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Abstract- We present a new progressive method for im-
age transmission over binary channels with additive
bursty noise. The method is based on transform cod-
ing, subband modeling, and channel-optimized scalar
quantization (COSQ). It requires a negligible amount
of side information (less than 0.00009 bpp) and offers
superior performance over a similar system designed
for the fully interleaved channel, due to the exploita-
tion of channel memory. Increased correlation among
channel noise samples leads to a better performance
in our system. Comparisons are made with a compet-
ing system which employs separate source and chan-
nel coding over the fully interleaved channel and uses
Our
proposed method outperforms this substantially more

adaptive bit allocation between the two codes.

complex system for the whole range of considered bit
rates and a wide range of channel conditions.

Index Terms - Subband coding, joint source-channel
coding, channel optimized scalar quantization, channels
with memory, convolutional codes.

1 Introduction

Traditionally, Shannon’s separation theorem has been
used to justify independent design of source and chan-
nel codes [1]. The performance of the resulting systems
— often called tandem systems — may be far from op-
timal when resources are restricted. As a result, it is
beneficial to perform source compression and error pro-
tection jointly. Several methods have been proposed for
joint source-channel coding, which may be categorized as
unequal error protection [2]-[6], channel-optimized scalar
and vector quantization (COVQ) [7]-[11], index assign-
ment optimization [12, 13], and exploitation of the resid-
ual redundancy of the source coder via maximum a pos-
teriori (MAP) decoding [14, 15].

In this paper we present a COSQ-based image coder for
transmission of images over noisy channels with memory.
Memory is an important property of many real life chan-
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nels and is usually combated using channel interleaving.
However, interleaving causes delay and increases com-
plexity. Furthermore, the resulting associated memory-
less channel has a lower capacity than the original channel
with memory for the case of information stable channels
[16]. Therefore, a COVQ designed for the channel with
memory is expected to achieve a better performance than
one designed for the equivalent memoryless channel.

Recently, we presented a discrete wavelet transform
(DWT) based image coder which was designed for im-
age transmission over binary bursty noise channels [17].
In that method, the image was divided into a number
of blocks and was transformed into the frequency do-
main. Then, a number of sub-sources were formed, each
of which contained one coefficient at a specific location
of each block. In this paper, we present another low-
complexity image compression method for channels with
memory which outperforms the previous method. The
algorithm employs quadrature mirror filter (QMF) trans-
formation and COSQ. One salient feature of this method
is that its performance improves as channel noise becomes
more correlated, making it attractive for wireless appli-
cations. Also, the bit allocation problem has negligible
computational complexity. Moreover, it provides reason-
able image quality at bit rates as low as 0.125 bpp and
bit error rates as high as 0.1. Our system performs better
than a similar system designed for a memoryless channel
and used in series with an ideal interleaver, which in-
creases delay. Also, it outperforms UEP schemes which
use scalar quantization, convolutional coding and ideal
interleaving.

2 COSQ-Based Image Coding for Bursty
Noise Channels

A. Structure

Figure 1 shows the block diagram of the employed im-
age coding system. First, the average value of the pixel
intensities is removed. Next, the image is decomposed
into different non-overlapping frequency subbands using
32-D QMF banks [18]. This is done four times, every time



on the lowest frequency subband of the previously decom-
posed data, giving 13 subbands. Similar to the schemes
in [2]-[4], [10, 19], we aim to exploit the intra-block de-
pendencies by considering groups of coefficients which are
expected to have high correlation and call them “sub-
sources”. Like [10], we choose our sub-sources to be the
subbands themselves. This results in a very small amount
of side information, as addressed in section 2-D. Depend-
ing on the available bit rate, some of the sub-sources are
then normalized (to have a unit variance) and quantized,
using a COSQ for channels with memory. The resulting
bit-stream is sent directly over the channel. The receiver
is simply the inverse of the transmitter.

For COSQ design, we need to know the distribution of
the samples to be quantized. It is well-known that the
distribution of the coefficients of every subband approxi-
mately follows the generalized Gaussian distribution [10],
with a probability density function given by

W) cxp (o, )]}

= 50

1
where n(a,0) = 1 (Eg;gg) ® is the rate of decay, o2 is

the variance, and I'(+) is the Gamma function. For a=1
and 2, the above yields the Laplacian and Gaussian dis-
tributions, respectively. For simplicity, we assume here
that the sub-sources in all subbands have the Laplacian
distribution and we quantize them using a COSQ trained
for such a source with a unit variance.

B. Model for Channel with Memory

Based on [16], we use the Polya-contagion channel
model which assumes that any noise sample depends only
on the sum of the M previous samples. The resulting
noise process is a stationary ergodic Markov source of or-
der M. If X;,Y;, and Z; represent the input, output, and
noise in that order and & is addition modulo 2, the chan-
nel input-output relationship is described by Y; = X;® Z;.
Assuming that the input and noise are independent, for
i > M and any e:”}, € {0,1}™, we have, (see [16]):
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where € is the bit error rate (BER) and § > 0 controls
the correlation coefficient of the noise given by Ji_l' The
channel capacity (whose closed-form expression is derived
in [16]) increases with ¢, showing that COVQ may achieve

less distortion for channels with memory. This is sup-
ported by the simulation results in [20] for generalized
Gaussian sources. If § is set to zero, the noise process
becomes memoryless and the channel reduces to a binary
symmetric channel (BSC). Remark also that this model is
less complex than the Gilbert-Elliott channel model and
is completely specified with only three parameters.

C. COSQ Design

Let d = dy(x,y) be the Hamming distance between
the binary channel input block x=(zy,...,z,) and the
output block y=(y1,...,yn). We have [16]:

e For n < M, P(y|x)
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where e; = z; ®y; and s; = e;_p + -+ - +€;-1.

The significance of the above formulas is that unlike
many other channel models in the literature, they pro-
vide easy and computationally inexpensive tools to im-
plement the modified generalized Lloyd algorithm (GLA)
for noisy channels which we used together with simulated
annealing to generate the required codebooks.

D. Bit Allocation

It is well-known that in subband coding, the end-to-end
distortion is more sensitive to errors in the low resolution
subbands. Therefore, when allocating bits to the sub-
sources, the subbands at which they are located should
be taken into account.

Usually, the distortion of sub-source i is weighted by the
Lo norm of the wavelet basis functions of the subband to
which it belongs, denoted by w;. Denoting the sensitivity
of the overall distortion to errors in the " subband by
w; and using the mean-square error distortion measure,
we write the end-to-end distortion as
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for the i*® subband having size N; x N;. We employ dy-
namic programming for bit allocation. In particular, we

(1)



extend the work in [9] for the Markov channel and for the
case where the overall distortion has different sensitivities
to different sub-sources. The bit allocation problem is to
minimize (1) subject to 221 r; < Band 0 < 7; < rpax,
where r; is the number of bits allocated to the i*® sub-
source and B is the total number of bits available. rpax
is the maximum number of bits which may be allocated

to a sub-source.
13 ri

Note that the overall bit rate is ) ,~, <.

per, we choose rmax = 9 bits to have rellatively small
codebooks and fast encoding. Modeling the sub-sources
as independent Laplacian sources, we can write each d;
in (1) as o2dy,(r;) where dy,(r;) is the distortion of a unit-
variance Laplacian source quantized for a set of channel
conditions (i.e., €,d, M) and o? is the variance of the it!
sub-source. The problem now is to allocate the available
bits to 13 Laplacian sources, each with variance w;o?,
given the channel conditions. We use the algorithm in [9]
to solve this problem which is guaranteed by [9] to achieve
optimal bit allocation.

Note that dy (r;) is calculated off-line. Also, although

o? is image-dependent, it is not computed inside the al-
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gorithm. Indeed, the computational complexity of this

algorithm is favorable compared to [3, 4].

In this pa-

3 Simulation Results

We implemented the proposed image coder for the com-
pression and transmission of gray-scale images over the
contagion channel with M = 1 and tested it for the im-
age Lena (tests performed on other images such as Gold-
hill, Baboon, and Peppers gave results consistent with the
Lena experiments).

The simulation results of all tested systems are shown
in Figure 2. Figure (2.a) compares our method, denoted
by “IntraBlock+QMF” | with three other coders for noise-
less channels. They are indicated by “Chen and Fisher”,
which is the method in [10], “IntraBlock+DWT”, whose
structure is identical to “IntraBlock+QMF” but uses
DWT, and “InterBlock+DWT”, which is our previous
method described in [17]. For DWT, we used the 9/7
Daubechies filters which are used in the JPEG2000 im-
age compression standard [22]. This figure shows that our
system outperforms — in terms of peak signal-to-noise ra-
tio (PSNR) — the best reported COSQ-based method [10]
which has ezactly the same structure and filters as ours.
This is due to our improved bit allocation and selection of
the w; weights in (1). Note that the method in [10] is not
suitable for channels with memory and requires channel
interleaving. It also demonstrates that using QMF banks
yields better results than DWT filter banks (at the ex-
pense of higher arithmetic complexity). Finally, we see
that our recent method is an improvement over our pre-

vious method; namely, exploiting the intra-block redun-
dancy in image coding is more efficient.

The rest of the simulations, shown in Figures (2.b)-
(2.d), compare our method in noisy channel conditions
with the best among three different tandem systems, de-
noted by “CC best”, which comprises scalar quantization
and convolutional coding with three different rates fol-
lowed by ideal channel interleaving. The Polya-contagion
(correlated noise) channel in [16] is characterized with
three parameters, the noise memory, M, the correlation
coefficient %, and the bit error rate (BER) e. We refer
to our system as COSQ, followed by the § of the channel
it is designed for (e.g., COSQ-5 and COSQ-10). COSQ-
IL denotes the same system which uses an ideal channel
interleaver (§ = 0), and hence it is designed for the BSC
with the same BER as the channel with memory. The
plots show that the performance curve of the image coders
designed for the correlated channel are higher than those
of the interleaved channel. This shows that substantial
gain may be obtained from exploiting the channel mem-
ory instead of using interleaving, which increases delay
and memory requirements.

In Table I, we compare the amount of the side informa-
tion of our current method with three other coders and
show that this amount is identical to that of the method
in [10]. Note that side information is the part of data in
which no single bit error can be tolerated. Therefore, this
amount must be kept as small as possible to avoid data
misinterpretation. We see that the coder in [6] requires
error-free transmission of above 33,500 bits of side infor-
mation for a 512x512 image which may not be affordable
for low bit-rate communications.

Table II compares our coders in the presence of BER
mismatch with our previous method [17] and that of Sher-
wood and Zeger [4], which is the best UEP scheme re-
ported and is designed for the ideally interleaved chan-
nel. It is observed that our scheme is quite robust to
BER mismatch and it slightly outperforms the system in
[17]. It is also seen that although the Sherwood-Zeger
scheme performs better than ours at no mismatch, it per-
forms nearly 10 dB worse than our method in presence of
mismatch. This is expected, because it employs variable
length coding for source compression. If such coders are
designed for a smaller BER than the actual value, the
channel coder would not be strong enough and the de-
coder cannot correct all channel errors. This causes loss
of synchronization which typically results in loss of a large
part of information.

Throughout this work, we considered binary channels
with memory which model physical channels used in con-
junction with hard-decision demodulation. Future work
might address the design of efficient COSQ-based image



coding schemes for soft-decision demodulated channels
with memory. It is expected that additional coding gains
can be obtained via the use of the channel soft-decision
information; this was indeed observed in [23, 24] for the
case of ideal Gaussian sources.
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Proposed method 83 x107°
DCC’02 [17] 2.5 x 107°
Chen and Fisher [10] | 8.3 x 10 °
Cai and Chen [6] 1.25 x 102

Table I- Overhead data in bpp.
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Table II- PSNR at 0.5 bpp, design BER = 0.01.
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Figure 1: The structure of the proposed communication system.
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Figure 2: Performance of the proposed image coder at various conditions.



