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Abstract— We study the problem of zero-delay coding of a
Markov source over a noisy channel with feedback. Building
and generalizing prior work, we first formulate the problem as a
Markov decision process (MDP) where the state is a probability
measure valued predictor along with a finite memory of channel
outputs and quantizers. We then approximate this state by
marginalizing over all possible predictors, so that our policies
only use the finite-memory term to encode the source. Under
an appropriate notion of predictor stability, we show that such
policies are near-optimal for the zero-delay coding problem as
the memory length increases. We also give sufficient conditions
for predictor stability to hold, and present a reinforcement
learning algorithm and establish its convergence to compute
near-optimal finite-memory policies. These theoretical results
are supported by simulations.

I. INTRODUCTION

The zero-delay coding problem involves compressing and
transmitting an information source over a noisy channel with
feedback and without delay, while minimizing the expected
distortion at the receiver. This zero-delay restriction is of
practical relevance in many applications, including live-
streaming and real-time sensor networks. Totally noiseless
feedback (which we assume in this paper) is often assumed
in applications where the party using the backward channel
has sufficiently high power that they can render the feedback
essentially noiseless (compared to the forward channel). For
example a phone sending information to a cell tower, or
a communication problem where one channel is wireless
and another is wired. Note that the zero-delay restriction
means that classical Shannon-theoretic methods, which are
generally asymptotic in nature, are not viable.

Within the information theory literature, the problem of
joint source-channel coding (JSCC) with feedback is well-
studied. Although a classic result due to Shannon [1] states
that feedback does not increase the capacity of a memoryless
channel, it has been shown that feedback does improve
the delay-distortion tradeoff (also called the error exponent)
and can simplify the design of coding schemes [2], [3].
Deep learning methods for JSCC have been proposed in
e.g., [4], [5], although these often lack formal convergence
and performance guarantees, and are not strictly zero-delay.

There has been success in studying this problem using
stochastic control techniques. In particular, [6], [7] consider
finite alphabets and finite time horizons and show optimal-
ity of restricted classes of policies. Similar optimality and
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existence results are presented for infinite time horizons
in [8]–[10]. The continuous-alphabet, infinite-horizon case
is studied in [11], [12]. However, these stochastic control
techniques often utilize a state that is probability measure-
valued (such a state is often called the “predictor” in the
literature). This state space is computationally difficult to
work with, and thus actually obtaining effective coding
schemes for a given zero-delay coding problem is still an
open problem.

There has been much recent work on learning-theoretic
methods in stochastic control for very general state and ac-
tion spaces. In particular, approximation techniques leading
to near-optimal solutions are well-suited to setups such as
the zero-delay coding problem, where exact methods are in-
tractable. Some of these techniques use quantization schemes
to approximate the underlying state space; for example, refer
to [13], [14] and related reinforcement learning algorithms
in [15], [16]. While these quantization-based methods can be
used to find near-optimal solutions, the quantization process
introduces additional computational complexity, both during
learning and implementation.

In order to avoid the computational overhead of quan-
tization, we will instead build on recent results from [17]
which uses a finite history of past observations and control
actions. The work in [17] also provides a Q-learning solution
to obtain such near-optimal policies, which we will adapt to
our setup. This approach relies on filter stability, which is
a measure of how quickly a process forgets its prior as it
collects observations. Our results will use the related question
of predictor stability. Under predictor stability, this finite
history acts as a good approximation of the true predictor,
leading to explicit performance bounds on the resulting
policy for the zero-delay coding problem. Our approach
complements [18]. For a detailed review of filter stability
methods in the control-free case, see [19]. However, we will
see that in the zero-delay coding problem, the observations
depend not only on the noisy channel but also on how we
encode the information at the receiver. Most results in the
literature assume that the observation kernel is time-invariant,
which is not applicable here; so we will prove and use
generalized results for when this kernel is control-dependent.
In particular, we will generalize recent results from [20],
which uses joint properties of the state and observation
kernels to obtain exponential filter stability, as well as discuss
recent observability-type conditions from [21], [22].

Additional work related to finite-memory policies can
be found in [23], [24]. However, [23] does not provide
a performance bound based on window length, and [24]



still utilizes a nearest-neighbour quantization map. Further-
more, [24] only provides near-optimality of the discounted-
cost criteria for discount factors bounded away from one; in
the zero-delay coding problem, we are generally interested
in taking discount factors very close to one in order to obtain
approximations to the average-cost problem.

Contributions: In this paper, we prove near-optimality
of finite-memory coding policies for the zero-delay coding
problem over a noisy channel with feedback, and explicitly
bound the performance of such policies in terms of a pre-
dictor stability term. We generalize some existing predictor
stability results to the case where the observation kernel is
control-dependent, and apply these results to some example
zero-delay coding problems. We also discuss a Q-learning
algorithm that converges to such a near-optimal policy, and
provide supporting simulation results. Due to space con-
straints, proofs and further literature review and simulations
are included in [25].

II. NOTATION AND PRELIMINARIES

Let X be a finite set and let our information source be a
Markov process (xt)t≥0 taking values in X. Let T (xt+1|xt)
be its transition kernel, which we assume is irreducible and
aperiodic, and thus admits a unique invariant measure. Let
x0 ∼ π0 (we will also call π0 the prior). Let M and M′ be
the input and output alphabets of the noisy channel, which
we assume are finite, and let (qt)t≥0 and (q′t)t≥0 be the
respective processes. We will denote the channel kernel by
O(q′t|qt), which gives the probability of the channel output
being q′t given its input is qt. Finally, let X̂ be some finite
set of reconstruction values, and let (x̂t)t≥0 take values in
X̂. Throughout, given some sequence (at)t≥0, we will use
the notation a[n,k] := (an, an+1, . . . , ak) for n ≤ k. Also,
although everything is finite here, for ease of notation as well
as providing easier generalizations to uncountable spaces,
we will often write sums as integrals over the appropriate
measure. For example, rather than writing

∑
x′ T (x′|x) we

may write
∫
X T (dx

′|x).
Consider sequences of functions (γet )t≥0, which we call

the encoder policy, and (γdt )t≥0, which we call the decoder
policy. In addition to the current source symbol, the encoder
has access to all past source symbols and channel inputs, and
all past channel outputs in the form of feedback. In addition
to the current channel output, the decoder has access to all
previous channel outputs. That is, (γet )t≥0 and (γdt )t≥0 are
such that

γet : Xt+1 ×Mt × (M′)
t → M γdt : (M′)

t+1 → X̂
(x[0,t], q[0,t−1], q

′
[0,t−1]) 7→ qt q′[0,t] 7→ x̂t.

We consider the discounted-cost criterion for the zero-delay
coding problem, which is to find encoder and decoder
policies such that the following is minimized:

Jβ(π0, γ
e, γd) := Eγ

e,γd

π0

[ ∞∑
t=0

βtd(xt, x̂t)

]
, (1)

where d : X × X̂ → R+ is a given distortion function and
β ∈ (0, 1) is a given discount factor. We use Eγ

e,γd

π0
and

P γ
e,γd

π0
to denote expectations (respectively, probabilities)

under encoder policy γe, decoder policy γd, and prior π0.
Note that the discounted-cost criterion is not the standard

objective for the zero-delay coding problem; we are usually
concerned with the average-cost criterion. However, it can
be shown that as β → 1, a policy that is near-optimal
for the discounted-cost problem in this setting is also near-
optimal for the average-cost problem (e.g., [26, Theorem
7.3.6]. Thus, all of the results in this paper also hold for
the average-cost criterion by taking β sufficiently close to 1.
Indeed, in our simulations we will take β = 0.99 to obtain
an approximation of the average-cost criterion.

Since all our sets are finite, there always exists an optimal
decoder policy for a given encoder policy; so without loss
of optimality, we can search only for an optimal encoder
policy and assume that it is paired with an optimal decoder
policy. We will denote such a joint encoder-decoder policy
by γ := (γe, γd∗), where γd∗ is an optimal decoder policy
given γe. We denote the infimum of (1) by

J∗
β(π0) := inf

γ
Jβ(π0, γ).

For fixed (x[0,t−1], q[0,t−1], q
′
[0,t−1]), consider the function

γe(·, x[0,t−1], q[0,t−1], q
′
[0,t−1]) : X → M. Such a function

(i.e., a mapping from X to M) is called a quantizer. We
denote the set of all such quantizers by Q. Thus we can
view an encoder policy γe as selecting a quantizer Qt ∈
Q based on the information (x[0,t−1], q[0,t−1], q

′
[0,t−1]), then

generating the channel input qt as Qt(xt).
Recall that we used O(q′t|qt) to denote our channel transi-

tion kernel. Let OQt
(q′t|xt) denote the observation kernel

induced by a quantizer Qt ∈ Q; that is, OQt
(q′t|xt) =

O(q′t|Qt(xt)). Denoting the set of probability measures on a
set A by P(A), let ψ ∈ P(M′) be such that OQ(·|x) ≪ ψ
for all x ∈ X, Q ∈ Q, where we use “≪” to denote absolute
continuity (i.e., ψ(B) = 0 =⇒ OQ(B|x) = 0 for any
Borel B ⊂ M′). Since M′ is finite in our setup, we could
take ψ to be the uniform measure on M′, but note that such
measures also exists in uncountable setups for most practical
channels. Then let gQ(x, q′) :=

dOQ

dψ (x, q′) be the Radon-
Nikodym derivative of OQ with respect to ψ.

Also, let πt, πt ∈ P(X) be defined as

πt(xt) = P γπ0
(xt|q′[0,t−1])

πt(xt) = P γπ0
(xt|q′[0,t]),

recalling that X0 ∼ π0. We have dropped the γ for notational
simplicity, but it should be noted that such measures are
policy-dependent. With a slight abuse of notation, we also
let T act as an operator on probability measures as follows:

T : P(X) → P(X)

π(dx) 7→
∫
X
T (dx′|x)π(dx)

Then given π0, the above measures can be computed in
a recursive manner as follows (see e.g., [27, Proposition



3.2.5]).

πt(dx) =
gQt

(x, q′t)πt(dx)∫
X gQt(x, q

′
t)πt(dx)

,

πt+1 = T (πt). (2)

We will denote N(q′t, Qt) :=
∫
X gQt

(x, q′t)πt(dx). Note
that N(q′t, Qt) is non-zero P γπ0

a.s. Thus inside of P γπ0

expectations we will assume N(q′t, Qt) is non-zero.
Using the above update equations, one can compute πt

given (q′[0,t−1], Q[0,t−1]), so that policies of the form Qt =
γt(πt) are valid. We call such policies Walrand-Varaiya
policies. If such a policy does not depend on t (i.e., γt = γ
for some γ and all t ≥ 0), then we call this policy stationary.
The following is a key result, originally from Walrand and
Varaiya [6] for a finite time horizon and extended to the
infinite-horizon case in [8].

Proposition 1: [8, Proposition 2] For any β ∈ (0, 1),
there exists a stationary Walrand-Varaiya type policy γ∗ that
solves the discounted cost problem, i.e., one that satisfies
Jβ(π0, γ

∗) = J∗
β(π0) for all π0 ∈ P(X).

Although a very useful existence result, the above does
not lend itself well to numerical methods since P(X) is
uncountable and the transition kernel for (πt)t≥0 is complex.
In the next section, we will split πt into a past prior and a
finite memory of observations, then show that under certain
regularity conditions we can replace the past prior with a
constant. This yields a finite state space which is more
amenable to numerical methods (in particular, reinforcement
learning).

III. FINITE-MEMORY-BELIEF CONSTRUCTION

We now construct our finite-memory-belief policies. The
analysis in this section is inspired by [17], which used
a similar construction to study finite-memory policies for
Partially Observed Markov Decision Problems (POMDPs).
We fix some N ∈ Z+, which we call the memory and for
t ≥ N define

INt = (q′[t−N,t−1], Q[t−N,t−1])

zNt = (πt−N , I
N
t ).

Note that we can compute πt given zNt by applying the
update equations in (2) N times. Denote this mapping by

φ : Z → P(X)
zNt 7→ πt

where Z = P(X)×(M′)N×QN , endowed with the product
topology, where we use the weak convergence topology on
P(X) and standard coordinate topologies on M′ and Q.

We will call policies of the form Qt = γt(z
N
t ) finite-

memory-belief policies (with memory N ). Similarly, if it
does not depend on t, we call it stationary.

Proposition 2: For any β ∈ (0, 1) and N ∈ Z+, there
exists a stationary finite-memory-belief policy that solves the
discounted-cost problem, i.e., one that satisfies Jβ(πN , γ∗) =
J∗
β(πN ) for all πN ∈ P(X).

Remark: Note that zNt is only defined for t ≥ N . If the
first N steps are significant (i.e, β is small) then a finite-
memory-belief policy may not be near-optimal for a process
starting at t = 0. However, recall that for the zero-delay
coding problem we are generally interested in the average-
cost cost criterion (by taking β close to 1). Accordingly, we
assume that the distortion from the first N steps is negligible.

Properties of the Finite-Memory-Belief Construction
It can be shown that the process (zNt )t≥N is controlled

Markov (similarly to [17]), with control (Qt)t≥N . That is,
for all t ≥ N ,

P (zNt+1|zN[N,t], Q[N,t]) = P (zNt+1|zNt , Qt) =: η(zNt+1|zNt , Qt),
We introduce the following cost function c : Z×Q → R+,

c(zNt , Qt)

=

∫
M′

(
min
x̂∈X̂

∫
X
d(x, x̂)gQt

(x, q′)φ(zNt )(dx)

)
ψ(dq′).

Lemma 1: Given zNt and Qt, c(zNt , Qt) is the expected
distortion when the optimal decoder is used.

In fact, the above is simply a more general form for the
cost function found in [8], [28]. Then by the assumption that
we use the optimal decoder for a given encoder (and that the
first N steps are negligible), we can write (1) as

Jβ(z
N
N , γ) = Eγ

[ ∞∑
t=N

βtc(zNt , Qt)

]
,

where γ is a finite-memory-belief policy, and we define
J∗
β(z

N
N ) := minγ Jβ(z

N
N , γ).

It can be shown (e.g., [29, Theorem 4.2.3]) that these
functions satisfy the following fixed-point equations:

Jβ(z
N
t , γ) = c(zNt , γ(z

N
t ))

+ β

∫
Z
Jβ(z

N
t+1, γ)η(dz

N
t+1|zNt , γ(zNt ))

J∗
β(z

N
t ) = min

Qt∈Q

(
c(zNt , Qt)

+ β

∫
Z
J∗
β(z

N
t+1)η(dz

N
t+1|zNt , Qt)

),

for all zNt ∈ Z and finite-memory-belief policy γ. Note that
although the integral is over Z , which is uncountable, we can
only reach finitely many elements from a given zNt since the
observation space M′ is finite. In particular, when N = 1
and t ≥ 1, we can write z1t = (πt−1, q

′
t−1, Qt−1) and z1t+1 =

(φ(z1t ), q
′
t, Qt), so the above becomes

Jβ(z
1
t , γ) = c(z1t , γ(z

1
t ))

+ β
∑
q′t∈M′

Jβ((φ(z
1
t ), q

′
t, γ(z

1
t )), γ)P (q

′
t|z1t , γ(z1t )) (3)

J∗
β(z

1
t ) = min

Qt∈Q

(
c(z1t , Qt)

+ β
∑
q′t∈M′

J∗
β(φ(z

1
t ), q

′
t, Qt)P (q

′
t|z1t , Qt)

)
. (4)

One can rewrite these equations in a similar way for N > 1,
but for simplicity we will usually study the case of N = 1.



IV. FINITE-MEMORY CONSTRUCTION

The above representation is not particularly useful, as it
still requires one to compute πt−N . So we use the following
approximation of zNt : fix some π̂ ∈ P(X) and let ẑNt =
(π̂, INt ). That is, ẑNt uses π̂ as the predictor at time t−N ,
regardless of the true predictor. We can similarly apply φ to
ẑNt to obtain an “incorrect” predictor at time t. The key idea
is that under predictor stability the correct predictor φ(zNt )
and the incorrect predictor φ(ẑNt ) will be close for large
enough N , since the predictor will be insensitive to the prior.
For technical reasons regarding predictor stability, we assume
that π̂ has full support over X.

The benefits of such an approximation are clear: rather
than deal with all of Z , which is uncountable due to P(X),
we only have to deal with the finite set Ẑ := {π̂}×(M′)N×
QN . Furthermore, we no longer need to compute πt−N ,
which can save significant computation resources especially
when the relevant alphabets are large.

Properties of the Finite-Memory Construction

Consider the following transition kernel given by taking
the marginal of η over P(X),

η̂(ẑNt+1|ẑNt , Qt) := η(P(X), INt+1|ẑNt , Qt).

Also consider the cost function c(ẑNt , Qt) and the resulting
value function, which we denote by

Ĵβ(ẑ
N
N , γ̂) := Eγ̂

[ ∞∑
t=N

βtc(ẑNt , Qt)

]
,

where the policy γ̂ maps ẑNt to Qt, and we denote Ĵ∗
β(ẑ

N
N ) :=

minγ̂ Ĵβ(ẑ
N
N , γ̂). Note that a minimizing policy, which we

denote by γ̂∗, exists trivially in this case since ẑNt and Qt can
take only finitely many values. The above functions satisfy
equivalent fixed-point equations to (4), so that for N = 1,

Ĵβ(ẑ
1
t , γ̂) = c(ẑ1t , γ̂(ẑ

1
t ))

+ β
∑
q′t∈M′

Ĵβ(π̂, q
′
t, γ̂(ẑ

1
t ))P (q

′
t|ẑ1t , γ̂(ẑ1t ))

Ĵ∗
β(ẑ

1
t ) = min

Qt∈Q

(
c(ẑ1t , Qt)

+ β
∑
q′t∈M′

Ĵ∗
β(π̂, q

′
t, Qt)P (q

′
t|ẑ1t , Qt)

)
. (5)

Note that we can extend Ĵ∗
β and γ̂∗ to all of Z by making

them constant over P(X). We denote these extensions by J̃∗
β

and γ̃∗, so that

J̃∗
β(z

N ) = J̃∗
β(π, I

N ) := Ĵ∗
β(π̂, I

N )

γ̃∗(zN ) = γ̃∗(π, IN ) := γ̂∗(π̂, IN ), (6)

for all zN = (π, IN ) ∈ Z .
We are interested in the value of

∣∣∣Jβ(zNN , γ̃∗)− J∗
β(z

N
N )

∣∣∣;
that is, the loss in performance when we apply the optimal

policy from the finite-memory representation to the finite-
memory-belief representation (with the appropriate exten-
sion).

Remark: The process (ẑNt )t≥N is in general not con-
trolled Markov. That is, in reality ẑNt does not have a tran-
sition kernel given by η̂; in this section we have constructed
an artificial MDP with this transition kernel. However, the
long-term ergodic behaviour of ẑNt will coincide with the
fixed-point equations in (5) through the Q-learning approach
to be covered in Section VII. That is, we will use ẑNt to
find optimal policies for this artificial MDP, even though ẑNt
itself does not form an MDP.

V. LOSS IN PERFORMANCE DUE TO APPROXIMATION

We define the total variation distance between two prob-
ability measures µ, ν as

||µ− ν||TV := sup
||f ||∞≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
where f is measurable. Using our above definition of
c(zN , Q), we have∣∣c(zN , Q)− c(ẑN , Q)

∣∣ ≤ ||d||∞||φ(zN )− φ(ẑN )||TV . (7)

Lemma 2: For any zNt and ẑNt , under any finite-memory-
belief policy, we have

||P (q′t|zNt , Qt)−P (q′t|ẑNt , Qt)||TV ≤ ||φ(zNt )−φ(ẑNt )||TV .
In the following, we bound the difference in the optimal

expected costs between the finite-memory-belief representa-
tion and the finite-memory representation. We will use this
to obtain a performance bound later. Note that we consider
an expectation with respect to zNN (that is, over the first N
steps). The following is a loss term: for t ≥ N , let

LNt := sup
γ

Eγπ0

[
||φ(zNt )− φ(ẑNt )||TV

]
, (8)

where the supremum is over all policies that generate INN−1

(i.e., that act on the first N time steps).
Theorem 1: Let γ be some policy that generates INN−1,

then

Eγπ0

[∣∣∣J̃∗
β(z

N
N )− J∗

β(z
N
N )

∣∣∣] ≤ ||d||∞
1− β

∞∑
t=N

βtLNt .

Theorem 2: Let γ be some policy that generates INN−1,
and let γ̃∗ be the optimal policy for the finite-memory
representation extended to Z as in (6). Then,

Eγπ0

[∣∣Jβ(zNN , γ̃∗)− J∗
β(z

N
N )

∣∣] ≤ 2||d||∞
1− β

∞∑
t=N

βtLNt .

VI. PREDICTOR STABILITY CONDITIONS

The loss term in the previous theorems,

LNt := sup
γ

Eγπ0

[
||φ(zNt )− φ(ẑNt )||TV

]
,

is the expected total variation distance between the predictors
at time t, given that the predictors at time t −N are given
by πt−N and π̂, respectively. This is related to the question
of predictor stability, which we now review.



Note that the update equations in (2) are sensitive to the
choice of π0. We modify the previous notation for πt and πt
to indicate this dependence: let (πµt )t≥0 and (πνt )t≥0 be the
predictors resulting from the same sequence (q′t, Qt)t≥0, but
with different initial measures πµ0 = µ and πν0 = ν, where
µ≪ ν. We equivalently define πµt and Nµ(q′t, Qt).

We wish to study the behaviour of

Eγµ [||π
µ
t − πνt ||TV ] (9)

as t→ ∞, under some policy γ. Bounding this term over all
γ will give us a bound on LNt above by taking µ = πt−N
and, for example, ν = π̂ to be uniform over X (so that the
absolute continuity condition is satisfied).

Dobrushin Coefficient Conditions

The following results are inspired by the analysis in [20],
which uses joint contraction properties of the state and
observation kernels to bound (9). In particular, we will study
the following type of stability:

Definition 1: A predictor process is called exponentially
stable in total variation if for some α < 1.

Eγµ [||π
µ
t − πνt ||TV ] ≤ αt||µ− ν||TV .

First we introduce some notation. For standard Borel
spaces A1, A2 and some kernel K : A1 → P(A2), we define
the Dobrushin coefficient as

δ(K) := inf

n∑
i=1

min(K(Bi|x),K(Bi|y)),

where the infimum is over x, y ∈ A1 and all partitions
{Bi}ni=1 of A2. In particular, for finite spaces, the Dobrushin
coefficient is equivalent to summing the minimum elements
between every pair of rows, then taking the minimum of
these sums. Then we have a counterpart of [20, Theorem
3.6] in the case where the channel is not time-invariant.

Theorem 3: For any finite-memory-belief policy γ and for
any µ≪ ν, we have

Eγµ
[
||πµt+1 − πνt+1||TV

]
≤ (1− δ(T ))(2− δ̃(O))Eγµ [||π

µ
t − πνt ||TV ] ,

where δ̃(O) = minQ∈Q(δ(OQ)).
Corollary 1: For any policy γ and for any µ≪ ν,

Eγµ [||π
µ
t − πνt ||TV ] ≤ αt||µ− ν||TV ,

where α := (1 − δ(T ))(2 − δ̃(O)). Thus if α < 1, then
the predictor is exponentially stable in total variation with
coefficient α. Also, if δ(T ) > 1

2 , then the predictor is
exponentially stable regardless of the channel.

Note that for a given quantizer Q, the kernel OQ(q′|x) =
O(q′|Q(x)) only contains rows from the kernel O, so that
δ(O) ≤ δ(OQ) for all Q. Thus we obtain the following.

Corollary 2: For any policy γ and for any µ≪ ν,

Eγµ [||π
µ
t − πνt ||TV ] ≤ αt||µ− ν||TV ,

where α := (1− δ(T ))(2− δ(O)).
Note that, in many applications of the zero-delay quantiza-

tion problem, the requirement that (1−δ(T ))(2−δ(O)) < 1

is too strong. In particular, in the special case where the chan-
nel is noiseless, we will always have that δ(O) = 0. Thus we
can only use Corollary 2 if δ(T ) > 1

2 . This is not surprising
given the nature of Dobrushin-type conditions; the more sim-
ilar the conditional measures OQ(dq′|x) and OQ(dq′|y) are
for different x, y ∈ X, the closer the Dobrushin coefficient
is to 1. Therefore, such Dobrushin-type conditions prioritize
uninformative kernels. Conversely, the goal of the zero-delay
coding problem is to use quantizers that create informative
kernels. Nevertheless, the above conditions give an easy-to-
verify condition for predictor stability.

Applying Corollary 2 to the LNt term, we have

LNt = sup
γ

Eγπ0

[
||φ(zNt )− φ(ẑNt )||TV

]
≤ αN ||πt−N − π̂||TV .

VII. REINFORCEMENT LEARNING FOR FINITE-MEMORY
POLICIES

In order to obtain such a finite-memory policy, we pro-
pose using a variation of the well-known Q-learning al-
gorithm [30]. Q-learning is a reinforcement learning algo-
rithm in which realizations of state, action, and cost are
collected and used to update Q-factors whose limits, under
certain assumptions, can be used to obtain an optimal policy.
This algorithm cannot be applied directly to the process
(ẑNt , Qt)t≥0 as it is not Markov. Due to the above issues,
we use the more general version of the Q-learning algorithm
proposed in [31, Theorem 2.1] (see also [17, Theorem 4.1]).
In this algorithm, a policy γ′ is applied and realizations of
(ẑNt , Qt, c(ẑ

N
t , Qt))t≥N are collected. Consider the sequence

(Qt)t≥N where Qt : Ẑ × Q → R+.
For some initial QN , we compute this sequence using

Qt+1(ẑ, Q) = (1− αt(ẑ, Q))Qt(ẑ, Q)

+ αt(ẑ, Q)
(
c(ẑ, Q) + βmin

v
Qt(ẑ

N
t+1, v)

),
(10)

where αt : Ẑ ×Q → [0, 1]. The minimum is over all v ∈ Q.
Assumption 1:

(i) αt(ẑ, Q) = 0 unless (ẑNt , Qt) = (ẑ, Q). Also,

αt(ẑ
N
t , Qt) =

1

1 +
∑t
k=0 1{ẑNk =ẑNt ,Qk=Qt}

.

(ii) The policy γ′ used to collect the realizations chooses the
quantizers (Qt)t≥N independently and uniformly from Q.
(iii) The fixed prior π̂ used in the finite-memory construction
is the unique invariant distribution of the source (xt)t≥0.

Theorem 4: 1) Under Assumption 1, (Qt)t≥N converges
almost surely to a limit Q∗ satisfying

Q∗(ẑ, Q) = c(ẑ, Q) + β

∫
Ẑ
Q(ẑN1 , Q)η̂(dẑN1 |ẑ, Q)

Furthermore, define γ̂∗ as γ̂∗(ẑ) = argminv Q
∗(ẑ, v). Then

γ̂∗ satisfies the optimality equation (5) for t ≥ N .
2) Denote by γ̃∗ the extension of γ̂∗ to Z , as in (6). Then
γ̃∗ satisfies

Eγπ0

[∣∣Jβ(zNN , γ̃∗)− J∗
β(z

N
N )

∣∣] ≤ 2||d||∞
1− β

∞∑
t=0

βtLNt ,



where γ acts on the first N steps and LNt is as in (8).

VIII. SIMULATION

We now give an example. Further examples are given in
the full paper [25].

We take β = 0.99, the distortion function d(x, x̂) = (x−
x̂)2, and use a uniform measure for π̂. The discounted cost is
approximated by running a simulation over t = 0 to t = 105.
Consider a source with transition kernel and channel O(q′|q),
with M = M′ = X, given by

T =


1
2

1
6

1
6

1
6

1
3

1
3

1
3 0

1
3

1
3 0 1

3
1
4

1
4

1
4

1
4

 , O =


7
10

1
10

1
10

1
10

1
10

7
10

1
10

1
10

1
10

1
10

7
10

1
10

1
10

1
10

1
10

7
10


We have that δ(T ) = 2

3 and δ(O) = 4
10 , so we can apply

Corollary 2 with α = (1 − 2
3 )(2 − 4

10 ) = 8
15 . In such a

setup (where X = M and the channel is symmetric), it
was shown in [6] that “memoryless” encoding (i.e. where
qt = xt) is optimal. We compare our algorithm against this
optimal policy, shown in Figure 1.

Fig. 1. The optimum is approached as N increases.

CONCLUDING REMARKS

As noted in Section VI, Dobrushin-type conditions pri-
oritize uninformative kernels; and more relaxed stability
conditions are possible [22]. Furthermore, our analysis is
also naturally applicable to continuous alphabet sources. We
intend to generalize our results in these directions.
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