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Abstract— We consider the transmission of a discrete memoryless
Gaussian source over a discrete memoryless fading channel with
additive white Gaussian noise (AWGN) where the decoder has perfect
channel state information (CSI). Our goal is to characterize the
optimal tradeoff between the average transmission power constraint,
P and the average estimation distortion, D. It is well known
that for point-to-point transmission of a single Gaussian source
over an AWGN channel, if the channel bandwidth is equal to the
source bandwidth, linear (scalar) joint source-channel coding, i.e.,
uncoded transmission, achieves the optimal power-distortion tradeoff
(Shannon’s limit). But this result does not hold in the presence of
fading [1]. In this work, we show that a relatively simple joint source-
channel coding scheme, proposed by Lapidoth et al., which is based
on the transmission of scaled versions of vector-quantized source
sequences, can approach the optimal power-distortion tradeoff. This
coding scheme is still optimal when the CSI is available at both the
encoder and the decoder.

I. INTRODUCTION

In this paper, we consider the transmission of a discrete mem-
oryless Gaussian source, X , over a discrete memoryless fading
channel with AWGN. The encoder is subject to a transmission
cost constraint which comes from the restrictions on the power
resources that are available at the transmitter. The decoder aims
to reconstruct the source, X , with an average mean squared-
error distortion D, at the smallest cost in the communication link.
Assuming that the decoder has perfect channel state (fading gain)
information while the encoder has only statistical information
about the channel state, the goal is to provide a joint source-
channel coding scheme that can achieve the optimal power-
distortion tradeoff.

Shannon proved that the separate design of source and channel
coding is an optimal strategy for ergodic point-to-point commu-
nication system (asymptotically as coding/decoding delay and
complexity become unconstrained) [2]. This scheme is referred
to as the conventional tandem source-channel coding scheme. It
is known that this conceptually simple coding scheme does not
lead to the optimal performance theoretically attainable (OPTA)
in networks, see e.g. [3, p. 449], [4]. Joint source and channel
coding (JSCC) has attracted a lot of interest not only because of
its role in reducing the complexity of the overall system, but also
because of its optimality in network communication systems. In
particular, JSCC can significantly outperform separation based
coding schemes in multi-user systems. For the point-to-point

transmission of a single Gaussian source through an AWGN
channel it is known (e.g., see [5], [4]) that if the channel
bandwidth is equal to the source bandwidth, a simple uncoded
transmission, which can be regarded as a special case of JSCC,
achieves OPTA. The optimality of uncoded transmission in some
multi-user communication systems was recently shown in [6],
[7], [8]. Furthermore in [1], it is shown that uncoded transmission
cannot achieve OPTA in the presence of fading.

In this work, similarly to [1] we study the reliable transmission
of a memoryless Gaussian source over a memoryless fading
channel. Specifically, we consider another relatively simple JSCC
scheme, proposed in [6] for the AWGN channel, where the
encoder is a rate-ρ Gaussian vector quantizer that scales the
quantized (reproduction) sequence to meet the channel input
power constraint. This scheme lies between the tandem source-
channel coding scheme and the uncoded transmission scheme,
i.e., there is no explicit (digital) channel coding and the scaled
source codewords act as the joint source-channel codewords.
(Note that in a tandem transmission scheme, a conventional
source code is in tandem with a channel code, and the index
of the source codeword is channel coded and transmitted over
the channel.) We show that this simple JSCC scheme, which we
refer to as the VQ-based JSCC scheme, can achieve OPTA for
two cases; 1) when CSI is available at the decoder only (DCSI);
2) when the CSI is available at both the encoder and the decoder
(full CSI or FCSI).

The remainder of this paper is organized as follows. In Section
II, we formally define the problem. Section III provides review
of the system’s OPTA (Shannon’s limit) and the performance of
the uncoded transmission method, presented in [1]. In Section
IV, we analyze the performance of the VQ-based JSCC scheme
and show that it can (asymptotically) achieve OPTA. Section V
concludes the paper.

II. PROBLEM STATEMENT

We consider the transmission of a memoryless Gaussian source
{X(t) : t = 1, 2, ...} over a memoryless fading channel with
AWGN, i.e., X(t) ∼ N (

0, σ2
X

)
is independent and identically

distributed (i.i.d.) over t. We represent the first n instances of
{X(t)}∞t=1 by the data sequence X = {X(1), X(2), ..., X(n)}.
The sequence X is encoded to S = fn (X) where the encoder
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function is given by

fn : R
n → R

n. (1)

The transmitted sequence S is average-power limited to P , i.e.,

1

n

n∑
t=1

E
[|S(t)|2] ≤ P. (2)

The encoder communicates the coded sequence to the decoder
through a discrete memoryless fading channel with AWGN. Thus
each component of the transmitted sequence is multiplied by a
real-valued random channel gain b(t) that is not known by the
encoder but is available to the decoder. The fading coefficients
are i.i.d. and independent of the source and of the channel noise.
The time-t output of the channel is given by

Y (t) = b(t)X(t) + Z(t), (3)

where Z(t) ∼ N (
0, σ2

Z

)
is i.i.d. over t, and is independent

of X(t). Based on the channel output Y ∈ R
n, the decoder

makes an estimate X̂ of the source X. The measure of the
fidelity between X and X̂ is the average distortion ∆ =
1
n
E

[∑n
j=1 d(X(j), X̂(j))

]
where d(X(j), X̂(j)) is the mean

squared-error (MSE) distortion measure. If we represent the
fading sequence by b = {b(1), b(2), ..., b(n)}, the reconstructed
signal can be described by X̂ = gn (Y, b), where the decoder is
a mapping

gn : R
n × R

n → R
n. (4)

Let F (n) (P ) denote all encoder and decoder functions (fn, gn)

that satisfy (1)-(4). For a particular coding scheme (fn, gn), the
performance is determined by the required power P and the
incurred distortion ∆. The power-distortion region P is defined
as the closure of the set of all achievable power-distortion pairs
(P, D), where a power-distortion pair (P, D) is achievable if for
any δ > 0 and any n ≥ n0(δ), there exists (fn, gn) ∈ F (n) (P )

such that ∆ ≤ D + δ. In the next section, we first review the
OPTA, which is defined for a given P > 0, as

Dmin(P ) = inf {D | (P, D) ∈ P} , (5)

for the transmission of Gaussian source over a fading channel.
We also review the results of [1] which imply that uncoded
transmission cannot achieve OPTA for this system (this also holds
when the CSI is available at both the encoder and the decoder).
Our main goal, presented in Section IV, is to show that OPTA
can be achieved using the simple VQ-based JSCC scheme.

III. PRELIMINARIES: SHANNON’S BOUND AND

PERFORMANCE OF UNCODED TRANSMISSION

A. Theoretical Limit (Shannon’s Bound)

Shannon’s separation theorem states that to obtain the optimal
performance in a point-to-point communication system, data
compression and error correction can be optimized separately
and performed sequentially (in tandem). This scheme achieves
the optimal performance asymptotically as the delay and the
complexity become unconstrained [2, Thm. 21]. As a result, all

achievable pairs of (P, D) can be obtained by combining the rate-
distortion region and the channel capacity region. The OPTA can
be derived by equating the rate-distortion function of the source
to the capacity of the channel. For a memoryless Gaussian source
X with variance σ2

X and an MSE distortion, the rate-distortion
function is known to be

RX(D) = max

{
0,

1

2
log

(
σ2

X

D

)}
. (6)

The capacity of a fading channel depends on the availability of
CSI at the encoder/decoder.

1) OPTA with Decoder CSI (DCSI): The capacity of a fading
channel, when the CSI is only available at the decoder and the
average power constraint on the channel input symbols is P , is
given by [9]

CDCSI(P ) = Eb

[
1

2
log

(
1 +

P |b|2
σ2

Z

)]
. (7)

Combining (6) with (7) leads to the following OPTA:

DDCSI
min (P ) = σ2

Xσ2
Zexp

(
Eb

[
log

1

P |b|2 + σ2
Z

])
, (8)

where DDCSI
min (P ) ≤ σ2

X . Note that this OPTA is achievable in
the limit of large blocklengths where the channel code transmits
the source coded bits with vanishing error.

2) OPTA with Full CSI (FCSI): When the CSI is available
at both the encoder and the decoder, the capacity of the fading
channel is given by [9]

CFCSI(P ) = Eb

[
1

2
log

(
1 +

P (b)|b|2
σ2

Z

)]
, (9)

where P (b) waterfills over the fading states

P (b) =

(
1

λ
− σ2

Z

|b|2
)+

, (10)

and λ satisfies Eb[P (b)] = P . Again combining (6) and (9), the
system’s OPTA can be obtained:

DFCSI
min (P ) = σ2

Xσ2
Zexp

(
Eb

[
log

1

P (b)|b|2 + σ2
Z

])
. (11)

Next we review from [1] the performance of an uncoded
transmission scheme for sending a discrete memoryless Gaussian
source over a discrete memoryless fading channel with AWGN.
We consider the performance of both CSI availability cases.

B. Uncoded Transmission with DCSI

In this coding scheme, the encoder transmits the scaled version
of its observation, scaled to its power constraint, i.e., S(t) =√

P
σ2

X
X(t) [5], [4]. This scheme is also referred to as linear

JSCC with block length n = 1 [1]. The received signal at the
decoder is then given by

Y (t) =

√
P

σ2
X

b(t)X(t) + Z(t). (12)

Since the encoding is memoryless, the optimal estimator is the
minimum mean squared error (MMSE) estimator of X(t) from
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received signal, Y (t), which is given by

X̂(t) = E[X(t)|Y (t), b(t)] =
b(t)

√
Pσ2

X

P |b(t)|2 + σ2
Z

Y (t). (13)

Evaluating the average MSE distortion of this estimator, Dunc,
gives the following distortion-power tradeoff

DDCSI
unc (P ) = σ2

Xσ2
ZEb

[
1

P |b|2 + σ2
Z

]
. (14)

Rewriting (14) as

DDCSI
unc (P ) = σ2

Xσ2
Zexp

(
log

(
Eb

[
1

P |b|2 + σ2
Z

]))
,

and then using Jensen’s inequality [3] and the concavity of
the logarithm confirms that DDCSI

unc (P ) ≥ DDCSI
min (P ). Thus

uncoded transmission achieves the best possible distortion if and
only if

Eb

[
log

1

P |b|2 + σ2
Z

]
= log

(
Eb

[
1

P |b|2 + σ2
Z

])
,

i.e., when |b|2 is a constant. In all other cases uncoded transmis-
sion cannot achieve OPTA [1].

So far we have assumed that the CSI is only available at
the decoder. Since the average power constraint was the only
constraint on the channel input symbols, the optimal power
allocation along the time index t was a uniform power allocation
[1]. However, when the fading realization b(t) is also known by
the encoder, the uniform power allocation is not optimal.

C. Uncoded Transmission with FCSI

When there is CSI at the encoder and the decoder, the
transmitted signal is given by S(m) =

√
Punc(bm)

σ2
X

X(m) where

bm denotes the channel realization (state) at t = m and Punc(bm)

denotes the transmit power at t = m which depends on the
channel state. The MMSE estimator as well as the instantaneous
MSE can be obtained as follows:

X̂(m) =
bm

√
σ2

XPunc(bm)

Punc(bm)|bm|2 + σ2
Z

Y (m), (15)

E(|X(m) − X̂(m)|2) = σ2
Xσ2

ZEbm

[
1

Punc(bm)|bm|2 + σ2
Z

]
.

The optimal power allocation can be obtained by solving

min Eb

[
1

Punc(b)|b|2 + σ2
Z

]
s.t. Eb[Punc(b)] = P, Punc(b) ≥ 0 (16)

It can be shown that the optimal power allocation in terms of the
channel state b is [1]

P opt
unc(b) =

1

|b|
(

1

µ
− σ2

Z

|b|
)+

, (17)

where µ is a common threshold for all channel states and can be
calculated by solving Eb[P

opt
unc(b)] = P , i.e.,∫ ∞

µ

1

|b|
(

1

µ
− σ2

Z

|b|
)

f(|b|)d|b| = P. (18)

With this power allocation, which is a water-filling allocation over
time, the minimum achievable distortion by uncoded transmission
can be expressed as

DFCSI
unc (P ) = σ2

Xσ2
ZEb

[
1

P opt
unc(b)|b|2 + σ2

Z

]
. (19)

IV. VQ-BASED JSCC SCHEME

In this section, we consider the transmission of vector-
quantized source sequences, as proposed in [6] for the AWGN
case. In this VQ-based JSCC scheme, the encoder is a rate-ρ
Gaussian vector quantizer that scales the quantized sequence to
meet the channel input power constraint.

A. VQ-Based JSCC with DCSI

First we generate the quantization codebook C(n) and then
describe the encoding part. Let ρ denote the rate of the Gaus-
sian vector quantizer. There are 2nρ codewords that lie on the
sphere of approximate radius

√
nσ2

X (1 − 2−2ρ). Therefore, the
approximate normalized squared-norm of each codeword in C(n)

is
1

n
‖U‖2 = σ2

X

(
1 − 2−2ρ)

, (20)

where ‖U‖2 denotes the sum of the squares of the components
in U.

The encoder uses nearest neighbor encoding to choose the
codeword U∗ in the codebook C(n) that is closest to the source
sequence and scales the resulting vector U∗ so that the power
constraint P is satisfied. Therefore, the transmitted sequence can
be expressed as

S = β · arg min
U∈C(n)

‖X − U‖2 = β · arg max
U∈C(n)

〈X, U〉 , (21)

where

β =

√
P

σ2
X (1 − 2−2ρ)

, (22)

and 〈·, ·〉 denotes the standard inner product in R
n. It can

be shown that the closest codeword U∗ in C(n) to the source
sequence X would be nearly orthogonal [6], [10] to (X − U∗)
as the blocklength n tends to infinity. Thus, for the quantization
error, (X − U∗), we approximately have for large n

1

n
‖X − U∗‖2 (a)

=
1

n
‖X‖2 − 1

n
‖U∗‖2

(b)
= σ2

X2−2ρ (23)

where (a) follows from the near orthogonality between U∗ and
(X − U∗) and (b) follows from the law of large numbers for
1
n
‖X‖2 and from (20).
The decoder reconstructs the source sequence X as X̂ = Û

∗ ∈
C(n) using the fading sequence b = {b(1), b(2), ..., b(n)}, where
the decoding rule is given as

Û
∗

= arg max
U∈C(n)

〈Y, b ◦ U〉 , (24)

and ◦ denotes the Schur product (coordinate-wise product) be-
tween b and U. This decoding method, which has been referred
to by the minimum angle decoding in [10], [6], and the nearest
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neighbor decoding in [11], is in fact the minimum Euclidean
distance decoding. When there is no fading, it is shown in [10]
that the decoder will succeed with high probability if

ρ <
1

2
log

(
1 +

P

σ2
Z

)
. (25)

By combining this result with the previous results of Lapidoth
[11] for fading channels with Gaussian codebooks, we can show
that the decoder will succeed with high probability if

ρ < Eb

[
1

2
log

(
1 +

P |b|2
σ2

Z

)]
. (26)

Replacing this inequality with equality and calculating the MSE
of the proposed estimator, we obtain

DDCSI
V Q

(P ) = σ2
Xσ2

Zexp

(
Eb

[
log

1

P |b|2 + σ2
Z

])
. (27)

Comparing (27) with (8) reveals that this VQ-based JSCC scheme
is optimal in the sense of achieving OPTA. In other words, as
the quantization dimension tends to infinity, this JSCC scheme is
optimal if we choose the rate of the vector quantizer arbitrarily
close to the capacity of the fading channel.

B. VQ-based JSCC with FCSI

In the presence of the CSI at the encoder and the decoder, the
codebook C(n) generation is the same as before (Section IV-A),
i.e., there are 2nρ codewords that lie on the sphere of approximate
radius

√
nσ2

X (1 − 2−2ρ). The encoder uses nearest neighbor
encoding to choose the codeword U∗ in the codebook C(n) that
is closest to the source sequence and scales each symbol U∗

m

(m = 1, 2, ..., n) in the resulting vector U∗ = [U∗
1 U∗

2 · · · U∗
n]

(based on the available CSI at the encoder) so that the average
power constraint P is satisfied and the achievable MSE distortion
is minimized. Using the optimal power allocation scheme for the
memoryless fading channels [9], it can be shown that the mth
component of the transmitted sequence S = [S1 S2 · · · Sn] is

Sm = βm · U∗
m =

√
P opt

m

σ2
X (1 − 2−2ρ)

· U∗
m, (28)

for m = 1, 2, ..., n where P opt
m =

(
1
λ
− σ2

Z
|bm|2

)+

and λ is

chosen such that Ebm [P opt
m ] = P . The decoder reconstructs the

transmitted codeword U∗ as Û
∗ ∈ C(n) with the same decoding

rule as (24). Again, it can be shown that the decoder will succeed
with high probability if

ρ < Eb

[
1

2
log

(
1 +

P (b)|b|2
σ2

Z

)]
, (29)

where P (b) is given in (10). Replacing this inequality with
equality and calculating the MSE of the estimator, we obtain

DFCSI
V Q

(P ) = σ2
Xσ2

Zexp

(
Eb

[
log

1

P (b)|b|2 + σ2
Z

])
. (30)

Comparing (30) with (11) shows that this VQ-based JSCC
scheme still achieves OPTA for the FCSI case. Therefore, re-
garding the transmission of a memoryless Gaussian source over
a memoryless fading channel with FCSI, the VQ-based JSCC

is optimal while the uncoded transmission shows a performance
loss.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that to transmit a memoryless
Gaussian source over a memoryless fading channel with AWGN,
the transmission of scaled versions of vector-quantized source
sequences is optimal in that it (asymptotically) achieves the
OPTA distortion. Since we considered a point-to-point commu-
nication system, Shannon’s separation theorem was used as our
benchmark. However, the separation theorem does not hold in
general in multi-user systems. As one of the future directions,
we plan to apply this scheme to the two-user sensor network
where two sensors transmit independent noisy versions of a
Gaussian source to a central decoder over a multi-access channel
with fading. For this network in general, only separate necessary
and sufficient conditions for achievability of all power-distortion
tuples exist [12]. In the symmetric case with no fading, where the
encoders are subject to the same average power constraint and
the observations of sensors have the same variance, it is known
that uncoded transmission is optimal [7]. But determining the
optimal power-distortion tradeoff for the asymmetric case and in
the presence of fading is still an open problem.
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