQBC k PRayFC)4= Xen2f0;1gn PMUQBC(en) log PMUQBC(en)PRayFC(en) ; (3)and the variational distan
ed�(PMUQBC(en); PRayFC(en))= Xen2f0;1gn j PMUQBC(en)� PRayFC(en) j; (4)where PMUQBC(en) is the blo
k transition probability ofthe UQBC [7℄. PRayFC(en) is the probability of an errorsequen
e of length n generated by the 
orrelated RayFC,obtained dire
tly from Eq. (44) [6℄ (with KR = �1 dB),and is expressed byPRayFC(en) = 1Xl1=e1 � � � 1Xln=en nYk=1 (�1)lk+eklk + 1 !� 1det(I + EsN0 �C � F ) ; (5)where I is the identity matrix, F is a diagonal matrixde�ned as F = diag( l1l1+1 ; � � � ; lnln+1 ) and �C is the normal-ized 
ovarian
e matrix with entries �Cij = J0(2�fDT ji�jj), 1 � i; j � n, where J0(x) = P1k=0(�1)k( xk2kk! )2 isthe zero-order Bessel fun
tion of the �rst kind, fD is themaximum Doppler frequen
y experien
ed by the movingvehi
le, T is the symbol interval, Es is the symbol en-ergy and N0=2 denotes the varian
e per dimension of theadditive Gaussian noise [6℄.We 
onsider two 
ases by 
hoosing the normalizedDoppler frequen
y fDT = 0:03 (whi
h is a representa-tive value for fast fading [6℄) and fDT = 10�4 (slow fad-ing) with the average signal-to-noise ratio Es=N0 equalto 15 dB. For these two 
ases, the evaluated parame-ters of the queue-based 
hannel models minimizing theKullba
k-Leibler distan
e and the variational distan
ewhen n = 13 are given in Tables 2 and 3.

We also 
ompare the queue-based 
hannel models withthe GEC model [6℄ under the same above 
onditions. Weestimate the parameters of the GEC by �tting the 
orre-lated RayFC a

ording to the method mentioned in [6℄.The exa
t GEC parameter values are given in Tables 2and 3. The 
omparison is based on the Kullba
k-Leiblerand variational distan
e measures between the probabil-ity of error sequen
es generated by the model and theone generated by the RayFC. The smaller the values ofea
h distan
e are, the better the model agrees with theRayFC.The 
omparison results, shown in Figures 5 and 6, are
onsistent with respe
t to the two distan
e measures.In all 
ases the GEC model is the best approximationto the RayFC and the UQBC with M = 1 is the worstone. This 
an be explained by the fa
t that we havelimited the memory to M = 2 in our queue-based
hannel models while the GEC (whose noise pro
ess is ahidden Markov sour
e) has in�nite memory. We expe
tthat the queue-based models will better approximatethe RayFC for larger values of M (whi
h ne
essitatethe use of larger values of the blo
k length n). Inthe 
ase of fast fading the NQBC with M = 2 doesslightly better than the UQBC with M = 2 (see Figures5 and 6). For slow fading an interesting situationo

urs. The 
urves for the UQBC and the NQBC withM = 2 are almost identi
al (see Figures 7 and 8);this is due to the fa
t that in this 
ase the NQBC be-haves like the UQBC sin
e q1 is 
lose to 1=2 (see Table 3).4 SummaryIn this work we extended our investigation of a binaryburst-noise 
hannel based on a �nite queue. First, we
ompared the 
apa
ities of the UQBC and the NQBCwith the 
apa
ity of the GEC analyti
ally and numer-i
ally. We observed that the 
apa
ity of the UQBC(CMUQBC) is smaller than that of the GEC (CGEC) forthe same BER and Cor when memory is 1. In the ex-treme 
ase where the 
ell probability q1 ! 1, we observedthat the 
apa
ity of the NQBC (CMNQBC) is smaller thanthat of the UQBC (CMUQBC) and that of the GEC (CGEC)for the same BER and Cor and for any memory.Finally, we 
onsidered the problem of �tting our queue-based 
hannels to a typi
al binary modulated 
orrelatedRayFC. We estimated the parameters of the queue-based
hannel models that best 
hara
terize the error sequen
egenerated by the RayFC and 
ompared the queue-based
hannel models with the GEC model based on two dis-tan
e measures.In future work, we intend to systemati
ally evaluate thee�e
tiveness of the 
hannel models (in
luding the GEC)



for a wide range of signal-to-noise ratios and for vari-ous values of fading bandwidth. We are also interestedin 
omparing our proposed queue-based models with theFrit
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Figure 2: Capa
ity vs BER for Cor=0.1; M=2 (for UQBCand NQBC), q1=0.9 (for NQBC), and pG=0.00002 andpB=0.92 (for GEC).
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Figure 3: Capa
ity vs BER for Cor=0.9; M=2 (for UQBCand NQBC), q1=0.9 (for NQBC), and pG=0.00002 andpB=0.92 (for GEC).
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Figure 4: Capa
ity vs Cor for BER=0.03; q1=0.999 (forNQBC), and pG=0.00002 and pB=0.92 (for GEC).
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Figure 7: Kullba
k-Leibler distan
e for fDT = 10�4.
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Figure 8: Variational distan
e for fDT = 10�4.

Channelmodels M = 1 M = 2 M = 3CMUQBC 0.8098 0.8133 0.8162CMNQBC 0.8098 0.8098 0.8098Cor (q1 ! 1) (q1 = 0:999) (q1 = 0:999)=0.1 CMNQBC 0.8098 0.8123 0.8141(q1 = 0:55) (q1 = 0:4)CGEC 0.8098CMUQBC 0.9576 0.9699 0.9747CMNQBC 0.9576 0.9576 0.9576Cor (q1 ! 1) (q1 = 0:999) (q1 = 0:999)=0.9 CMNQBC 0.9576 0.9681 0.9727(q1 = 0:55) (q1 = 0:4)CGEC 0.9759Table 1: Capa
ity results for various values of q1, M andCor; BER = 0:03.Queue-based Minimizing Kullba
k- Minimizing Varia-models Leibler Distan
e tional Distan
eUQBC p = 0:02974 p = 0:02974M = 1 " = 0:2420 " = 0:3449UQBC p = 0:02974 p = 0:02974M = 2 " = 0:3135 " = 0:3565NQBC p = 0:02974 p = 0:02974M = 2 " = 0:3099 " = 0:3528q1 = 0:6145 q1 = 0:6378b = 0:02338433266528GEC g = 0:27367536719134pB = 0:34225066080835pG = 0:00303925823200Table 2: Parameters of queue-based 
hannel models andGEC for Rayleigh fading and fDT = 0:03.Queue-based Minimizing Kullba
k- Minimizing Varia-models Leibler Distan
e tional Distan
eUQBC p = 0:02974 p = 0:02974M = 1 " = 0:2507 " = 0:6542UQBC p = 0:02974 p = 0:02974M = 2 " = 0:4905 " = 0:6681NQBC p = 0:02974 p = 0:02974M = 2 " = 0:5116 " = 0:6689q1 = 0:4182 q1 = 0:4799b = 0:00000033902448GEC g = 0:00000479118095pB = 0:33925727777651pG = 0:00784038925804Table 3: Parameters of queue-based 
hannel models andGEC for Rayleigh fading and fDT = 10�4.


