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ABSTRACT

We 
onsider dis
rete 
hannels with stationary additive

noise. We show that output feedba
k does not in
rease the


apa
ity of su
h 
hannels. This is shown for both ergodi


and non-ergodi
 additive stationary 
hannels.

1. INTRODUCTION

We 
onsider dis
rete 
hannels with stationary additive

noise. Note that su
h 
hannels need not be memoryless; in

general, they have memory. The Gilbert burst-noise 
han-

nel [1℄, as well as the Polya-
ontagion 
hannel [2℄, belong to

the 
lass of su
h 
hannels. We assume that these 
hannels

are ea
h a

ompanied by a noiseless, delayless feedba
k


hannel with large 
apa
ity. We show that the 
apa
ity of

the 
hannels with feedba
k does not ex
eed their respe
tive


apa
ity without feedba
k. This is shown for both ergodi


and non-ergodi
 additive stationary 
hannels.

In earlier related work, Shannon [3℄ showed that feed-

ba
k does not in
rease the 
apa
ity of dis
rete memory-

less 
hannels. The same result was proven to be true for


ontinuous 
hannels with additive white Gaussian noise.

Later, Cover and Pombra [4℄ and others 
onsidered 
on-

tinuous 
hannels with additive non-white Gaussian noise

and showed that feedba
k in
reases their 
apa
ity by at

most half a bit; similarly, it's been shown [4℄ that feedba
k


an at most double the 
apa
ity of a non-white Gaussian


hannel.

2. DISCRETE CHANNELS WITH

STATIONARY ERGODIC ADDITIVE

NOISE

2.1. Capa
ity with no Feedba
k

Consider a dis
rete 
hannel with 
ommon input, noise and

output alphabet A = f0; 1; : : : ; q�1g, des
ribed by the fol-

lowing equation: Y

n

= X

n

� Z

n

, for n = 1; 2; 3; : : : where:

� � represents the addition operation modulo q.

� The random variables X

n

, Z

n

and Y

n

are respe
tively

the input, noise and output of the 
hannel.

�
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� fX

n

g ? fZ

n

g, i.e. the input and noise sequen
es are

independent from ea
h other.

� The noise pro
ess fZ

n

g

n=1

n=1

is stationary and ergodi
.

Note that additive 
hannels de�ned as above, are \non-

anti
ipatory" 
hannels; where by \non-anti
ipatory" we

mean 
hannels with no input memory (i.e., historyless)

and no anti
ipation (i.e., 
ausal) [5℄. A 
hannel is said to

have no anti
ipation if for a given input and a given input-

output history, its 
urrent output is independent of future

inputs. Furthermore, a 
hannel is said to have no input

memory if its 
urrent output is independent of previous

inputs. Refer to [5℄ for more rigorous de�nitions of 
ausal

and historyless 
hannels. We spe
ify these 
onditions so

as to be able to use well-established formulas [5,6℄ for the

non-feedba
k 
apa
ity of the resulting 
hannels.

A 
hannel 
ode with blo
klength n and rate R 
onsists

of an en
oder

f : f1; 2; : : : ; 2

nR

g ! A

n

and a de
oder

g : A

n

! f1; 2; : : : ; 2

nR

g:

The en
oder represents the message W 2 f1; 2; : : : ; 2

nR

g

with the 
odeword f(W ) = X

n

= [X

1

; X

2

; : : : ; X

n

℄ whi
h

is then transmitted over the 
hannel; at the re
eiver, the

de
oder observes the 
hannel output Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄,

and 
hooses as its estimate of the message

^

W = g(Y

n

). A

de
oding error o

urs if

^

W 6=W .

For additive 
hannels, Y

i

= X

i

�Z

i

for all i. We assume

that W is uniformly distributed over f1; 2; : : : ; 2

nR

g. The

probability of de
oding error is thus given by:

P

(n)

e

=

1

2

nR

2

nR

X

k=1

Prfg(Y

n

) 6=W jW = kg

= Prfg(Y

n

) 6=Wg

We say that a rate R is a
hievable (admissable) if there

exists a sequen
e of 
odes with blo
klength n and rate R

su
h that

lim

n!1

P

(n)

e

= 0:



We denote the 
apa
ity of the 
hannel with no feedba
k

by C

NFB

. The obje
tive, of 
ourse, is to transmit an ar-

bitrary message W at a high rate and low probability of

error. If we de�ne C

NFB

to be the supremum of all admiss-

able 
ode rates, then C

NFB

is the 
apa
ity of the 
hannel.

Be
ause the 
hannel is non-anti
ipatory and stationary

ergodi
, the nonfeedba
k 
apa
ity C

NFB

of this 
hannel is

known and is equal to [5℄:

C

NFB

= lim

n!1

sup

X

n

1

n

I(X

n

; Y

n

) (1)

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (2)

where

X

n

= (X

1

; X

2

; : : : ; X

n

);

Y

n

= (Y

1

; Y

2

; : : : ; Y

n

);

Z

n

= (Z

1

; Z

2

; : : : ; Z

n

);

I(X

n

;Y

n

) is the mutual information between the input

ve
tor X

n

and the output ve
tor Y

n

, and the supremum

is taken over the input distributions of X

n

. H(Z

n

) is the

entropy of the noise ve
tor Z

n

.

2.2. Capa
ity with Feedba
k

We now 
onsider the 
orresponding problem for the dis-


rete additive 
hannel with 
omplete output feedba
k. By

this we mean that there exists a \return 
hannel" from the

re
eiver to the transmitter; we assume this return 
hannel

is noiseless, delayless, and has large 
apa
ity. The re
eiver

uses the return 
hannel to inform the transmitter what

letters were a
tually re
eived; these letters are re
eived at

the transmitter before the next letter is transmitted, and

therefore 
an be used in 
hoosing the next transmitted let-

ter.

A feedba
k 
ode with blo
klength n and rate R 
onsists

of sequen
e of en
oders

f

i

: f1; 2; : : : ; 2

nR

g �A

i�1

! A

for i = 1; 2; : : : ; n, along with a de
oding fun
tion

g : A

n

! f1; 2; : : : ; 2

nR

g:

The interpretation is simple: If the user wishes to 
on-

vey message W 2 f1; 2; : : : ; 2

nR

g then the �rst 
ode sym-

bol transmitted is X

1

= f

1

(W ); the se
ond 
ode symbol

transmitted is X

2

= f

2

(W;Y

1

), where Y

1

is the 
hannel's

output due to X

1

. The third 
ode symbol transmitted

is X

3

= f

3

(W;Y

1

; Y

2

), where Y

2

is the 
hannel's output

due to X

2

. This pro
ess is 
ontinued until the en
oder

transmits X

n

= f

n

(W;Y

1

; Y

2

; : : : ; Y

n�1

). At this point

the de
oder estimates the message to be g(Y

n

), where

Y

n

= [Y

1

; Y

2

; : : : ; Y

n

℄.

Assuming our additive 
hannel, Y

i

= X

i

�Z

i

where fZ

i

g

is a stationary ergodi
 noise pro
ess. Again, we assume

that W is uniformly distributed over f1; 2; : : : ; 2

nR

g, and

we de�ne the probability of error and a
hievability as in

Se
tion 2.1.

Note, however, that be
ause of the feedba
k, X

n

and Z

n

are no longer independent; X

i

may depend on Z

i�1

.

We will denote the 
apa
ity of the 
hannel with feedba
k

by C

FB

. As before, C

FB

is the supremum of all admissable


ode rates.

Proposition 1 Feedba
k does not in
rease the 
apa
ity of


hannels with additive stationary ergodi
 noise:

C

FB

= C

NFB

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (3)

Proof 1 Sin
e W is uniformly distributed over

f1; 2; : : : ; 2

nR

g, we have that H(W ) = nR. Furthermore,

H(W ) = H(W jY

n

)+I(W ;Y

n

). Now by Fano's inequality,

H(W jY

n

) � h

b

(P

(n)

e

) + P

(n)

e

log

2

(2

nR

� 1)

� 1 + P

(n)

e

log

2

(2

nR

)

= 1 + P

(n)

e

nR

sin
e h

b

(P

(n)

e

) � 1, where h

b

() is the binary entropy fun
-

tion. Thus

H(W jY

n

) � 1 + P

(n)

e

nR (4)

We then have:

nR = H(W )

= H(W jY

n

) + I(W ;Y

n

)

� 1 + P

(n)

e

nR+ I(W ;Y

n

)

where R is any admissable rate.

Dividing both sides by n and taking n to in�nity, we get:

C

FB

� lim

n!1

1

n

I(W ;Y

n

) (5)

Let us thus study I(W ;Y

n

):

I(W ;Y

n

) =

n

X

i=1

I(W ;Y

i

jY

i�1

) (6)

but

I(W ;Y

i

jY

i�1

) = H(Y

i

jY

i�1

)�H(Y

i

jW;Y

i�1

) (7)

= H(Y

i

jY

i�1

)�H(X

i

� Z

i

jW;Y

i�1

) (8)

Now the fa
t that X

i

= f

i

(W;Y

1

; : : : ; Y

i�1

) implies that

H(X

i

� Z

i

jW;Y

i�1

) = H(Z

i

jW;Y

i�1

; X

i

) (9)

= H(Z

i

jW;Y

i�1

; X

i

; Z

i�1

) (10)

= H(Z

i

jZ

i�1

): (11)

Here,



� Equation (9) follows from the fa
t that given W

and Y

i�1

, X

i

is known deterministi
ally and H(Z +

XjX) = H(ZjX).

� Equations (10) follows from the fa
t that given W

and Y

i�1

, we know all the previous transmitted let-

ters X

1

; X

2

; : : : ; X

i�1

and thus we 
an re
over all the

previous noise letters Z

j

= Y

j

� X

j

(mod q) for

j = 1; 2; : : : ; i � 1.

� Equation (11) follows from the fa
t that Z

i

and

(W;Y

i�1

; X

i

) are 
onditionally independent given

Z

i�1

.

Therefore

I(W ;Y

i

jY

i�1

) = H(Y

i

jY

i�1

) � H(Z

i

jZ

i�1

) (12)

and

I(W ;Y

n

) =

n

X

i=1

�

H(Y

i

jY

i�1

) � H(Z

i

jZ

i�1

)

�

(13)

= H(Y

n

) � H(Z

n

) (14)

But H(Y

n

) � log

2

q

n

be
ause the 
hannel is dis
rete.

Therefore, if we divide both sides of (14) by n, and take n

to in�nity, we obtain that

C

FB

� C

NFB

But by de�nition of a feedba
k 
ode, C

FB

� C

NFB

sin
e

a non-feedba
k 
ode is a spe
ial 
ase of a feedba
k 
ode.

Thus we get:

C

FB

= C

NFB

= log

2

(q) � lim

n!1

1

n

H(Z

n

) (15)

Observations:

1. It is important to note that for additive 
hannels, the

noise entropy (given in equations (9)-(11)) remain the

same with or without feedba
k. This is be
ause addi-

tion is invertible; in general H(X) � H(f(X)) with

equality holding for invertible fun
tions f(�). This is

true for both dis
rete and 
ontinuous alphabet addi-

tive 
hannels.

2. The reason why output feedba
k potentially in
reases

the 
apa
ity of additive non-white Gaussian 
han-

nels [4℄ is be
ause for 
ontinuous 
hannels we have

power 
onstraints on the input, whi
h upon optimiza-

tion may in
reases lim

n!1

1

n

H(Y

n

) when feedba
k

is used; while for dis
rete 
hannels this quantity is

upperbounded by log

2

(q) and 
annot be in
reased

with feedba
k. It is therefore suspe
ted that feed-

ba
k might in
rease the 
apa
ity of dis
rete additive


hannels if we impose power 
onstraints on the input.

3. The result given in Proposition 1 
an be easily ex-

tended to dis
rete non-anti
ipatory 
hannels with ad-

ditive asymptoti
ally mean stationary (AMS) ergodi


noise pro
ess. Su
h 
lass of noise pro
esses in
lude

time-homogeneous ergodi
 Markov 
hains with arbi-

trary initial distributions. The proof is identi
al to

that of Proposition 1, sin
e the non-feedba
k 
apa
-

ity for the 
hannel with AMS ergodi
 additive noise is

still given by equation (2) [7℄. A random pro
ess has

the AMS property (or is an AMS pro
ess) if its sample

averages 
onverge for a suÆ
iently large 
lass of mea-

surements (e.g., the indi
ator fun
tions of all events);

furthermore, there exists a stationary measure, 
alled

the \stationary mean" of the pro
ess, that has the

same sample averages. A ne
essary and suÆ
ient 
on-

dition for a random pro
ess to possess ergodi
 proper-

ties with respe
t to the 
lass of all bounded measure-

ments is that it be AMS [8℄.

Finally, with the result of Proposition 1 in mind, it would

be interesting to investigate dis
rete non-additive station-

ary ergodi
 
hannels with known non-feedba
k 
apa
ities,

and see whether output feedba
k would in
rease their 
a-

pa
ities.

3. DISCRETE CHANNELS WITH

STATIONARY NON-ERGODIC ADDITIVE

NOISE

3.1. Capa
ity with no Feedba
k

Consider a dis
rete 
hannel similar to the one 
onsidered

in se
tion 2 with the ex
eption that the additive noise pro-


ess fZ

n

g to the 
hannel is stationary but non-ergodi
. We

will show in proposition 2 that the resulting 
hannel is an

averaged 
hannel with additive stationary ergodi
 
ompo-

nents.

An averaged 
hannel with stationary ergodi
 
ompo-

nents is de�ned as follows:

Consider a family of stationary ergodi
 
hannels param-

eterized by �:

n

W

(n)

�

(Y

n

= y

n

j X

n

= x

n

); � 2 �

o

1

n=1

(16)

where Y

n

and X

n

are respe
tively the input and output

blo
ks of the 
hannel, ea
h of length n. W

(n)

�

() is the blo
k

transition probabilities of the stationary ergodi
 
hannels,


onditioned on a parameter � 2 �.

De�nition 1 We de�ne a 
hannel to be an \averaged"


ommuni
ation 
hannel with stationary ergodi
 
ompo-

nents if its blo
k transition probability W

(n)

a


(Y

n

=

y

n

j X

n

= x

n

) (where \a
" stands for averaged 
hannel) is

just the expe
ted value of the blo
k transition probability

fW

(n)

�

(Y

n

= y

n

jX

n

= x

n

)g taken with respe
t to some

distribution on � { i.e., if it's of the form:

W

(n)

a


(Y

n

= y

n

jX

n

= x

n

)

4

= E

�

[W

(n)

�

(y

n

jx

n

)℄ (17)

=

Z

�

W

(n)

�

(y

n

jx

n

) dG(�) (18)



where (�; �(�);G) is the probability spa
e on whi
h the

random variable � is de�ned.

Note that the averaged 
hannel has memory and is sta-

tionary. The averaged 
hannel fun
tions as follows: among

the (
ountable or un
ountable) stationary ergodi
 
ompo-

nents, nature sele
ts one of these 
omponents a

ording to

some probability distribution G. This 
omponent is then

used for the entire transmission. However this sele
tion is

unknown to both the en
oder and the de
oder.

In order to show that we 
an write the blo
k transi-

tion probability of the 
hannel with additive stationary

non-ergodi
 noise (whi
h is equal to the blo
k transition

probability of the noise) as a mixture of the probabilities

of the additive stationary ergodi
 
hannels (proposition 2),

we need to state �rst the ergodi
 de
omposition theorem

for stationary pro
esses [9℄.

Notation: Consider a dis
rete time random pro
ess

with an alphabet D, an event spa
e (�-�eld) �(D

1

) 
on-

sisting of subsets of the spa
e D

1

of sequen
es u =

(u

1

; u

2

; : : :), u

i

2 D, a probability measure � on the spa
e

(D

1

; �(D

1

)) forming a probability spa
e (D

1

; �(D

1

); �)

and a 
oordinate or sampling fun
tion U

n

: D

1

�! D

de�ned by U

n

(u) = u

n

. The sequen
e of random vari-

ables fU

n

;n = 1; 2; : : :g de�ned on the probability spa
e

(D

1

; �(D

1

); �) is a dis
rete time random pro
ess. As


onvenient, random pro
esses will be denoted by either

fU

n

g (to emphasize the sequen
e of random variables), by

[D; �;U℄ (to emphasize alphabet, probability measure, and

name of the random variable).

Lemma 1 (Ergodi
 De
omposition Theorem)

Let [D; �;U℄ be a stationary, dis
rete time random pro-


ess. There exists a 
lass of stationary ergodi
 measures

f�

�

; � 2 �g and a probability measure G on a event spa
e

of � su
h that for every event F � �(D

1

) we 
an write:

�(F ) =

Z

�

�

�

(F ) dG(�) (19)

Remark: The ergodi
 de
omposition theorem states

that, in an appropriate sense, all stationary nonergodi


random pro
esses have the form of equation (19) of being

a mixture of stationary ergodi
 pro
esses; that is if we are

viewing a stationary non-ergodi
 pro
ess, we are in real-

ity viewing a stationary ergodi
 pro
ess sele
ted by nature

a

ording to some probability measure G. Therefore, by

dire
tly applying the ergodi
 de
omposition theorem we

get the following result:

Proposition 2 A dis
rete 
hannel with stationary non-

ergodi
 additive noise pro
ess is an averaged 
hannel with

additive stationary ergodi
 
omponents.

Proof 2 Sin
e the additive noise pro
ess is independent

of the input pro
ess, we 
an write:

W

(n)

(Y

n

= y

n

j X

n

= x

n

) =W

(n)

(Z

n

= y

n

�x

n

(mod q))

Now, applying the ergodi
 de
omposition theorem on the

non-ergodi
 noise pro
ess fZ

n

g, we get our result with ea
h

of the stationary ergodi
 
hannels being an additive noise


hannel:

W

(n)

(Y

n

= y

n

jX

n

= x

n

) =

Z

�

W

(n)

�

(Z

n

= y

n

� x

n

) dG(�)

The strong 
apa
ity of averaged 
hannels does not exist

[10℄, sin
e the strong 
onverse to the 
hannel 
oding theo-

rem does not hold. However it was shown by Ahlswede [10℄

that the weak 
onverse holds for these 
hannels. Re
alling

from Se
tion 2.1 the de�nitions of a 
hannel blo
k 
ode and

the operational (weak) 
apa
ity of the 
hannel (the supre-

mum of all a
hievable rates), we state the formula for the

non-feedba
k operational 
apa
ity of an averaged 
hannel

[6℄,[10℄:

Lemma 2 (Capa
ity of Averaged Channel)

Consider the averaged 
hannel with stationary er-

godi
 
omponents des
ribed by (17), with 
ommon in-

put and output alphabet A; input probability spa
e

(A

n

; �(A

n

); Q

n

) and general averaging probability distri-

bution G() -i.e. � 
an be either a dis
rete or 
ontinuous

parameter spa
e.

Then the non-feedba
k (weak) 
apa
ity of the averaged


hannel is given by

C

(a
)

NFB

= lim

�!0

C(�) (20)

where

C(�) = max

Q

sup

fE2�(�): G(E)�1��g

inf

�2E

i(Q;W

�

) (21)

where the mutual information rate i(Q;W

�

) is given by

i(Q;W

�

) = lim

n!1

1

n

I(Q

(n)

;W

(n)

�

)

with

I(Q

(n)

;W

(n)

�

)=

X

x

n

;y

n

2A

n

W

(n)

�

(y

n

jx

n

)Q

(n)

(x

n

) log

2

W

(n)

�

(y

n

jx

n

)

q

(n)

(y

n

)

and q

(n)

(y

n

)

4

=

P

~x

n

2A

n

W

(n)

�

(y

n

j~x

n

) Q

(n)

(~x

n

):

Non-Feedba
k Capa
ity of the Channel with Ad-

ditive Noise: As we mentioned earlier, the 
hannel with

additive stationary non-ergodi
 noise is an averaged 
han-

nel with additive stationary ergodi
 
omponents (Proposi-

tion 2). Sin
e the 
hannel has an additive noise pro
ess

that is independent of the input pro
ess, we will have that

the maximization over the input distribution Q in equation

(21) is realized for uniform input distribution (symmetry

property). We 
an therefore inter
hange the max and the

inf in (21) and we get:

max

Q

i(Q;W

�

) = log(q)� h(W

�

)



The resulting non-feedba
k 
apa
ity of the 
hannel with

additive non-ergodi
 noise is:

C

NFB

= log

2

(q)� ess

�

sup h(W

�

) (22)

where

� the noise entropy rate h(W

�

) is given by

h(W

�

)

4

= lim

n!1

1

n

H

n

(W

(n)

�

) (23)

with

H

n

(W

(n)

�

)

4

= �

X

x

n

;y

n

2A

n

W

(n)

�

(y

n

jx

n

)Q

(n)

(x

n

) log

2

W

(n)

�

(y

n

jx

n

)

� and the essential supremum is de�ned by

ess

�

sup f(�)

4

= inf [r : dG(f(�) � r) = 1℄ (24)

3.2. Capa
ity with Feedba
k

As in the previous se
tion, we 
onsider the 
orresponding

problem for the dis
rete additive 
hannel with 
omplete

output feedba
k. Similarly, we de�ne a feedba
k 
ode with

blo
klength n and rate R, as a sequen
e of en
oders

f

i

: f1; 2; : : : ; 2

nR

g �A

i�1

! A

for i = 1; 2; : : : ; n, along with a de
oding fun
tion

g : A

n

! f1; 2; : : : ; 2

nR

g:

The interpretation of the fun
tions is identi
al to those in

se
tion 2.2.

Assuming our additive 
hannel, Y

i

= X

i

�Z

i

where fZ

i

g

is a stationary non-ergodi
 noise pro
ess.

Here again, we assume that W is uniformly distributed

over f1; 2; : : : ; 2

nR

g and we use the same de�nitions of

a
hievable rates, probability of de
oding error and 
apa
ity

as in se
tion 2.2.

Be
ause of the feedba
k, X

n

and Z

n

are no longer in-

dependent; X

i

depends 
ausally on Z

i�1

. We will denote

the 
apa
ity of the 
hannel with feedba
k by C

FB

. We now

get the following result:

Proposition 3 Feedba
k does not in
rease the 
apa
ity of


hannels with additive stationary non-ergodi
 noise:

C

FB

= C

NFB

= log

2

(q)� ess

�

sup h(W

�

)

Proof 3 We will show that the (weak) 
onverse to the


hannel 
oding theorem still holds with feedba
k. The


oding theorem itself obviously holds sin
e a non-feedba
k


ode is a spe
ial 
ase of a feedba
k 
ode, and thus any

rate that 
an be a
hieved without feedba
k, 
an also be

a
hieved with feedba
k; i.e. for any R < C

NFB

, there ex-

ists feedba
k 
odes with blo
klength n and rate R, su
h

that lim

n!1

P

(n)

e

= 0.

The additive 
hannel is a mixture of additive stationary

ergodi
 
hannels, thus by Proposition 1, we obtain that for

ea
h of these 
omponents: C

(�)

FB

= C

(�)

NFB

. Now, examin-

ing equation (22), we have: h(W

�

) � ess

�

sup h(W

�

) a.e.

Then for some small � > 0, there exists 
omponents � 2 �

su
h that:

h(W

�

) > ess

�

sup h(W

�

)� �

or

log

2

(q)� h(W

�

) < log

2

(q)� ess

�

sup h(W

�

) + �

or

C

(�)

NFB

< C

NFB

+ �

And the probability of su
h �'s is Æ > 0.

By this we mean, that we 
an �nd among the additive

stationary ergodi
 
omponents, with probability Æ > 0,


omponents with 
apa
ity C

(�)

NFB

< C

NFB

+ � for some

small � > 0; i.e. Æ = Prf� 2 � : C

(�)

NFB

< C

NFB

+ �g > 0.

Now, suppose there exists a sequen
e of feedba
k 
odes

with blo
klength n and rate R, su
h that R > C

NFB

+2�,

then we 
an write

P

(n)

e

=

X

fy

n

:g(y

n

) 6=kg

W

(n)

(Y

n

= y

n

jX

n

= x

n

k

) (25)

where x

n

k

is the feedba
k 
odeword of length n that 
or-

responds to the message W = k 2 f1; 2; : : : ; 2

nR

g. And

using Proposition 2, we 
an write:

P

(n)

e

=

Z

�

P

(n)

e

(�) dG(�) (26)

where

P

(n)

e

(�) =

X

fy

n

:g(y

n

) 6=kg

W

(n)

�

(Z

n

= y

n

� x

n

k

(mod q))

Thus we have:

P

(n)

e

=

Z

�

P

(n)

e

(�) dG(�) (27)

�

Z

f�2�:C

(�)

NFB

<C

NFB

+�g

P

(n)

e

(�) dG(�) (28)

We now re
all the weak 
onverse to the 
hannel 
oding

theorem for stationary ergodi
 
hannels: if R > C

NFB

+�

0

,

for some small �

0

> 0, then there exists 
 > 0 , su
h that

P

(n)

e

> 
 for suÆ
iently large n. This is shown by using

Fano's inequality. Note that 
 depends only on �

0

and is

independent of the 
hara
teristi
s of the 
hannel.

Therefore, applying the weak 
onverse of the 
oding

theorem for stationary ergodi
 
hannels, we get that for

R > C

NFB

+ 2� > C

(�)

NFB

+ �, there exists some small


 > 0, su
h that P

(n)

e

(�) > 
, as n ! 1. As mentioned

above, 
 is independent of � and depends only on �.



Then

lim

n!1

P

(n)

e

> Prf� 2 � : C

(�)

NFB

< C

NFB

+ �g
 = Æ 
 > 0

Therefore the weak 
onverse is proved and C

FB

= C

NFB

.

Observation: It should be noted that for general av-

eraged 
hannels, i.e. non-additive averaged 
hannels, feed-

ba
k might in
rease 
apa
ity. For example, if we 
on-

sider an averaged 
hannel with a �nite number of non-

additive dis
rete memoryless 
hannels (DMC's), then the

non-feedba
k 
apa
ity of the averaged 
hannel is equal to

the 
apa
ity of the 
orresponding 
ompound memoryless


hannel [10℄:

C

(a
)

NFB

= max

Q

(1)

inf

�2�

I(Q

(1)

;W

(1)

�

) (29)

Note that:

C

(a
)

NFB

� inf

�2�

max

Q

(1)

I(Q

(1)

;W

(1)

�

) (30)

= inf

�2�

C

(�)

where C

(�)

= max

Q

(1)

I(Q

(1)

;W

(1)

�

) is the non-feedba
k


apa
ity of ea
h of the DMC 
omponents.

Now, if we use output feedba
k, the en
oder knows the

previous re
eived outputs, and thus 
an determine by some

statisti
al means, whi
h one of the DMC 
omponents is

being used. In the most pessimisti
 
ase, the 
apa
ity of

this DMC 
omponent may be equal to inf

�2�

C

(�)

. Thus

the 
apa
ity with feedba
k of the averaged 
hannel will be:

C

(a
)

FB

= inf

�2�

C

(�)

(31)

Therefore C

(a
)

FB

� C

(a
)

NFB

. This result (equation (31)) is

equivalent to the result already derived by Ahlswede for

the dis
rete averaged 
hannel with sender informed [11℄.

Finally, in the 
ase for whi
h the inequality in (30) holds

with the stri
t inequality, we obtain that feedba
k in
reases


apa
ity: C

(a
)

FB

> C

(a
)

NFB

. Refer to [12℄ for an example of

a �nite 
olle
tion of DMC's for whi
h (30) holds with the

stri
t inequality.

4. ACKNOWLEDGMENT

The author wishes to thank Professors Imre Csisz�ar and

Tom Fuja for their very valuable advi
e and 
onstru
tive


riti
ism.

5. REFERENCES

[1℄ E. N. Gilbert, \Capa
ity of Burst-Noise Channels", Bell

Syst. Te
h. Journal, Vol. 39, pp. 1253-1265, 1960.

[2℄ F. Alajaji and T. Fuja, \A Communi
ation Channel

Modeled by the Spread of Disease", Pro
eedings of the

IEEE International Symposium on Information Theory,

San Antonio, TX, January 1993.

[3℄ C. E. Shannon, \The Zero-Error Capa
ity of a Noisy

Channel", IRE Transa
tions on Information Theory, Vol.

2, pp. 8-19, 1956.

[4℄ T. M. Cover and S. Pombra, \Gaussian Feedba
k Ca-

pa
ity", IEEE Transa
tions on Information Theory, Vol.

35, pp. 37-43, 1989.

[5℄ R. M. Gray and D. S. Ornstein, \Blo
k Coding for

Dis
rete Stationary d-Continuous Noisy Channels", IEEE

Transa
tions on Information Theory, Vol. 25, pp. 292-306,

1979.

[6℄ J. C. Kie�er, \A General Formula for the Capa
ity of

Stationary Nonanti
ipatory Channels", Information and

Control, Vol. 26, pp. 381-391, 1974.

[7℄ R. M. Gray, Entropy and Information Theory, Springer-

Verlag New York In
., 1990.

[8℄ R. M. Gray, Probability, Random Pro
esses, and Ergodi


Properties, Springer-Verlag New York In
., 1988.

[9℄ R. Gray and L. D. Davisson, \The Ergodi
 De
om-

position of Stationary Dis
rete Random Pro
esses", IEEE

Transa
tions on Information Theory, Vol. 20, No. 5, pp.

625-636, 1974.

[10℄ R. Ahlswede, \The Weak Capa
ity of Averaged Chan-

nels", Z. Wahrs
heinli
hkeitstheorie und Verw. Gebiete,

Vol. 11, pp. 61-73, 1968.

[11℄ R. Ahlswede, \Certain Results in Coding Theory for

Compound Channels I", Pro
eedings Bolyai Colloquium on

Information Theory, Debre
en, Hungary, pp. 35-60, 1967.

[12℄ D. Bla
kwell, L. Breiman and A. J. Thomasian, \The

Capa
ity of a Class of Channels", Annals Math. Stat., Vol.

30, pp. 1229-1241, 1959.


