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ABSTRACT

We consider discrete channels with stationary additive
noise. We show that output feedback does not increase the
capacity of such channels. This is shown for both ergodic
and non-ergodic additive stationary channels.

1. INTRODUCTION

We consider discrete channels with stationary additive
noise. Note that such channels need not be memoryless; in
general, they have memory. The Gilbert burst-noise chan-
nel [1], as well as the Polya-contagion channel [2], belong to
the class of such channels. We assume that these channels
are each accompanied by a noiseless, delayless feedback
channel with large capacity. We show that the capacity of
the channels with feedback does not exceed their respective
capacity without feedback. This is shown for both ergodic
and non-ergodic additive stationary channels.

In earlier related work, Shannon [3] showed that feed-
back does not increase the capacity of discrete memory-
less channels. The same result was proven to be true for
continuous channels with additive white Gaussian noise.
Later, Cover and Pombra [4] and others considered con-
tinuous channels with additive non-white Gaussian noise
and showed that feedback increases their capacity by at
most half a bit; similarly, it’s been shown [4] that feedback
can at most double the capacity of a non-white Gaussian
channel.

2. DISCRETE CHANNELS WITH
STATIONARY ERGODIC ADDITIVE
NOISE
2.1. Capacity with no Feedback

Consider a discrete channel with common input, noise and
output alphabet A = {0,1,...,¢—1}, described by the fol-
lowing equation: Y, = X,, & Z,, for n =1,2,3,... where:

e @ represents the addition operation modulo g.

e The random variables X,,, Z,, and Y,, are respectively
the input, noise and output of the channel.
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o {X,} L {Z.}, i.e. the input and noise sequences are

independent from each other.

e The noise process {Z, }n=5° is stationary and ergodic.
Note that additive channels defined as above, are “non-
anticipatory” channels; where by “non-anticipatory” we
mean channels with no input memory (i.e., historyless)
and no anticipation (i.e., causal) [5]. A channel is said to
have no anticipation if for a given input and a given input-
output history, its current output is independent of future
inputs. Furthermore, a channel is said to have no input
memory if its current output is independent of previous
inputs. Refer to [5] for more rigorous definitions of causal
and historyless channels. We specify these conditions so
as to be able to use well-established formulas [5,6] for the
non-feedback capacity of the resulting channels.

A channel code with blocklength n and rate R consists
of an encoder

F:{1,2,...,2"%} > A"
and a decoder
g: A" = {1,2,...,2""}

The encoder represents the message W € {1,2,...,2"%}
with the codeword f(W) = X" = [X1, X2, ..., X,] which
is then transmitted over the channel; at the receiver, the
decoder observes the channel output Y™ = [¥1,Y5,...,Y5],
and chooses as its estimate of the message W = g(Y™). A
decoding error occurs if W FW.

For additive channels, Y; = X; & Z; for all i. We assume
that W is uniformly distributed over {1,2,...,2"%}. The
probability of decoding error is thus given by:

on R

P = N Pr{gr) £ WIW = k)

k=1
= Prigy") £ W}

We say that a rate R is achievable (admissable) if there
exists a sequence of codes with blocklength n and rate R
such that

lim P™ =o.

Tn— 00



We denote the capacity of the channel with no feedback
by Cnrp. The objective, of course, is to transmit an ar-
bitrary message W at a high rate and low probability of
error. If we define Cnpp to be the supremum of all admiss-
able code rates, then C'ypp is the capacity of the channel.

Because the channel is non-anticipatory and stationary
ergodic, the nonfeedback capacity Cnrp of this channel is
known and is equal to [5]:

Cnyrp = lim sup 1 Inxmy") (1)
n—oo xn T
. 1 n
= logylo) — lim T H(Z") ()
n—oo T

where
X" =(X1,Xo,...,Xn),

Y™ = (Y1, Ys,...,Y.),
2" = (21,2, .., Zn),

I(X™;Y™) is the mutual information between the input
vector X" and the output vector Y", and the supremum
is taken over the input distributions of X™. H(Z") is the
entropy of the noise vector Z".

2.2. Capacity with Feedback

We now consider the corresponding problem for the dis-
crete additive channel with complete output feedback. By
this we mean that there exists a “return channel” from the
receiver to the transmitter; we assume this return channel
is noiseless, delayless, and has large capacity. The receiver
uses the return channel to inform the transmitter what
letters were actually received; these letters are received at
the transmitter before the next letter is transmitted, and
therefore can be used in choosing the next transmitted let-
ter.

A feedback code with blocklength n and rate R consists
of sequence of encoders

fi{1,2,...,2"  x A7 5 A

for e =1,2,...,n, along with a decoding function

g: A" = {1,2,...,2"%}
The interpretation is simple: If the user wishes to con-
vey message W € {1,2,...,2"%} then the first code sym-
bol transmitted is X1 = fi1(W); the second code symbol
transmitted is X» = f>(W, Y1), where Y; is the channel’s
output due to X;. The third code symbol transmitted
is X3 = f3(W,Y1,Y2), where Y> is the channel’s output
due to X5. This process is continued until the encoder
transmits X,, = fo(W,Y1,Ys,...,Y,_1). At this point
the decoder estimates the message to be g(Y"), where
Y™ =[Y1,Ys,...,Y,]

Assuming our additive channel, Y; = X;®Z; where {Z;}
is a stationary ergodic noise process. Again, we assume
that W is uniformly distributed over {1,2,...,2"%} and

we define the probability of error and achievability as in
Section 2.1.

Note, however, that because of the feedback, X™ and Z"
are no longer independent; X; may depend on Z‘~*.

We will denote the capacity of the channel with feedback
by Crp. As before, Crp is the supremum of all admissable
code rates.

Proposition 1 Feedback does not increase the capacity of
channels with additive stationary ergodic noise:

1
Cre =Cnre =log,(q) — lim = H(Z") (3)

n—oo T

Proof 1 Since W is uniformly distributed over
{1,2,...,2"%}, we have that H(W) = nR. Furthermore,
H(W)=HW|Y")+I(W;Y"). Now by Fano’s inequality,
ho(PEY) + P log, (2" — 1)

1+ P log,(2"%)

= 1+P"™nR

HWIY") <
<

since hy (Pe(")) <1, where h;() is the binary entropy func-
tion. Thus

HW[Y™) <1+ P™nR (4)
We then have:

nR = H((W)
= HW|Y") +I(W;Y")
14+ P™nR+I(W;Y™)

IN

where R is any admissable rate.
Dividing both sides by n and taking n to infinity, we get:

Crp < lim 1 I(w;Yy™) (5)

n—oo T

Let us thus study I(W;Y™):

I(W;Y™") = Z IW;Yily'™) (6)

i=1
but
IW; Y)Y = HY[Y'™) - HY; W, Y'™) (7)
=HY[Y'"Y)Y-HXie@ZW,Y" ") (8)

Now the fact that X; = f; (W, Y1,...,Y;_1) implies that

H(X; ® Z|W, Y™ = H(Z|W, Y™ X;) (9)
= HZWY ' X' Z"Y (10)
= H(Z|z'"™). (11)

Here,



e Equation (9) follows from the fact that given W
and Y“l, X; is known deterministically and H(Z +
X|X)=H(Z|X).

e Equations (10) follows from the fact that given W
and Y°°!, we know all the previous transmitted let-
ters X1, Xo,...,X;—1 and thus we can recover all the
previous noise letters Z; = Y; — X; (mod q) for
j=1,2,...i—1.

e Equation (11) follows from the fact that Z; and
(W, Y~ X*) are conditionally independent given
zit

Therefore
IW;Y,)Y'"™ ) =HY|Y'"™") — H(Z|Z"™) (12)

and

IWiy™) = Y [HEWY'™) - H(Z|Z™)] (13)
= };(y") - H(Z") (14)

But H(Y") < log,q" because the channel is discrete.
Therefore, if we divide both sides of (14) by n, and take n
to infinity, we obtain that

Crp < CnrFB

But by definition of a feedback code, Crp > Cnrp since
a non-feedback code is a special case of a feedback code.
Thus we get:

. 1 n
Cre =CnrB =logy(q) — lim — H(Z") (15)

n—oo TN

Observations:

1. It is important to note that for additive channels, the
noise entropy (given in equations (9)-(11)) remain the
same with or without feedback. This is because addi-
tion is invertible; in general H(X) < H(f(X)) with
equality holding for invertible functions f(-). This is
true for both discrete and continuous alphabet addi-
tive channels.

2. The reason why output feedback potentially increases
the capacity of additive non-white Gaussian chan-
nels [4] is because for continuous channels we have
power constraints on the input, which upon optimiza-
tion may increases lim, ;oo + H(Y") when feedback
is used; while for discrete channels this quantity is
upperbounded by log,(g) and cannot be increased
with feedback. It is therefore suspected that feed-
back might increase the capacity of discrete additive
channels if we impose power constraints on the input.

3. The result given in Proposition 1 can be easily ex-
tended to discrete non-anticipatory channels with ad-
ditive asymptotically mean stationary (AMS) ergodic
noise process. Such class of noise processes include
time-homogeneous ergodic Markov chains with arbi-
trary initial distributions. The proof is identical to
that of Proposition 1, since the non-feedback capac-
ity for the channel with AMS ergodic additive noise is
still given by equation (2) [7]. A random process has
the AMS property (or is an AMS process) if its sample
averages converge for a sufficiently large class of mea-
surements (e.g., the indicator functions of all events);
furthermore, there exists a stationary measure, called
the “stationary mean” of the process, that has the
same sample averages. A necessary and sufficient con-
dition for a random process to possess ergodic proper-
ties with respect to the class of all bounded measure-
ments is that it be AMS [8].

Finally, with the result of Proposition 1 in mind, it would
be interesting to investigate discrete non-additive station-
ary ergodic channels with known non-feedback capacities,
and see whether output feedback would increase their ca-
pacities.

3. DISCRETE CHANNELS WITH
STATIONARY NON-ERGODIC ADDITIVE
NOISE

3.1. Capacity with no Feedback

Consider a discrete channel similar to the one considered
in section 2 with the exception that the additive noise pro-
cess {Z,} to the channel is stationary but non-ergodic. We
will show in proposition 2 that the resulting channel is an
averaged channel with additive stationary ergodic compo-
nents.

An averaged channel with stationary ergodic compo-
nents is defined as follows:

Counsider a family of stationary ergodic channels param-
eterized by 0:

{W;">(Y" —y" | X" =a"),0 € e} (16)
n=1

where Y™ and X™ are respectively the input and output
blocks of the channel, each of length n. We(”)() is the block
transition probabilities of the stationary ergodic channels,
conditioned on a parameter 6 € ©.

Definition 1 We define a channel to be an “averaged”
communication channel with stationary ergodic compo-
nents if its block transition probability WM (Y™ =
y" | X" = ™) (where “ac” stands for averaged channel) is
just the expected value of the block transition probability
{Wg(")(Y" = y*|X"™ = z™)} taken with respect to some
distribution on 6 — i.e., if it’s of the form:

n n n n n A n n n
W™ =y |X" =2") = B[W " (y"2™)]  (17)

=/ WM (y"[e™) dG(9) (18)

©



where (©,0(0),G) is the probability space on which the
random variable 6 is defined.

Note that the averaged channel has memory and is sta-
tionary. The averaged channel functions as follows: among
the (countable or uncountable) stationary ergodic compo-
nents, nature selects one of these components according to
some probability distribution G. This component is then
used for the entire transmission. However this selection is
unknown to both the encoder and the decoder.

In order to show that we can write the block transi-
tion probability of the channel with additive stationary
non-ergodic noise (which is equal to the block transition
probability of the noise) as a mixture of the probabilities
of the additive stationary ergodic channels (proposition 2),
we need to state first the ergodic decomposition theorem
for stationary processes [9].

Notation: Consider a discrete time random process
with an alphabet D, an event space (o-field) o(D*°) con-
sisting of subsets of the space D™ of sequences u =
(u1,u2,...), ui € D, a probability measure p on the space
(D, 0(D*)) forming a probability space (D%, o (D), u)
and a coordinate or sampling function U,, : D* — D
defined by U,(u) = un. The sequence of random vari-
ables {U,;n = 1,2,...} defined on the probability space
(D*°,0(D*), ) is a discrete time random process. As
convenient, random processes will be denoted by either
{U,} (to emphasize the sequence of random variables), by
[D, 1, U] (to emphasize alphabet, probability measure, and
name of the random variable).

Lemma 1 (Ergodic Decomposition Theorem)

Let [D, p, U] be a stationary, discrete time random pro-
cess. There exists a class of stationary ergodic measures
{pe; 6 € O} and a probability measure G on a event space
of © such that for every event F' C o(D*) we can write:

p(F) = / 15 (F) dG(9) (19)
©

Remark: The ergodic decomposition theorem states
that, in an appropriate sense, all stationary nonergodic
random processes have the form of equation (19) of being
a mixture of stationary ergodic processes; that is if we are
viewing a stationary non-ergodic process, we are in real-
ity viewing a stationary ergodic process selected by nature
according to some probability measure G. Therefore, by
directly applying the ergodic decomposition theorem we
get the following result:

Proposition 2 A discrete channel with stationary non-
ergodic additive noise process is an averaged channel with
additive stationary ergodic components.

Proof 2 Since the additive noise process is independent
of the input process, we can write:

W(")(Y" =y" | X"=2z")= W(")(Z" =y"—z" (mod q))

Now, applying the ergodic decomposition theorem on the
non-ergodic noise process {Z, }, we get our result with each

of the stationary ergodic channels being an additive noise
channel:

WY = (X" = ") = / W(Z" =y — 2" dG(0)
€]

The strong capacity of averaged channels does not exist
[10], since the strong converse to the channel coding theo-
rem does not hold. However it was shown by Ahlswede [10]
that the weak converse holds for these channels. Recalling
from Section 2.1 the definitions of a channel block code and
the operational (weak) capacity of the channel (the supre-
mum of all achievable rates), we state the formula for the
non-feedback operational capacity of an averaged channel
6],[20]:

Lemma 2 (Capacity of Averaged Channel)
Consider the averaged channel with stationary er-
godic components described by (17), with common in-
put and output alphabet A; input probability space
(A", 0(A™),Q") and general averaging probability distri-
bution G() -i.e. © can be either a discrete or continuous
parameter space.

Then the non-feedback (weak) capacity of the averaged
channel is given by

Chip = lim C(a) (20)

Q
&
I

max sup inf i(Q;Ws) (21)
Q  [E€o(©): G(E)>1—a} 9EE ’

where the mutual information rate i(Q; Wp) is given by

) o1 n n
i(QiWo) = lim ~1(Q"™; W)

n— oo
with

. . W) (7 |
IQ WS WS )@ " g, T )
z,ynteA™
and ¢ (") 2 T oan Wi " QUGN
Non-Feedback Capacity of the Channel with Ad-
ditive Noise: As we mentioned earlier, the channel with
additive stationary non-ergodic noise is an averaged chan-
nel with additive stationary ergodic components (Proposi-
tion 2). Since the channel has an additive noise process
that is independent of the input process, we will have that
the maximization over the input distribution Q in equation
(21) is realized for uniform input distribution (symmetry
property). We can therefore interchange the max and the
inf in (21) and we get:

max i(Q; Wo) = log(q) — h(Ws)



The resulting non-feedback capacity of the channel with
additive non-ergodic noise is:

Cnrp =log,(q) — esse sup h(Wy) (22)

where

e the noise entropy rate h(Wp) is given by

RWe) 2 lim L H, (W) (23)
n—oo T
with
n A n n n n n n n n
Ho (W) S D Wi (y" 2" Q™ () log, Wy™ (" [2™)

zm yn e AT
e and the essential supremum is defined by
essosup f(0) 2 inf [r:dG(f(0) <r)=1] (24)

3.2. Capacity with Feedback

As in the previous section, we consider the corresponding
problem for the discrete additive channel with complete
output feedback. Similarly, we define a feedback code with
blocklength n and rate R, as a sequence of encoders

fi{1,2,...,2"  x A7 5 A

for e =1,2,...,n, along with a decoding function

g: A" = {1,2,...,2""}.
The interpretation of the functions is identical to those in
section 2.2.

Assuming our additive channel, ¥; = X;® Z; where {Z;}
is a stationary non-ergodic noise process.

Here again, we assume that W is uniformly distributed
over {1,2,...,2"%} and we use the same definitions of
achievable rates, probability of decoding error and capacity
as in section 2.2.

Because of the feedback, X™ and Z" are no longer in-
dependent; X; depends causally on Z‘~'. We will denote
the capacity of the channel with feedback by Crp. We now
get the following result:

Proposition 3 Feedback does not increase the capacity of
channels with additive stationary non-ergodic noise:

Crp = Cnrp =log,(q) — esse sup h(Wy)

Proof 3 We will show that the (weak) converse to the
channel coding theorem still holds with feedback. The
coding theorem itself obviously holds since a non-feedback
code is a special case of a feedback code, and thus any
rate that can be achieved without feedback, can also be
achieved with feedback; i.e. for any R < CnFg, there ex-
ists feedback codes with blocklength n and rate R, such
that lim, e P = 0.

The additive channel is a mixture of additive stationary
ergodic channels, thus by Proposition 1, we obtain that for
each of these components: Cl(f; = CI(VGI)FB. Now, examin-
ing equation (22), we have: h(Wy) < essesup h(Wj) a.e.
Then for some small € > 0, there exists components 6§ € ©
such that:

h(We) > esse sup h(Wy) —e

or
log,(q) — h(Wp) < log,(q) — essosup h(Wy) + €

or
C](\?l); 5 <CnFB +e¢
And the probability of such #’s is § > 0.

By this we mean, that we can find among the additive
stationary ergodic components, with probability 6 > 0,
components with capacity C](\?I)T,‘B < CnyrB + € for some
small ¢ > 0;i.e. § =Pr{# €©: C¥), < Cnrp+e} > 0.

Now, suppose there exists a sequence of feedback codes

with blocklength n and rate R, such that R > CnrB + 2,
then we can write

P = Z

{y™:g(y™)#k}

WY =y | X" =a)  (25)

where z is the feedback codeword of length n that cor-
responds to the message W =k € {1,2,...,2"%}. And
using Proposition 2, we can write:

P = / P™(6) dG(8) (26)
€]

where

PO = Y

{y™:g(ym)#k}

Wi (2" =y — it (mod q))

Thus we have:
P = / P () dG(0) (27)
©

P{(0) dG(6)  (28)

v

/{aee:o(s) <CNnFB+e}

NFB

We now recall the weak converse to the channel coding
theorem for stationary ergodic channels: if R > CnrB +e’,
for some small ¢ > 0, then there exists v > 0 , such that
P > v for sufficiently large n. This is shown by using
Fano’s inequality. Note that v depends only on ¢ and is
independent of the characteristics of the channel.
Therefore, applying the weak converse of the coding
theorem for stationary ergodic channels, we get that for
R > Cnyrp + 2¢ > C](\?%.B + €, there exists some small
v > 0, such that P{"(§) > v, as n — co. As mentioned
above, 7y is independent of § and depends only on e.



Then

lim P™ >Pr{feco: C](\?I)JB <Cnrp+ely=07>0
n— 00

Therefore the weak converse is proved and Crp = CnrB.
u

Observation: It should be noted that for general av-
eraged channels, i.e. non-additive averaged channels, feed-
back might increase capacity. For example, if we con-
sider an averaged channel with a finite number of non-
additive discrete memoryless channels (DMC’s), then the
non-feedback capacity of the averaged channel is equal to
the capacity of the corresponding compound memoryless
channel [10]:

C(ac) — inf I (1);W(1) 99
NEB rcr)l(%( 912@ (@ 0 ) (29)
Note that:
ac . L L
Onie < jof maxI@V5wg”)  (30)
= inf C¥
6co

where @) = maxg (1) I(Q(l); Wg(l)) is the non-feedback
capacity of each of the DMC components.

Now, if we use output feedback, the encoder knows the
previous received outputs, and thus can determine by some
statistical means, which one of the DMC components is
being used. In the most pessimistic case, the capacity of
this DMC component may be equal to infyco C'%. Thus
the capacity with feedback of the averaged channel will be:

Cyy = jnf ¢ (31)

Therefore Cl(mag) > C](\‘;;)B. This result (equation (31)) is
equivalent to the result already derived by Ahlswede for
the discrete averaged channel with sender informed [11].

Finally, in the case for which the inequality in (30) holds
with the strict inequality, we obtain that feedback increases
capacity: C\%S) > C%).. Refer to [12] for an example of
a finite collection of DMC’s for which (30) holds with the
strict inequality.
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