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Abstract— We design a Maximum a Posteriori hard-decision
demodulated channel optimized vector quantizer (COVQ) that
exploits the non-uniformity of the quantized source. We con-
sider memoryless Gaussian and Gauss-Markov sources trans-
mitted over a binary phase-shift keying modulated additive
white Gaussian noise channel. Our scheme which has less
decoding complexity than soft decoded COVQ systems, is
shown to provide a notable signal-to-distortion ratio gain (up
to 0.4 dB for memoryless Gaussian sources and up to 0.8 dB for
Gauss-Markov sources) over the conventional COVQ designed
for hard-decision demodulated channels.

I. INTRODUCTION

Communication systems designed on the basis of Shan-
non’s separation theorem are called tandem source-channel
coding (TSCC) systems. This classical approach to the prob-
lem for sending information reliably over a noisy channel is
under the implicit assumption of asymptotically large code-
word lengths resulting in large system delay. Furthermore,
in many wireless communication situations involving non-
stationary sources/channels, the separation theorem may not
hold. Thus, studying joint source-channel coding (JSCC)
for either cases has attracted much recent interest. The
advantages of JSCC over TSCC were studied quantitatively
in [7] and in terms of the JSCC error exponent in [12]. In
the latter it was shown that under some conditions, the JSCC
error exponent can be as large as twice that of TSCC.

Channel optimized vector quantization (COVQ) is a JSCC
technique in which the analog source is quantized by taking
into consideration the characteristics of both the source
and the channel. COVQ has been thoroughly studied under
different approaches (e.g., see [1]-[5], [9], [10] and [13]).

COVQ designs usually employ a discrete memoryless
channel (DMC) corresponding to a memoryless analog-
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valued channel used in conjunction with hard-decision de-
modulation. However in these designs, little attention has
been paid to optimize the discrete channel by properly
choosing the modulation constellation or exploiting the non-
uniformity of the source encoder indices arriving at the
channel input. Some notable exceptions include [11] where
non-iterative (one step) hard decision maximum a posteriori
(MAP) decoding is considered and [6] where joint optimiza-
tion of the codebooks and constellation is studied.

In this work, we examine how to improve the design of
a COVQ scheme for a binary phase-shift keying (BPSK)
modulated additive white Gaussian noise (AWGN) channel
used with hard-decision demodulation, while keeping sys-
tem complexity moderately low. Such a scheme may be
appealing for wireless applications where resources such as
processing power and storage capability are limited. Since
we restrict the system to employ hard-decision demodulation
(e.g. due to complexity constraints), we cannot exploit the
channel’s soft (or soft-decision) information in our design
as was done in [1], [2] and [8]-[10]. Instead, we focus on
iteratively optimizing the discrete channel (having identical
input and output alphabets) representing the concatenation
of the modulator, AWGN channel and hard-decision de-
modulator together with its correspondingly designed COVQ
encoder/decoder pair. This is achieved by using a symbol
MAP hard-decision detector instead of the standard maxi-
mum likelihood (ML) detector, motivated by the fact that
the COVQ encoder indices arriving at the modulator are
non-uniformly distributed (hence the MAP decoder will be
optimal in terms of minimizing the discrete channel’s symbol
error rate). We thus propose a three-phase COVQ design
algorithm which is based on first designing a conventional
COVQ (for the ML decoded channel), then computing the
input distribution to use in MAP decoding, and redesigning
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the COVQ for the new channel defined in terms of an
updated transition matrix. Numerical results indicate that the
proposed algorithm achieves notable coding gains over the
conventional COVQ scheme designed for the discrete (ML
hard-decision demodulated) channel. This performance gain
does come however with a slight increase in computational
complexity at the decoder as MAP decoding is more com-
plex than ML decoding.

II. COVQ SYSTEM

The purpose of the system is to transmit the random vector
Xn ∈ Rk of dimension k over the noisy channel and form
an estimate X̂n of Xn based on the channel output Rn,
such that the distortion E‖Xn − X̂n‖2

is minimized. Here,
n represents the time index of the vector which consists of
k single source outputs. The general block diagram of the
system is depicted in Fig. 1. The source {Xn} ∈ Rk is
assumed to be a stationary ergodic process, with zero mean
and unit variance. The COVQ encoder encodes {Xn} at a
rate of r bits per sample (bps). Therefore, the COVQ encoder
is a mapping E : Rk → In � {0, 1, · · · , Ne − 1} =
{0, 1}kr, such that E (Xn) = In is sent over the AWGN
channel with noise power N0/2 after modulation. We use
BPSK modulation, although other memoryless modulation
techniques can also be considered. The encoding is done
using the decision regions {Si}Ne−1

i=0 (Ne = 2kr) via the
encoding rule: Xn ∈ Si ⇒ In = E (Xn) = i. The a
priori probability of the indices to be chosen are denoted
by Pi, where Pi = Pr [Xn ∈ Si]. The concatenation of the
modulator, the actual channel and the detector form a DMC.
We refer to this discrete channel as the “equivalent DMC,”.
The transition probabilities of the equivalent DMC can be
determined in terms of the actual channel parameters. The
input alphabet of the DMC is In = {0, 1, · · · , Ne −
1}. Each input index is transmitted over the channel and
is received through a transition matrix PY |X . The output
alphabet set is Jn = {0, 1, · · · , Nd − 1}. Since the system
uses hard-decision demodulation Jn = In and Nd = Ne.
Hard-decision decoding has less decoding complexity than
systems employing soft decoding or soft-decision (e.g., [1],
[2] and [8]-[10]). The decoder is the combination of two
functions D1 and D2. Thus the decoder can be written as
D = D2 ◦ D1, where:

D1 : Rkr → Jn = In = {0, 1, · · · , Ne − 1},
D2 : Jn → Rk

and ◦ denotes composition.
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Fig. 1. Block diagram of the iterative MAP decoded COVQ system.

The received vector Rn consists of kr consecutive re-
ceived values: R1

n, R2
n, · · · , Rkr

n that can each be written as

Rt
n = W t

n + νt, t = 1, 2, · · · , kr, (1)

where Wn ∈ {−1,+1}kr and νt ∼ N (0, N0
2 ). The COVQ

decoder D2 : Jn = {0, 1, · · · , Ne − 1} → Rk maps each
received index into a codevector estimate X̂n.

III. THREE PHASE ITERATIVE MAP DECODED (IMD)
ALGORITHM

The main contribution of this paper is a simple algorithm
that jointly optimizes D1 and the pair {D2,E }. The IMD
algorithm consists of three phases. The first phase is the
ordinary COVQ design algorithm. The problem of designing
COVQ for a DMC is well known ([3], [4], and [8]). The
COVQ encoder E : Rk → In is characterized in terms of a
partition [4] P = {Si ⊂ Rk : i ∈ In}. The DMC takes the
input index In and produces the output Jn according to the
channel transition matrix PJn|In

(j|i).
The decoder mapping D2 : Jn → Rk is represented by the

codebook C = {cj ∈ Rk : j ∈ Jn}. The COVQ encoder and
decoder are iteratively optimized based on two conditions
[4] that are necessary for the squared-error distortion to be
minimized, making sure that the procedure ends up with a
locally optimal solution.

Thus, in the first phase D1 is fixed and E and D2 are
alternatingly optimized in an iterative fashion. For the above
system, the average distortion per sample is given by [4]

Dn =
1
k

∑
i

∫
Si

f(x)
∑

j

PJn|In
(j|i)‖x − cj‖2

dx (2)

where f(x) is the k-dimensional source density. From (2),
it can be shown [4] that for a fixed C, the optimal partition
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P∗ = {S∗
i } is given by

S∗
i =


x :

∑
j

PJn|In
(j|i) ‖x − cj‖2

≤
∑

j

PJn|In

(
j |̂i

)
‖x − cj‖2 ∀î ∈ In




for every i ∈ In = {0, 1}kr.
The second necessary condition, on the other hand deter-

mines the optimal codebook C∗ = {c∗j} for a given partition
[4] with

c∗j =

∑
jPJn|In

(j|i) ∫
Si

xf(x) dx∑
jPJn|In

(j|i) ∫
Si

f(x) dx
. (3)

In practice, only samples from the source are available and
we use the training data replacing the integrals with summa-
tions and the density function with empirical weights. Note
that in the first step of the iteration, we assume a uniform
input index distribution resulting in ML decoding. In this
case the DMC is a binary symmetric channel (BSC) used kr

times independently and the symbol transition probabilities
are kr long products of the bit transition probabilities.

Once Phase 1 is complete, the encoder index distribution
is fed to the MAP decoder to start the second phase of the
algorithm. Thus we use the computed input distribution to
replace the ML detector by a symbol based MAP decoder
and redesign the COVQ. So, given D2 and E from the first
phase, we find D1 such that

Jn = arg max
In

P (In|Rn) = arg max
In

P (Rn|In)Pin

= arg min
In

[
1

N0
‖Rn − Wn‖2 − ln Pin

]
, (4)

where Pin
is given from the first phase.

After updating the detector, which results in a new DMC,
and finding an updated codebook according to (3) (based
on the new DMC probability distribution), we design the
new COVQ (the pair {D2,E }), using the updated codebook
found by (3) as the initial codebook. The above process
makes the second phase of the algorithm. We calculate the
distortion Dn at the end of the second phase. In the third
phase, we repeat Phase 2 and terminate when the signal-to-
noise ratio (SDR) is maximized.

The three-phase COVQ algorithm can be summarized as
follows:

1) Design a (conventional) COVQ encoder/decoder pair
for the DMC under ML (hard-decision) decoding.

2) Compute the source encoder index distribution, use

Channel Conventional IMD SDD COVQ
SNR COVQ COVQ (q = 2) [8]

8.0 8.64 8.69 8.76
6.0 6.89 6.99 7.21
4.0 5.17 5.48 5.74
3.0 4.38 4.77 5.08
2.0 3.77 4.03 4.36
1.0 3.17 3.41 3.71
0.0 2.66 2.84 3.14
-1.0 2.21 2.35 2.69
-2.0 1.82 1.94 2.26
-3.0 1.50 1.58 1.88
-4.0 1.22 1.28 1.53
-6.0 0.82 0.85 1.02

TABLE I

SDR IN DB FOR ML DECODED CONVENTIONAL, ITERATIVE MAP

DECODED (IMD) AND SOFT DECISION DECODED (SDD) COVQS FOR

THE MEMORYLESS GAUSSIAN SOURCE. THE VECTOR QUANTIZER

RATE IS r = 2 BPS AND THE QUANTIZATION DIMENSION IS k = 2.

MAP (hard-decision) decoding, update the DMC’s
transition distribution and redesign the COVQ en-
coder/decoder pair for the updated channel. This be-
gins with first updating the codebook (using the last
encoding partition) and then the encoding regions.

3) Repeat Phase 2 until the distortion is minimized (by
monitoring the system’s distortion and stopping the
iterative process when the distortion is increased).1

IV. NUMERICAL RESULTS

In the first phase (ML decoded COVQ), we employ the
transition matrix calculated from (1) and derived from kr

uses of a BSC with crossover probability Q(
√

SNR), where
SNR= 2

N0
is the channel signal-to-noise ratio. For designing

the COVQ, 100,000 source training vectors are generated.
After designing the COVQ (Phase 1), we generate 400,000
noise vectors, use MAP decoding and from the resulting
empirical distribution compute the new 2kr × 2kr transition
matrix. Then the COVQ is redesigned as described in Phases
2 and 3 above.

We compare the performance of the ordinary COVQ
with the proposed IMD-COVQ and also with the soft-
decision demodulated (SDD) COVQ proposed in [8]. Table
1 presents SDR results for the memoryless Gaussian source

1It is worth pointing out that the system’s distortion is not always
monotonically decreasing with the number of iterations. This is due to the
fact that minimizing the channel’s symbol error rate under MAP decoding
is not necessarily equivalent to minimizing the end to end distortion.
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Channel Conventional IMD SDD COVQ
SNR COVQ COVQ (q = 2) [8]

8 10.99 11.09 11.20
6 8.72 9.33 9.72
4 6.71 7.51 7.70
3 6.03 6.70 6.86
2 5.15 5.81 5.86
1 4.40 5.00 5.06
0 3.62 4.24 4.42
-1 2.99 3.42 3.83
-2 2.47 2.78 3.29
-3 2.12 2.49 2.80
-4 1.94 2.15 2.42
-6 1.18 1.40 1.65

TABLE II

SDR IN DB FOR ML DECODED CONVENTIONAL, IMD AND SDD

COVQS FOR THE GAUSS-MARKOV SOURCE WITH CORRELATION

COEFFICIENT ρ = 0.9. THE VECTOR QUANTIZER RATE IS r = 2 BPS

AND THE QUANTIZATION DIMENSION IS k = 2.

while Table 2 is devoted to the Gauss-Markov source with
correlation coefficient 0.9. Interestingly we observed that
generally the non-uniform input distribution, after applying
the IMD algorithm tends to be even more non-uniform which
is desirable [4]. Since there are already many empty decision
regions for the conventional COVQ at low SNRs (SNR < −2
dB), the IMD algorithm does not provide much gain in that
region. However, for SNR ranging from −2 dB to 4 dB,
it considerably outperforms the conventional COVQ system.
For high SNRs, MAP decoding does not yield much gain
compared with ML decoding as in this case both decoding
methods are nearly equivalent.

As expected, the proposed system provides larger SDR
gains over the conventional COVQ system when the source
has memory as opposed to being memoryless (compare
Table II with Table I). Observe that in Table II, the gain
is 0.8 dB for SNR = 4 dB. Also, the IMD COVQ performs
almost as well as the SDD COVQ for SNRs from 0 to 3 dB.
Note that the main advantage of the IMD COVQ system
over the SDD COVQs of [1], [2] and [8] is its reduced
storage complexity due to the significantly smaller amount
of memory needed in the COVQ decoder. The SDD COVQ
(with soft-decision resolution q) has a codebook size of
2qkr k-dimensional codevectors while the IMD COVQ has
a codebook size of 2kr codevectors (just as the conventional
COVQ). Note, however, that since it uses MAP decoding
the IMD COVQ system has higher computational decoding

complexity (but still of order 2kr) than SDD COVQ and
conventional COVQ.

V. CONCLUSION

A design algorithm for COVQ based on MAP hard-
decision decoding is proposed. The algorithm is applied to
a BPSK modulated AWGN channel. The COVQ is firstly
designed for the ML (hard-decision) decoded channel. Using
the computed index distribution in conjunction with MAP
decoding, the DMC is updated and the COVQ is redesigned
for the updated channel. The process continues until the SDR
is maximized. It is demonstrated that an SDR gain of up to
0.8 dB can be achieved over conventional COVQ while its
decoding complexity stays moderately low.

REFERENCES

[1] F. Alajaji and N. Phamdo, “Soft-decision COVQ for Rayleigh-fading
channels,” IEEE Commun. Let., vol.2, pp. 162-164, Jun. 1998.

[2] F. Behnamfar, F. Alajaji and T. Linder, “Channel-optimized quantiza-
tion with soft-decision demodulation for space-time orthogonal block-
coded channels,” IEEE Trans. Signal. Process., vol. 54, no. 10, pp. 3935-
3946, Oct. 2006.

[3] N. Farvardin, “ A study of vector quantization for noisy channels,”
IEEE Trans. Inform. Theory, vol. 36, pp. 799-809, Jul. 1990.

[4] N. Farvardin and V. Vaishampayan “On the performance and complex-
ity of channel optimized vector quantizers,” IEEE Trans. Inform. Theory,
vol. 37, pp. 155-160, Jan. 1991.

[5] N. Farvardin and V. Vaishampayan, “Optimal quantizer design for noisy
channels: an approach to combined source-channel coding,” IEEE Trans.
Inform. Theory, vol. 33, pp. 827-838, Nov. 1987.

[6] J. K. Han and H. M. Kim, “Joint optimization of VQ codebooks and
QAM signal constellations for AWGN channels,” IEEE Trans. Commun.,
vol. 49, no. 5, pp. 816-825, May 2001.

[7] J. Lim and D. L. Neuhoff, “Joint and tandem source-channel coding
with complexity and delay constraints,” IEEE Trans. Commun., vol. 51,
no. 5, pp. 757-766, May. 2003.

[8] N. Phamdo and F. Alajaji, “Soft-decision demodulation design for
COVQ over white, colored, and ISI Gaussian channels,” IEEE Trans.
Commun., vol. 48, no. 9, pp. 1499-1506, Sep. 2000.

[9] M. Skoglund, “ Soft decoding for vector quantization over noisy
channels with memory,” IEEE Trans. Info. Theory, vol. 45, pp. 1293-
1307, May. 1999.

[10] N. Wernersson and M. Skoglund, “On source decoding based on finite-
bandwidth soft information,” In Proc. IEEE Int. Symp. Inform. Theory,
Adelaide, Australia, Sep. 2005, pp. 87-91.

[11] P. Yahampath and M. Pawlak, “Vector quantization for finite-state
Markov channels and application to wireless communications,” Eur.
Trans. Telecoms., vol. 18, no. 4, pp. 327-342, Feb. 2007.

[12] Y. Zhong, F. Alajaji and L. L. Campbell, “On the joint source-channel
coding error exponent for discrete memoryless systems,” IEEE Trans.
Inform. Theory, vol. 52, no. 4, pp. 1450-1468, Apr. 2006.

[13] Y. Zhou and W. Y. Chan, “Multiple description quantizer design for
space-time orthogonal block coded channels,” In Proc. IEEE Int. Symp.
Inform. Theory, Nice, France, June 2007, pp. 731-735.

331

24th Biennial Symposium on Communications


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

