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Abstract—We consider a distributed detection system where
two noisy sensors transmit a binary source over a Gaussian multi-
ple access channel (MAC). We derive the constellation designs for
the sensors which minimizes the system error probability under
individual power constraints. Three distinct cases arise from this
optimization, where in the most notable case (Case III), one of
the sensors should not necessarily use all of its allocated power,
hence enabling savings that can prolong the sensor’s battery life.

I. INTRODUCTION

Wireless sensor networks are a useful tool for reliably
monitoring physical properties of the environment from a
centralized location. This includes both the estimation of
a real valued parameter (such as temperature or rain fall
measurements) and the detection of an event occurring (such
as the occurrence of forest fires or a security breach). These
types of problems are referred to as distributed estimation,
and distributed detection, respectively. In this work, we are
interested in minimizing error probability for a distributed
detection system.

Previous work on distributed detection usually fixes a cer-
tain variety of constellation design, while optimizing some re-
lated proxy metrics for error probability. For example, [1] uses
orthogonal channels, and optimizes power allocation under the
Jeffreys-divergence metric. Alternatively, [2] assumes a single
multiple access channel (MAC) for the entire network, and
uses the deflection coefficient as the metric for optimization.

We propose a generalized problem of finding an optimized
constellation design to minimize error probability under a
given source and channel model. This is similar in principle
to works such as [3]–[5], where general constellation design
is optimized for a chosen criterion. In [3], the optimal joint
binary constellation design for two correlated sources was
derived. In [4] and [5], a minimum inter-constellation dis-
tance criterion is used to optimize constellations for multiple
sources.

To apply this concept to distributed detection, we simplify
the problem to a two sensor network so that an analytical
optimization of the error probability can be performed. The
event of interest is modelled as a non-uniformly distributed
binary source, and the sensors introduce errors by passing
the source through independent stationary binary symmetric
channels. The sensors choose binary constellations to send
their signals over a Gaussian MAC to the fusion center, which

The authors are with the Department of Mathematics and Statistics, Queen’s
University, Kingston, Ontario, Canada ({16ls53,takahara,fa}@queensu.ca)).
This work was supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

then performs optimal maximum-a-posteriori (MAP) detection
to recover the transmitted source bits. With this setup, we an-
alytically derive the optimal constellation design to minimize
the system error probability under individual power constraints
for each sensor. The optimization is split into three cases,
based on the parameters describing the source distribution and
sensors’ noise. The derived theoretical optimality results are
supported by numerical examples and simulations. Our most
notable result is that in certain cases (which are dominant when
the source is nearly uniformly distributed), the noisier sensor
should use a portion but not all of its allocated power, hence
realizing energy savings for its battery.

A summary of the main results is shown in Table I, and a
numerical example reinforcing the optimization of Case III is
given in Fig. 1. The complete proofs of the optimization results
as well as more detailed numerical examples are provided
in [6].

II. SYSTEM MODEL

Let X be a binary event that is to be observed by a sensor
network. Without loss of generality, it is assumed that the
source is distributed such that p1 ≜ Pr(X = 1) ≤ 0.5. We also
define p0 ≜ Pr(X = 0) = 1− p1. There are two sensors, X1

and X2 observing the source X , which are modelled as passing
X through two independent memoryless binary symmetric
channels. This is expressed as Xs = X ⊕ Zs, s = 1, 2,
where ⊕ denotes addition modulo-2, with Z1 and Z2 being
independent Bernoulli noise variables with means (or channel
crossover probabilities) ϵ1 and ϵ2, respectively. It is also
assumed that X is independent from (Z1, Z2). Without loss
of generality, Sensor 1 is assumed to have stronger correlation
to the original source X than Sensor 2 (e.g., Sensor 1 is
located in closer proximity to the source than Sensor 2). This
is numerically expressed as 0 < ϵ1 ≤ ϵ2 < 0.5. The sensors
are assumed to be unable to communicate with each other,
so they must transmit their data independently using binary
signaling constellations. The constellations for the sensors are
represented as follows: Cs = {c0,s, c1,s}, s ∈ {1, 2}, where
for i ∈ {0, 1}, ci,s ∈ R denotes the constellation point
for sensor s assigned to Xs = i. Let S1 ∈ C1, S2 ∈ C2
be the random variables associated to each sensor’s chosen
constellation point. Also let Pmax

1 and Pmax
2 be the power

constraints of sensors, i.e., E[S2
i ] ≤ Pmax

i , i ∈ {1, 2}.
The sensors’ signals are sent through a Gaussian MAC. The

received signal R is described by the relation R = S1+S2+Z,
where Z is a Gaussian noise variable with zero mean and
variance N0

2 . It is assumed that Z is independent of the sensor
signals S1 and S2. The overall signal S1 + S2 sent over the
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channel can be represented as a point in the combined constel-
lation of C1 and C2, given by C = {c1+c2 |c1 ∈ C1, c2 ∈ C2}.

The event X is estimated from the received signal R using
MAP detection. For r ∈ R, the detected bit is determined as
follows:

x̂(r) = argmax
i∈{0,1}

Pr(X = i | R = r)

= argmax
i∈{0,1}

pi
∑

(l,m)∈{0,1}2

plm|ifZ(r − alm),

where fZ is the probability density function of the channel
noise variable Z, plm|i ≜ Pr(X1 = l,X2 = m|X = i),
and alm ∈ C denotes the superimposed constellation symbol
associated with X1 = l and X2 = m. In the case of a tie, we
detect a 0. This is an arbitrary decision since the noise is a
continuous random variable.

III. SUMMARY OF MAIN RESULTS

For fixed system parameters p1, ϵ1, ϵ2, N0, Pmax
1 and Pmax

2 ,
we show that the optimal constellation design for C1 and C2
which minimizes the system error probability are expressed
as Ci = {c0,i, c1,i} =

{
−
√

p1

p0
P ∗
i ,

√
p0

p1
P ∗
i

}
, for i ∈ {1, 2},

where the optimal power allocations, P ∗
i , are separated into

three cases summarized in Table I, where

k1 ≜
ϵ1ϵ2

1− ϵ1 − ϵ2 + 2ϵ1ϵ2
, k2 ≜

ϵ1 − ϵ1ϵ2
ϵ1 + ϵ2 − 2ϵ1ϵ2

,

and
P̃2 ≜

N0p1p0

2
√
Pmax
1

ln
(1− ϵ1 − ϵ2)

2 − Λ

(ϵ2 − ϵ1)2 − Λ
,

with
Λ ≜

(p0 − p1)
2

p0p1
(1− ϵ1)(1− ϵ2)ϵ1ϵ2.

TABLE I: Optimal Power Allocation

Case Condition P ∗
1 P ∗

2

I 0 ≤ p1 ≤ k1 0 0

II k1 < p1 ≤ k2
√

Pmax
1

√
Pmax
2

III k2 < p1 ≤ 0.5
√

Pmax
1 min(

√
Pmax
2 , P̃2)

IV. NUMERICAL AND SIMULATION RESULTS

We illustrate the derived results numerically and verify that
they are supported by simulated experiments. We show that
the minimization problem is solved at the correct value of P2

in Case III by fixing all parameters except P2. We use the
optimal asymmetric constellation design Ci = {c0,i, c1,i} ={
−
√

p1

p0
Pi,

√
p0

p1
Pi

}
, for i ∈ {1, 2} and vary P2 to compare

error probabilities. For each value of P2 the experimental data
point is produced by sending 1,000,000 independent source

bits via two simulated sensors and MAC, then using the MAP
detection rule, the detected bit is compared to the true source.
The error probability is calculated as the number of errors
divided by the total number of bits sent in the experiment.

The error probability as a function of P2 is shown in Fig. 1.
This plot shows that the simulated and theoretical error perfor-
mance closely match, while also observing that the simulated
minimum power allocation P̃2 for Sensor 2 coincides with
its analytical expression obtained in Section III. Additionally,
the error function is decreasing until reaching its minimum
value, which illustrates why the optimal power allocation
in Case III is min(

√
Pmax
2 , P̃2). If

√
Pmax
2 < P̃2, then the

smallest admissible error value occurs at P2 =
√
Pmax
2 .

Fig. 1: Theoretical and simulated error probability in Case III
(p1 = 0.45, ϵ1 = 0.01, ϵ2 = 0.05, P1 = 1, N0 = 1).
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