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Abstract— We investigate the curing of epidemics using a
model based on the classical Polya urn scheme that takes into
account spatial contagion among neighboring nodes. We define
several quantities to measure the infection in the network, and
use them to formulate an optimal control problem. We prove
that this problem is feasible under high curing budgets by
deriving conservative lower bounds that turn our measures
of network infection into supermartingales. To handle the
allocation of curing resources under fixed budget constraints,
we provide a provably convergent gradient descent algorithm.
Motivated by the computational complexity of this algorithm,
we design a heuristic method that is locally implementable
and nearly as effective. A suite of simulation results executed
on a large-scale real-world social network demonstrate the
performance of all proposed strategies.

I. INTRODUCTION

In this paper we examine the problem of curing an

epidemic using a network contagion model adapted from

the Polya process [1], [2]. Here an epidemic can represent a

disease [3], a computer virus [4], the spread of an innovation,

rumour or idea [5], or the dynamics of competing opinions

in a social network [6].

Epidemics on networks have been intensively studied in

recent years [7], [8]. Our model is similar to the well-

known susceptible-infected-susceptible (SIS) compartmental

infection model [9], and is motivated by the classical Polya

contagion process [10], [11], [12]. The classical process has

been used to study a variety of epidemics such as the bubonic

plague in Peru [13] and the spread of chlamydia in a closed

population [14], and hence it is natural to extend this model

to a network setting. In the network Polya contagion model,

introduced in [1], each node of the underlying network

is equipped with an individual urn; however, instead of

sampling from these urns when generating its contagion

process, each node has a “super urn”, created by combining

the contents of its own urn with those of its neighbors’ urns.

This adaptation captures the concept of spatial infection,

since having infected neighbors increases the chance that an

individual is infected in the future.

The stochastic properties of this model, along with a

comparison to the traditional discrete-time SIS model, were

examined in [2]. Comparatively, the network Polya contagion

process runs at a microscopic level to better model the

behavior of the contagion process mathematically. Indeed

with finite memory our process becomes Markovian and

exhibits similar behavior to the discrete-time SIS model,
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but in the case of infinite memory our model exhibits non-

Markovian characteristics which may be truer to some real-

life epidemics. In both cases, the microscopic viewpoint

allows us to capture the behavior of the process, and the

stochastic analysis of this behavior, in real time. With the

explicit formulae provided for the network Polya contagion

process, the joint and marginal probabilities of infection can

be calculated exactly for any time without the need for mean-

field approximations or other moment closure techniques, as

is typical for SIS models [15].

In this work, we study the problem of controlling a

contagion spread under this model. More specifically, we

propose various natural ways to measure the total infection in

the network Polya contagion model, and examine conditions

under which these measures have limits as time grows

without bound. Using these measures, we pose an optimal

control problem within the context of the network Polya con-

tagion model. As our first contribution, we characterize lower

bounds on the allocation of curing to individual nodes which

turn these infection measures into supermartingales. Our

result hence provides a conservative strategy for curing net-

work epidemics. We next focus on realistic scenarios, where

the curing budget is constrained. As our next contribution, we

prove that the constrained gradient flow method is convergent

for this problem and hence can be employed to find near-

optimal strategies under a fixed curing budget at each time

step. In spite of its effectiveness, as we demonstrate, the

gradient flow strategy is computationally expensive and only

implementable in a centralized manner. These shortcomings

motivates us to look into alternative strategies, which take

advantage of notions of node centrality in the underlying

network along with the composition of super urns at each

time step. These strategies are less expensive computationally

and can be implemented in a decentralized manner. Through

extensive simulation results, we show that our proposed

heuristic strategies perform well in curing epidemics.

II. PRELIMINARIES

For a sequence vi = (vi,1, . . . , vi,n), we use the no-

tation vti,s with 1 ≤ s < t ≤ n to denote the vector

(vi,s, vi,s+1, . . . , vi,t), with vti,0 = vti . Our technical results

rely on notions from stochastic processes, some of which we

recall here. Throughout, we assume that the reader is familiar

with basic notions of probability theory.

Let (Ω,F , P ) be a probability space, and consider the

stochastic process {Zn}∞n=1, where each Zn is a random

variable on Ω. We often refer to the indices of the process

as “time” indices. We recall that the process {Zn}∞n=1 is

stationary if for any n ∈ Z≥1, its n-fold joint probability

distribution (i.e., the distribution of (Z1, . . . , Zn)) is invari-



ant to time shifts. Lastly, the process {Zn}
∞
n=1 is called

a martingale (resp. supermartingale, submartingale) with

respect to the filtration {Fn}∞n=1 if E[|Zn|] < ∞ and

E[Zn+1|Fn] = Zn almost surely (resp. less than or equal

to, greater than or equal to), for all n. If the inequality is

strict, we call the process a strict supermartingale or strict

submartingale. Doob’s martingale convergence theorem [16]

can then be used to show that {Zn}
∞
n=1 will have a limit

as n grows without bound. Precise definitions of all notions

can be found in standard texts (e.g., [16], [17]).

We now recall the classical version of the Polya conta-

gion process [10], [12], which has been applied in many

different contexts, including the modelling of contagious dis-

eases [13], [14], communication channels with memory [18],

image segmentation [19], as well as biology, statistics and

other areas (see [20]). Consider an urn with R ∈ Z>0 red

balls and B ∈ Z>0 black balls. We denote the total number

of balls by T , i.e., T = R + B. At each time step a ball is

drawn from the urn, and then returned along with ∆ > 0
balls of the same color. To describe this process, we use a

replacement matrix MR:

MR =

[

∆red | red drawn ∆red | black drawn

∆black | red drawn ∆black | black drawn

]

=

[

∆ 0
0 ∆

]

.

We use an indicator Zn to denote the color of ball in the

nth draw (see Figure 1), so Zn = 1 if we drew a red ball at

time n, and 0 otherwise.

R red

B black

T = R+B

R red

B +∆ black

T = R+B +∆

Z1 = 0

Fig. 1. Illustration of the first draw for a classical Polya process. We drew
a black ball and hence Z1 = 0. Here R = 2, B = 2, and ∆ = 2.

Let Un denote the proportion of red balls in the urn after

the nth draw. Then

Un :=
R+∆

∑n

t=1 Zt

T + n∆
=

ρc + δc
∑n

t=1 Zt

1 + nδc

where ρc = R
T

is the initial proportion of red balls in the

urn and δc = ∆
T

is a correlation parameter. It can be easily

shown that {Un}∞n=1 is a martingale. Lastly, since we draw

from this urn at each time step, the conditional probability

of drawing red at time n, given Zn−1 = (Z1, . . . , Zn−1), is

P (Zn = 1 | Zn−1) =
R+∆

∑n−1
t=1 Zt

T + (n− 1)∆
= Un−1.

III. MODEL DESCRIPTION AND PROBLEM STATEMENT

A. Network Polya Contagion Process

In this section we briefly recall the Polya network conta-

gion process, fully described in [2]. Consider an undirected

graph G = (V, E), where V = {1, . . . , N} is the set of

N ∈ Z≥1 nodes and E ⊂ V × V is the set of edges. We

assume that G is connected, i.e. there is a path between any

two nodes in G. We use Ni to denote the set of nodes that

are neighbors to node i, that is Ni = {v ∈ V : (i, v) ∈ E},

and N ′
i = {i} ∪ Ni. Each node i ∈ V is equipped with

an urn, initially with Ri ∈ Z>0 red balls and Bi ∈ Z>0

black balls (we do not let Ri = 0 or Bi = 0 to avoid any

degenerate cases). In the context of epidemics, the red and

black balls in an urn, respectively, represent “infection” and

“healthiness”; a complete description of this relationship can

be found in [2]. We let Ti = Ri + Bi be the total number

of balls in the ith urn, i ∈ {1, . . . , N}. We use Zi,n as

an indicator for the ball drawn for node i at time n, so

Zi,n = 1 if the nth draw for node i is red, and 0 otherwise.

Thus we define the network contagion process as {Zn}∞n=1,

where Zn = (Zi,n, . . . , ZN,n). However, instead of drawing

solely from its own urn, each node has a “super urn” created

by combining all the balls in its own urn with those in

its neighbors’ urns; see Figure 2. This allows the spatial

relationships between nodes to influence their state. Thus

Zi,n is the indicator for a ball drawn from node i’s super

urn, and not its individual urn. Hence, the super urn of node

i initially has R̄i =
∑

j∈N ′

i
Rj red balls, B̄i =

∑

j∈N ′

i
Bj

black balls, T̄i =
∑

j∈N ′

i
Tj balls in total, and the network-

wide initial proportion of red balls is ρ =
∑N

i=1
Ri∑

N
i=1

Ti
.

Node 1’s super urn

1

2 3

4
5 6

7

Fig. 2. Illustration of a super urn in a network.

We allow the number of added balls to vary based on the

colour drawn, the time index, and the node for which it was

drawn; hence, the replacement matrix for node i at time t is

MR,i(t) =

[

∆r,i(t) 0
0 ∆b,i(t)

]

.

We assume that ∆r,i(t) ≥ 0 and ∆b,i(t) ≥ 0 for all t ∈ Z≥1,

and that there exists i ∈ V and t such that ∆r,i(t)+∆b,i(t) 6=
0; otherwise we are simply sampling with replacement.

To express the proportion of red balls in the individual

urns of the nodes, we define the random vector Un =
(U1,n, . . . , UN,n), where Ui,n is the proportion of red balls

in node i’s urn after the nth draw, i ∈ V . For node i,

Ui,n =
Ri +

∑n

t=1 ∆r,i(t)Zi,t

Xi,n

,

where

Xi,n = Ti +

n
∑

t=1

∆r,i(t)Zi,t +∆b,i(t)(1 − Zi,t) (1)

is the total number of balls in node i’s urn after the nth

draw, and the numerator represents the total number of red

balls in the same urn. We define the random vector Sn =



(S1,n, . . . , SN,n) as the proportion of red balls in the nodes’

super urns after the nth draw, i.e., Si,n is the proportion of

red balls in node i’s super urn after n draws. So, for node i,

Si,n =
R̄i +

∑

j∈N ′

i

∑n

t=1 ∆r,j(t)Zj,t
∑

j∈N ′

i
Xj,n

=

∑

j∈N
′

i
Uj,nXj,n

∑

j∈N
′

i
Xj,n

, (2)

where Si,0 = R̄i

T̄i
. In fact, Si,n is a function of the

random draw variables of the network, and in particu-

lar of {Zn
j }j∈N ′

i
, but for ease of notation, when the ar-

guments are clear, we write Si,n(Z
n
1 , · · · , Z

n
N ) = Si,n.

Then the conditional probability of drawing a red ball

from the super urn of node i at time n given the com-

plete network history, i.e. given all the past n − 1 draw

variables for each node in the network {Zn−1
j }Nj=1 =

{(Z1,1, . . . , Z1,n−1), . . . , (ZN,1, . . . , ZN,n−1)}, satisfies

P
(

Zi,n = 1|{Zn−1
j }Nj=1

)

=
R̄i +

∑

j∈N ′

i

∑n−1
t=1 ∆r,j(t)Zj,t

∑

j∈N ′

i
Xj,n−1

= Si,n−1. (3)

That is, the conditional probability of drawing a red ball for

node i given the entire past {Zn−1
j }Nj=1 is the proportion

of red balls in its super urn, Si,n−1. Since these random

variables fully describe the evolution of the process, we

say {Fn}∞n=1 is the natural filtration on {Zn−1
i }Ni=1 and by

extension {Ui,n}∞n=1 and {Si,n}∞n=1, for all i ∈ V . Thus

note that in (3) we could have instead conditioned on Fn−1.

Using the conditional probability established above, we

next determine the n-fold joint probability of the entire

network G. Let ani ∈ {0, 1}n, i ∈ {1, . . . , N}, and we have

P
(n)
G (an1 , · · · , a

n
N )

:= P
(

{Zn
i = ani }

N
i=1

)

=
n
∏

t=1

N
∏

i=1

(

Si,t−1

)ai,t
(

1− Si,t−1

)1−ai,t

, (4)

where Si,t = Si,t(a
t
1, · · · , a

t
N ) is defined in (3). The study

of the asymptotic behavior of each node’s contagion process

{Zi,n}
∞
n=1, i ∈ V is established in [1]. Our objective in

this work is to demonstrate the implications of these results

in designing curing strategies. With the above explicit joint

distribution, it is possible to determine the distributions of

each node’s process. More specifically, using (4), the n-fold

distribution of node i’s process at time t ≥ n is

P
(n)
i,t (ai,t−n+1, · · · , ai,t) :=

∑

a
t−n
i

∈{0,1}t−n

at
j∈{0,1}t,j 6=i

P
(n)
G (at1, · · · , a

t
N).

It can be shown that the draw contagion process {Zi,n}∞n=1

of each individual node i is not stationary in general [1], [2],

and hence {Zn}∞n=1 is not stationary.

In order to measure the spread of contagion in the network

at any given time, we wish to see how likely it is, on average,

for a node to be infected at that instant. We thus define the

average infection rate in the network at time n as

Ĩn :=
1

N

N
∑

i=1

P (Zi,n = 1) =
1

N

N
∑

i=1

P
(1)
i,n (1).

Note that Ĩn is a function of the network topology (V, E),
the initial placement of balls Ri and Bi, the draw processes

{Zi,t}nt=1, and number of balls added {∆r,i(t)}nt=1 and

{∆b,i(t)}nt=1 for each node i ∈ V . Unfortunately for an

arbitrary network, the above quantity does not yield an exact

analytical formula (except in the simple case of complete

networks). As such, in general it is hard to mathematically

analyze the asymptotic behavior of Ĩn, which we wish to

minimize when attempting to cure an epidemic. Instead we

examine the asymptotic stochastic behavior of two closely

related variables given by the average individual proportion

of red balls at time n, namely

Ũn :=
1

N

N
∑

i=1

Ui,n,

which we call the network susceptibility, and the average

neighborhood proportion of red balls at time n,

S̃n :=
1

N

N
∑

i=1

Si,n,

which we call the network exposure. Through (2) we see that

if Ui,n increases then this node-specific value causes Sj,n to

increase for every neighbor j of node i, and hence by (3)

their conditional probabilities of drawing red balls increase.

More specifically,

↑ Ui,n
(2)
=⇒ ↑ Sj,n for all j ∈ N ′

i

(3)
=⇒ ↑ P

(

Zi,n+1 = 1|{Zn
j }

N
j=1

)

for all j ∈ N ′
i . (5)

Thus if Ũn is high, then this average measure of individual

nodes implies that the conditional probability of a node

being infected is higher on average. Hence Ũn can be

understood as the average node prevalence of infection. The

effect of the network exposure here is more direct, since (3)

shows that S̃n is in fact the network-wide average of the

conditional probabilities of infection, which is a quantity

that is intimately related to the state of infection in the

neighborhood of node i. Thus S̃n represents the average

neighborhood prevalence of infection. Note that similarly to

Ĩn, both Ũn and S̃n are functions of the network variables.

With the model in hand, we turn to the exploration of

a curing problem. Our objective is to control the average

infection rate Ĩn as n grows without bound; but when seeking

analytic results, it might be more amenable to observe the

asymptotic behavior of the network exposure S̃n (note that

when S̃n decreases, Ĩn tends to do the same, as seen in (5)).

B. Establishing a Control Problem

The quantities {∆b,i(n)}∞n=1, which denote the net num-

ber of “healthy” balls added to node i’s urn after each draw,

can play the role of “healing or curing parameters”. Our



objective is to show that when these parameters are appro-

priately selected, one can steer the average infection rate

towards a desirable level; the selection of curing parameters

is, however, subject to an allowable budget on the maximal

number of healthy balls that can be added in the network.

Let us state this problem formally.

Problem 3.1. (Average Infection Rate Budget Con-

straint): Minimize the limiting average infection rate Ĩt
subject to a budget B on the total healing at each time step:

min∑
N
i=1

∆b,i(t)≤B
∀t

lim sup
t→∞

Ĩt

Such optimal curing problems have been studied in many

different contexts [21], [22]. For our model, the solution to

Problem 3.1 would be an infinite horizon optimal control

policy that would yield the best possible level of epidemic

elimination, given the initial data. Finding such a policy

is in general difficult. Nevertheless, as we demonstrate in

the upcoming sections, one can obtain interesting analytical

results regarding the feasibility of this problem, and design

algorithmic strategies to curtail the average infection rate.

IV. CONTROLLING EPIDEMICS: ANALYTICAL RESULTS

In order to determine when Problem 3.1 makes sense,

we wish to examine when a limit exists. As stated earlier,

working with Ĩn can be difficult; we instead focus on the

related measures of the network susceptibility Ũn and net-

work exposure S̃n. Our results will show how one can force

these measures to form supermartingales by appropriately

selecting the curing policies {∆b,i(n)}∞n=1, for all i ∈ V .

In conjunction with Doob’s martingale convergence theo-

rem [16], these results show that {Ui,n}∞n=1, {Si,n}∞n=1, and

hence both {Ũn}∞n=1 and {S̃n}∞n=1, have limits. While the

results presented do not obey the per-step budget constraint

on the curing, these results in conjunction with the simula-

tions presented later show that strategies that fit within the

framework of Problem 3.1 exist that reduce Ĩn on average.

An important assumption used herein is that the number of

red balls to be added ∆r,i(n) is known at least one step ahead

of time, so that in particular ∆r,i(n) is almost surely constant

given Fn−1. A sufficient, but not necessary, condition to

satisfy this assumption is for {∆r,i(n)}∞n=1 to be set, for

all i ∈ V , before the process begins. Using [2, Theorem

4.6], we have the following result. Throughout this section,

proofs are omitted due to space limitations.

Theorem 4.1. (Individual Urn Proportion Categories): In

a general network G = (V, E), if we choose {∆b,i(n)}∞n=1

so that

∆b,i(n) ≥
∆r,i(n)(1 − Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

almost surely for all n ∈ Z≥1 and i ∈ V (resp. equal to,

less than or equal to) then {Ui,n}∞n=1 is a supermartingale

(resp. martingale, submartingale) with respect to the natural

filtration {Fn}
∞
n=1, i.e.,

E[Ui,n|Fn−1] ≤ Ui,n−1 almost surely ∀n ∈ Z≥1.

Corollary 4.2. (Network Susceptibility Supermartingale):

In a general network G = (V, E), if the curing policies

{∆b,i(t)}∞t=1 obey the bound

∆b,i(n) ≥
∆r,i(n)(1 − Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

almost surely for all nodes i ∈ V , then the network

susceptibility {Ũn}∞n=1, where Ũn = 1
N

∑N

i=1 Ui,n, is a su-

permartingale with respect to the natural filtration {Fn}∞n=1.

While Corollary 4.2 is useful, by (5) we know the network

exposure S̃n is more closely related to the average infection

rate Ĩn than the network susceptibility Ũn. It is with this in

mind that we show the next results, which give us sufficient

conditions for {Si,n}∞n=1 and {S̃n}∞n=1 to be supermartin-

gales.

Theorem 4.3. (Super Urn Proportion Supermartingale):

In a general network G = (V, E), if the curing policy

{∆b,i(t)}
∞
t=1 obeys the bound

∆b,i(n) > ∆r,i(n)
Si,n−1

1− Si,n−1
max

k s.t. i∈N
′

k

1− Sk,n−1

Sk,n−1

almost surely for all nodes i ∈ V , then the neighborhood

proportions of red balls {Si,n}∞n=1 are strict supermartin-

gales with respect to the natural filtration {Fn}∞n=1, i.e.

E[Si,n|Fn−1] < Si,n−1 almost surely ∀i ∈ V, n ∈ Z≥1.

Corollary 4.4. (Network Exposure Supermartingale): In

a general network G = (V, E), if the curing policies

{∆b,i(t)}∞t=1 obey the bound

∆b,i(n) > ∆r,i(n)
Si,n−1

1− Si,n−1
max

k s.t. i∈N
′

k

1− Sk,n−1

Sk,n−1

almost surely for all nodes i ∈ V , then the network exposure

{S̃n}∞n=1, where S̃n = 1
N

∑N

i=1 Si,n, is a strict supermartin-

gale with respect to the natural filtration {Fn}∞n=1.

It is important to note that the policy for {∆b,i(t)}∞t=1

used in Theorem 4.3 is not a tight lower bound on the curing

resources which guarantee that the processes {Si,n}∞n=1 are

supermartingales, and hence less costly policies may exist

that still guarantee this property. In particular, strategies may

exist which obey the fixed budget B on the amount of curing

resources used. However, these results motivate the fact that

the search for better policies makes sense, since policies exist

that will fight the infection and reduce it on average.

V. CONTROLLING EPIDEMICS: ALGORITHMIC

STRATEGIES

The supermartingale results established in the previous

section demonstrate the feasibility of a relaxed version of

Problem 3.1, with no budget limitation. In this section, we

establish numerical methods to find control policies that find

efficient sub-optimal policies for Problem 3.1, under budget

constraints and with having computational complexity in

mind. We compare these strategies with the ones obtained

from our supermartingale results. A summary of all strategies

that will be discussed in this section is given in Table I.



TABLE I

CURING STRATEGIES

(i) Forcing all Ui,n to be supermartingales (Theorem 4.1):

∆bi,(t) =
∆r,i(n)(1−Ui,n−1)Si,n−1

Ui,n−1(1−Si,n−1)

(ii) Forcing all Si,n to be supermartingales (Theorem 4.3):

∆b,i(t) = ∆r,i(n)
Si,n−1

1−Si,n−1

max
k s.t. i∈N

′

k

1−Sk,n−1

Sk,n−1

(iii) Constrained gradient descent algorithm on a simplex:

Find ∆b,i(t) using Algorithm in [23, Chapter 2]

(iv) Ratio of degree, closeness centrality and super urn proportion:

∆b,i(t) = B
|Ni|CiSi,t−1

∑
N
j=1

|Nj |CjSj,t−1

(v) Uniformly allocate the budget to all nodes in the network:

∆b,i(t) =
B
N

A. Supermartingale Strategies

The supermartingales results in Section IV, specifically,

Theorems 4.1 and 4.3, naturally lead to a class of curing

strategies. In particular, these strategies guarantee that Ũn

and S̃n, respectively, are supermartingales; however, our

theoretical results do not necessarily imply that the average

infection rate Ĩn forms a supermartingale. In spite of this,

these strategies are still viable options for curing, as far

as enough resources are available. We next describe the

differences between the strategy given by individual urn

proportions, and the one given by super urn proportions.

By Corollary 4.2, we know that strategy (i) guarantees

that the network susceptibility Ũn will be a supermartingale.

Hence we set the curing strategy for each node to force the

individual urn proportions of red balls to be supermartin-

gales. As shown in (5), the relationship between the reduction

of Ũn and Ĩn is not a strong one and our simulations suggests

that this strategy does not appear to offer a large reduction in

the average infection rate in general. In contrast, the curing

strategy given by Corollary 4.4, where we force the super

urn proportions of red balls to be supermartingales for all

nodes, performs reasonably well.

B. Gradient Flow Method

In this section, we employ the well-known gradient de-

scent algorithm [23] for Problem 3.1. As discussed earlier,

using Ĩn as a measure of infection is computationally expen-

sive, and hence we focus on the network exposure S̃n. While

our suggested gradient descent algorithm will not provide the

exact answer to Problem 3.1 for reducing Ĩn, we will show

that it is guaranteed to provide the optimal policy to reduce

the closely related measure E[S̃n|Fn−1]. We hence refer to

the gradient descent strategy as a benchmark for optimality.

In Problem 3.1, our curing policy is constrained by a

budget B at each time step and so the feasible set X , or

set of valid curing policies, for our gradient descent is all

policies which do not exceed B. However, any optimal policy

will make use of the whole budget, and so we consider

X =
{

{∆b,i(n)}Ni=1 ∈ R
N
≥0 |

∑N

i=1 ∆b,i(n) = B
}

. Propo-

sition 5.1 shows that for arbitrary initial conditions and

network topologies, this problem for E[S̃n|Fn−1] is convex.

Proposition 5.1. (Gradient descent conditions are

met): In a general network G = (V, E) with arbi-

trary initial conditions, the expected network exposure

E[S̃n|Fn−1] is convex with respect to the curing parameters

{∆b,i(n)}Ni=1 for all n. Furthermore, the feasible set X =
{

{∆b,i(n)}Ni=1 ∈ R
N
≥0 |

∑N

i=1 ∆b,i(n) = B
}

is convex and

compact.

The structure of the feasible set X allows us to employ

the simplex constrained gradient descent method, see [23,

Chapter 2]. The time complexity of this algorithm is of the

order O(sa) at each time step, where s is the stopping time of

the gradient descent and 1
a

is the granularity used to find the

limit-minimized step size. While Proposition 5.1 guarantees

that the curing policy that this algorithm finds will be optimal

for each individual step, it does not guarantee optimality over

the entire time horizon. In spite of this, as the simulation

results in Figure 3 show, this curing strategy still outperforms

all other curing strategies studied in this paper. The downside

of the gradient method is that it is computationally expensive

to execute and requires intimate knowledge of the state of all

nodes, including the entire history of draws and values of the

curing parameters. This motivates us to seek other methods

which are computationally easier to execute, although they

do not perform as well as the gradient descent strategy.

C. Heuristic Strategies

Both sets of strategies identified above come with chal-

lenges: the gradient descent is computationally costly, and

the supermatingale strategies do not significantly reduce

the average infection rate. As a compromise, we design a

heuristic strategy to split the budget between all nodes in the

network whose time complexity will be of the order O(1),
which we call the centrality-infection ratio:

∆b,i(t) = B
|Ni|CiSi,t−1

∑N

j=1 |Nj |CjSj,t−1

.

We consider three factors when determining how much cur-

ing a node should receive: local impact, topological position,

and level of infection. Nodes with higher local impact have

more neighbors, and hence any healing they receive is imme-

diately distributed to a larger number of nodes; for this we

use the degree, |Ni|. Those with a better topological position

are more centrally located within the network, in the sense

that the distance from them to all other nodes is smaller.

We hence use closeness centrality to measure topological

position1 [24], defined as Ci :=
(
∑

j∈V d(i, j)
)−1

for node

i, where d(i, j) is the length of the shortest path from node i

to node j. Lastly, nodes with a higher level of infection will

need more curing resources to become healthy, and so we

capture this with the super urn proportion of red balls Si,n.

From (3), we know that this quantity captures how likely it

is for node i to be infected at this time given the history of

the process. Thus we give more importance to nodes who

are more likely to be infected in order to make them less

likely to be infected in the future. This allocation ratio is a

generalization of the best heuristic strategy presented in [1],

which only used the degree to measure centrality.

1While numerous centrality measures were tested, including eigenvalue
and Bonacich, closeness provided the best empirical performance.



The advantage of this heuristic strategy is twofold. Not

only does it reduce computational time complexity from

O(sa) to O(1), it is also somewhat distributed in the sense

that it does not require constant information from the entire

network. Unlike the gradient descent algorithm, strategy

(iv) simply needs to know information about the network

topology and the state of infection of each node. Since we

assume that our network’s graph is constant in time, this

topological information is only required initially and can be

used thereafter. The only other information required from the

network at large is the sum of the super urn ratios
∑N

i=1 Si,n,

and hence much less information needs to be communicated

through the network for the implementation of this strategy.

Lastly, for comparison reasons we present the uniform

curing strategy (v), which splits the budget B equally to all

nodes in the network. We use this strategy as a baseline

with no interaction to show the improvement achieved by

intelligently assigning the curing resources.

VI. SIMULATION RESULTS AND DISCUSSION

In order to confirm the results of Theorems 4.1 and 4.3, a

number of simulations were performed. While these simula-

tions allowed ∆r,i to vary between nodes, they were constant

in time. This was done to simplify the choice of the per-step

budget, and does not affect the execution of the simulations

themselves. All initial conditions used in the simulations

herein, as well as videos displaying the average performance

of the curing strategies, are available online2.

The network shown in Figure 3(a) was generated by using

a tool [25] to crawl through 500 posts in a Facebook group.

Individuals who created posts or interacted with others’

content are represented by nodes, while edges are created if

individuals interacted with the post or comment of another

(by commenting on the post, or liking the post or comment).

The resulting graph has 1,363 nodes and 2,425 edges, and

by design represents the topology of a real social network.

We now provide a detailed description of the simulation.

The values of Ri, Bi and ∆r,i were uniformly randomly

assigned for each node as integers between 1 and 10, and

remained consistent throughout all strategies used and trials

performed. Since the values for ∆r,i were fixed over time, the

per-step budget was set at B =
∑N

i=1 ∆r,i. With the initial

conditions set, a number of trials were performed for each

strategy. Each trial was performed by successively drawing

balls from super urns for a fixed number of time steps. At

time t, we first assigned the curing ∆b,i(t) based on the

strategy selected. Then balls were drawn from each super

urn, and Zi,t was set accordingly. Based on what was drawn,

we added ∆r,i red or ∆b,i(t) black balls into node i’s urn,

and hence its super urn and those of its neighbors. At the

end of each trial the draw variables were saved, and then

averaged over all trials to produce the empirical performance

of the curing strategy.

Figure 3(b) compares the performance of all strategies

described in Section V on a Facebook network. The time

2See: http://bit.ly/2szl8PY

horizon considered is short due to the computational com-

plexity of the gradient flow algorithm, but results for a

much longer time horizon show that trends between all

other strategies are unchanged. The baseline uniform strategy

(v) performs the worst, which is to be expected. Although

(iii) is only proven to be optimal for the expected network

exposure E[S̃n|Fn−1], these results are seen to be effective

for the average infection rate Ĩn as well, outperforming

all other curing strategies. However, the heuristic strategy

(iv) performs similarly while being far less computationally

difficult. The supermartingale strategies (i) and (ii) both

reduce Ĩn below the initial average infection rate in the

network ρ, but are less effective in doing so than the gradient

flow and centrality-infection ratio methods. Strategy (i) sees

only an immediate small reduction in Ĩn, while strategy

(ii) continuously decreases Ĩn. Hence forcing Ũn to be a

supermartingale is not enough to guarantee a large reduction

in the average infection rate Ĩn, while guaranteeing this

property for S̃n is enough.

In Figure 3(c) we examine the amount of curing resources

used by each strategy. Since strategies (iii), (iv) and (v) all

obey a per-step budget constraint their usages are fixed. Both

supermartingale strategies, which may use arbitrary amounts

of curing resources, initially use a larger amount of curing

resources and then reduce their usage. Strategy (i) appears to

reduce curing consumption at first but then steadily increase,

while strategy (ii) continues to decrease its usage in time.

Further, strategy (i) uses much more curing resources than

the budget B initially compared to strategy (ii).

The amount of curing resources wasted by each strategy

is displayed in Figure 3(d). Waste is defined as curing

resources which were assigned to nodes that did not use

them since they displayed “infected” behavior at that time,

and is measured as
∑N

i=1

∑n

t=1 ∆b,i(t)Zi,t. We observe a

correlation between the amount of resources wasted and

curing performance. However, this does not tell the full

story. The gradient flow algorithm has several spikes where

it wastes more than the centrality-infection ratio (iv), but still

achieves superior curing performance. Furthermore, strategy

(i) initially wastes less than strategy (ii) even though it

uses more curing resources, and it still performs worse with

respect to reduction in Ĩn. This suggests that optimal curing

strategies do not simply waste less, but also intelligently

allocate their curing resources to make the best use of them.

VII. ACKNOWLEDGEMENTS

The authors wish to acknowledge the Centre for Advanced

Computing at Queen’s University, whose computing cluster

allowed the simulations presented herein to be performed.

REFERENCES

[1] M. Hayhoe, F. Alajaji, and B. Gharesifard, “A Polya urn-based model
for epidemics on networks,” Proc. 2017 American Cont. Conf., 2017.

[2] M. Hayhoe, F. Alajaji, and B. Gharesifard, “A Polya contagion model
for networks,” IEEE Trans. Cont. Netw. Sys., to appear, 2017.

[3] L. Kim, M. Abramson, K. Drakopoulos, S. Kolitz, and A. Ozdaglar,
“Estimating social metwork structure and propagation dynamics for an
infectious disease,” in Proc. Int. Conf. Social Computing, Behavioral-
Cultural Modeling, and Prediction, pp. 85–93, Springer, 2014.

http://bit.ly/2szl8PY


(a) Facebook group network with 1,363 nodes and 2,425 edges.

0

0.1

0.4

0.5

250 500

(i)
(ii)
(iii)
(iv)
(v)

Average ρ

(b) Plot of empirical average infection rate Ĩn compared to the
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