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Abstract —

We consider two time-invariant Markov sources of
arbitrary order and finite alphabet described by the
probability distributions p™ and ¢™, respectively.
We show that the Kullback-Leibler divergence rate,
) exists and

limp, o0 %D(p(")Hq(")) between p™ and ¢

is computable. We also examine its rate of conver-
gence and illustrate it numerically. The main tools
used to obtain these results are the theory of non-
negative matrices and Perron-Frobenius theory. Fi-
nally, we provide a formula for the Shannon entropy

rate lim, %H(p(")) of Markov sources and examine

its rate of convergence.

I. INTRODUCTION

Let {Xl,Xz, ..
source with finite alphabet X = {1,...,

.} be a first-order time-invariant Markov
M}. Consider the
following two different probability laws for this source. Under
the first law,

P?"{Xl = Z} =.Dpi and P?"{Xk_H :]|Xk = ’L} = DPij,

i,] € X, so that

p(n)(zn) = Pr{Xl = ily - '7X7’L = ln} = Pi1 Piyis *-

"Pin_1in;

i1,...,in € X, while under the second law the initial prob-
abilities are g;, the transition probabilities are ¢;;, and the
Let p = (p1,...
,qm) denote the initial distributions under p(™

n-tuple probabilities are ¢™).
7= (q1,...
and ¢ respectively.

The Kullback-Leibler divergence [11] between two distribu-

,py) and

tions p and ¢ defined on X is given by

sz lOg G )

ieX

D(pllg) =
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where the base of the logarithm is arbitrary. The application
of this measure can be found in many areas such as approxi-
mation of probability distributions [3], [10], signal processing
[8], [9], pattern recognition [1], [2], etc. One natural direction
for further studies is the investigation of the Kullback-Leibler
divergence rate

Tim D™ g)
between two probability distributions p™ and ¢ defined on
X", where
P ")

(n) (n)
DE™ g B

Z p(n)

nex”n

)log ———=

for sources with memory. In [6, p. 40], Gray proved that the
Kullback-Leibler divergence rate exists between a stationary
source p™ and a time-invariant Markov source ¢™. This
result can also be found in [13, p. 27]. To the best of our
knowledge, this is the only result available in the literature
about the existence and the computation of the Kullback-
Leibler divergence rate between sources with memory. In the
sequel, we provide a computable expression for the Kullback-
Leibler divergence rate between two arbitrary time-invariant
finite alphabet Markov sources. Let us first recall some useful
results about non-negative stochastic matrices (i.e., with the
property that the sum of the entries in each row is equal to 1)
most of which may be found in [4, Chapter 3], [5, Chapter 4],
and [12, Chapter 1].

II. PRELIMINARIES

Matrices and vectors are positive if all their components are
positive and mon-negative if all their components are non-
Throughout this section, P denotes an M x M
The ij-th element of P™
We write 1 — j if plm) > 0 for some

negative.
stochastic matrix with elements p;;.
is denoted by p(m).
positive integer m, and we write i /4 j if pij = 0 for every
positive integer m. We say that ¢+ and j communicate and

write ¢ <> jif i > j and j — i. If i — 5 but 5 4 i for some



index j, then the index i is called inessential (or transient);
otherwise, it is called essential (or recurrent). Thus if 7 is es-
sential, ¢ — j implies ¢ <> j, and there is at least one j such
that ¢ — j.

With these definitions, it is possible to partition the set of
indices {1,2,..., M} into disjoint sets, called classes. All es-
sential indices can be subdivided into essential classes in such
a way that all the indices belonging to one class communicate,
but cannot lead to an index outside the class. Moreover, all
inessential indices (if any) may be divided into two types of
inessential classes: self-communicating classes and non self-
communicating classes. Each self-communicating inessential
class contains inessential indices which communicate with each
other. A non self-communicating inessential class is a single-
ton set whose element is an index which does not communi-
cate with any index (including itself). A matrix is irreducible
if its indices form a single essential class; i.e., if every index

communicates with every other index.

Proposition 1 [12, p. 14] By renumbering the indices (i.e.,
by performing row and column permutations), it is possible
to put a stochastic matrix P in the canonical form

P 0 0 0 ... 0]
0 0 0 0 .0
0 . Py 0 0 ... 0
Pri11 Phyin Phy1 .. 0 ... 0
Pyi ... Py Pypht1 .- Py ... 0
Py+11 Pygiin  Pygyinsr Pyi1g 0

L Pll Plh Plh+1 Plg 0 i

where P;, ¢ = 1,...,g, are irreducible square matrices, and
in each row ¢ = h +1,...
P, P, ...
corresponds to the essential class C;; while the matrix P; for
t=h+1,...

tial class C;. The other diagonal block sub-matrices which cor-

,g at least one of the matrices

, Pii_1 is not zero. The matrix P; for : =1,...,h

, g corresponds to the self-communicating inessen-

respond to non self-communicating classes C;, ¢ = g+1,...,1,

are 1 x 1 zero matrices.

A right eigenvector, b, corresponding to an eigenvalue A, is
a nonzero vector such that Pb = Ab. A left eigenvector, a,
corresponding to A, is a nonzero vector such that aP = Aa.

Note that a is a row vector while b is a column vector.

Proposition 2 [5, p. 115] If P is irreducible, then P has a
real positive eigenvalue A = 1 that is greater than or equal to
the magnitude of each other eigenvalue. There is a positive left
(right) eigenvector, a(b), corresponding to A, unique within a

scale factor.

Remark: The left eigenvector a is the unique stationary dis-
tribution 7 of P associated with the largest positive real eigen-
value A = 1 and b* = (1, ..

operation.

., 1), where t denotes the transpose

Proposition 3 [7, p. 524] Let P be the probability tran-
sition matrix for an irreducible Markov source. Also, let a(b)
be the left (right) eigenvector associated with the largest pos-
itive real eigenvalue A = 1 such that ab = 1. Also, let L = ba.

Then .
1 )
lim — P'=1L.
S

Moreover, there exists a finite positive constant C' such that

1= C
R P <o

o0

for all n = 1,2,... and || - ||« is the ls morm, where the

loo norm of an M x M matrix A is defined by ||A|ls 2

maxi<i,j<u |aij|.

With the aid of Proposition 1 and Proposition 3, it can be
shown that the cesdro limit lim, ;oo £ > " | P’ of an arbitrary
(not necessarily irreducible) stochastic matrix P exists and is

computable.

Proposition 4 [4, p. 129] Let P be the probability tran-
sition matrix for an arbitrary Markov source with associated
Let ai(b;) be the left
(right) eigenvector associated with A = 1 such that a;b; = 1,
fori=1,...,h. Let

canonical form as in Proposition 1.

[ Py Phiin
blal 0
0 0 P, P,
D = , B = g1 gh
Py Pyiap
0 bran
L Pn Y ST
Also, let
[ Py ... 0 0]
o | Pwsr o B
Pyyint1 Pyyig 0
Pips1 Py Pgyqr ... 0 ]

We have the following:

L D 0
lim § P = ,
n—oo N (I-C)™*BD 0

where [ is the identity matrix.



Proposition 5 [7, p. 492] Let A be a non-negative matrix.

The spectral radius p(A) 2 max {IA| : X eigenvalue of A}

satisfies

min{row sum} < p(A) < max{row sum}.

The following lemma follows by appropriately modifying the

proof of the above proposition.

Lemma 1 If A is non-negative and irreducible and the row
sums are not all identical, then the spectral radius p(A) sat-
isfies

min{row sum} < p(A) < max{row sum}.

Proof: Let A be the largest positive real eigenvalue of A with
associated strictly positive left eigenvector a. Without loss of
generality a can be normalized, i.e., the sum of its components

is equal to 1. Let 1° be the row vector

Note that al = 1. We have aA = Aa. Hence aAl = \al = .
On the other hand

Ry

R
aAl =a ) ,

Ry

where R;, i =1,..., M denotes the sum of the i-th row. Let

Rmax = max{Rl, ey RM}
Then
Rmax
Rulax M
aAl < a . = Z a; Rimax = Rmax.
. i=1
Rulax
Therefore
A < Rmax
Similarly, we can show that
A > Rmin;
where
Rumin = min{R1,..., R}

Finally we conclude that

Ruin < p(A) < Rupax-

Proposition 6 [7, p. 494] If a non-negative matrix A has
a right positive eigenvector b, then for all n =1,2,... and for

all e =1,..., M we have

o™ < maxi << b o
; B [minlskSMbk]p -

The following corollary follows directly from the previous
proposition by observing that, aEJ") < Z] La (") for all 4 =
1,...,Mandj=1,..., M.

Corollary 1 If A is non-negative and irreducible, then A™ <
pH(A)C (ie., all) < p(A)cy), for all n = 1,2,..

max M b . . . . . .
C = (——13E=M %) i a matrix with identical entries that are
ming <p<n bk

independent of n.

., wWhere

I1I. KULLBACK-LEIBLER DIVERGENCE RATE

A First-order Markov sources

We assume first that the Markov source {Xi,X>,...} is of
order one. Later, we generalize the results for sources of ar-
bitrary order k Let p and g be the initial distributions with
respect to pi™ and ¢\ respectively. Also, let P and Q be the
probability transition matrices with respect to p ) and q

respectively. Without loss of generality, we may assume that
p and P are absolutely continuous with respect to g and @
respectively (i.e., ¢ =0 = p; = 0 and ¢;; = 0 = p;; = 0 for

all 7,7 € X). We have the following results.

Theorem 1 Suppose that the Markov source {X1,X>,...}

under p™ and ¢ is irreducible. Let

V= (S(X2| X1 =1),...,8(Xa| X1 = M)),

where

S(X2| X1 =1) Zp” logp”
jex
The Kullback-Leibler divergence rate between p™ and ¢

given by

1
lim =D(p™lg™) =D mS(Xs| X1 =i
Jim =D lg™) miS(Xa| X1 = 1),

i€EX

where m = (m1,...,mm) is the unique stationary distribution

of P.
Proof: We have that
D™ g"™) =

> =)+

1EX

+Zp

i€EX



which can be also written as

DOV = SHI+Pe PV
+ — sz lOg — (2)
zEX

Note that (2) approaches 0 as n — co. Hence, by Proposition
3, we obtain the desired result. .

Theorem 2 Suppose that the Markov sources p ) and q
are arbitrary (not necessarily irreducible, stationary, etc.). Let

Vi = (S(Xa| X1 =1),...,8(X2| X1 = M)), where

Z Dbij log p”

JEX

S(X2|X1 = ’L

Let the canonical form of P be as in Proposition 1. Also, let B,
D and C be as defined in Proposition 4. The Kullback-Leibler

divergence rate between p™ and ¢ is given by
o1 Wi (n D 0
lim —D(p'™||¢") =p .
Proof: We have that
1 n n n—
ED(p< Ng™y = —p(I+ P+ + P )V
15 g2
zEX

Then, the desired result follows immediately from Proposition
4. |

Theorem 3 The rate of convergence of the Kullback-Leibler

divergence rate between p ) and q is of the order 1/n.

Proof: Clearly, the rate of convergence of (2) to 0 is of the
order 1/n.
convergence of the cesdro sum of an irreducible matrix is of
the order 1/n. On the other hand, if P is not irreducible,
let Pj,i=h+1,...

inessential classes as in Proposition 1. Every P; is irreducible

In Proposition 3, it is proved that the rate of

,g be the sub-matrices corresponding to

and hence, by Corollary 1, we have that

where G; is a matrix with identical entries that are indepen-
dent of n. If P; has all row sums identical then p(P;) < 1 by
Proposition 5. Otherwise, p(P;) < 1 by Lemma 1. Hence, by
(3), P converges exponentially fast to the zero matrix of the
same dimensions for each i = h+1,...,g. By considering the
cesaro sum of the canonical form of P, we get that the rate of
convergence of (1) is of the order 1/n. Therefore the rate of
convergence of the Kullback-Leibler divergence rate is of the

order 1/n. ]

B k-th order Markov sources

Now, suppose that the Markov source has an arbitrary order
k. Define {Wi,Wo,..
blocking the Markov source {X1, X2, ..

.} as the process obtained by k-step
.} i,

Wn = (Xn,Xn+1, .. .7Xn+]c7]_).

Then {W,} is a first order Markov source with M*
Let pw,_jw, = Pr(Wn = wp|Who1 = wn_1).

(1, ppr) and g = (qu, - .-
tial distributions of W) under p™ and ¢™ respectively. Also,

states.
Let p =

, 4k ) denote the arbitrary ini-

let p;; and g;; denote the transition probability that W, goes

from index i to index j under p™ and q™ respectively,

i,j = 1,...,M". Then clearly D(p(n)Hq(")) can be written
as
D™ [lg™) —p(I+ P+ + PV
p(Wh1 =1)
i)log ———=.
t Z )log (W1 = i)
zEX’“

It follows directly that the previous results also hold for a

Markov source of arbitrary order.

IV. SHANNON ENTROPY RATE
The existence and the computation of the Shannon entropy
rate of an arbitrary time-invariant finite-alphabet Markov
source can be deduced from the existence and the compu-
tation of the Kullback-Leibler divergence rate. We have the

following corollaries.

Corollary 2 Suppose that the Markov source {X1, X»,...}

under p™ is irreducible. Let

V= (H(X2|X1 =1),..., H(X2| X1 = M)),

where
A
H(Xp|X, =4) = ZPU log pij.

jex
The Shannon entropy rate of p(™ is given by
1
lim —H(p™) = H(Xo| X1 =
lim —Hp™) = mH(X|X: =),

icx
where m = (1, ...
of P.

,ma) is the unique stationary distribution

Corollary 3 Let the canonical form of P be as in Proposition
1. Also, let B, D and C be as defined in Proposition 4. Then,

the Shannon entropy rate is given by

D 0
I-C)'BD 0

lim = H(p™) =pl (

)
n—oo N

where V! = (H(X2|X1 =1),...,

L\ A
H(Xz| X1 =14) = — Zpij log pij-
JEX

H(X2|X1 = M)), and



Corollary 4 The rate of convergence of the Shannon entropy

rate of p(™ is of the order 1/n.

V. NUMERICAL EXAMPLES

In this section, we use the natural logarithm.

Example 1: Let P and @ be two possible probability tran-

sition matrices for {X1, X»,...} defined as follows:

14 0 0 1/2 1/4
2/3 0 1/3 0 0
P=| 0o o0 1/5 0 4/5 |,
47 0 3/T 0 0
00 3/4 0 1/4
and
[2/5 0 0 2/5 1/5 W
4/5 0 1/5 0 0
Q=] 0o o0 2/3 0 1/3
5/6 0 1/6 0 0
0 0 38 0 58|

Let p = (2/7,4/7,1/7,0,0) and ¢ = (1/5,1/5,3/5,0,0) be two
possible initial distributions under p(") and q("), respectively.

In canonical form, P and () can be rewritten as

(15 45 0 0 0]
3/4 1/4 0 0 0
P=| 0o 1/4 1/4 1/2 0 |,
3/7 0 4/7 0 0
13 0 23 0 0|
and
[ 2/3 1/3 0 0 0|
3/8 5/8 0 0 0
Q=| 0o 1/5 2/5 2/5 0 |,
16 0 5/6 0 0
[ 1/5 0 4/5 0 0 J

simply by permuting the second and fifth rows (columns)
and the first and third rows (columns). Note that P has 1
essential class, 1 inessential self-communicating class and 1
inessential non self-communicating class. Accordingly, the ini-
tial distributions are rewritten as p = (1/7,0,2/7,0,4/7) and
qg = (3/5,0,1/5,0,1/5), after permuting the first and third

indices and the second and fifth indices. We obtain the fol-

lowing.
n | 2DP™)¢™)
10 0.3473
50 0.3671
100 0.3698

By Theorem 2, the Kullback-Leibler divergence rate is equal
to 0.3725. Clearly, as n gets large %D(p(")Hq(”)) is closer to
the Kullback-leibler divergence rate.

Example 2: Suppose that the Markov source is of order 2
under p™ and ¢™ respectively. Let {Wi,Ws,...} be the
process obtained by 2-step blocking the Markov source. Let
P and @ be two possible transition matrices for {W1i, W, ...}

defined as follows:

[1/3 2/3 0 0
0 0 1 0
P= ,
2/5 3/5 0 0
0 0 1/6 5/6 |
and )
3/4 1/4 0 0 1
0 0 1 0
Q= :
7/8 1/8 0 0
L 0 0 2/3 1/3 J

Let p =(1/8,3/8,2/8,2/8) and ¢ = (1/7,2/7,3/7,1/7) denote
two possible initial distributions of Wi under p™ and ¢™
respectively. The set of indices {1,2,3} forms an essential
class, while the singleton set {4} forms a self-communicating
non-essential class. Hence, P and @ are not irreducible. We

obtain the following.

n | £+D(p"[lq™)
10 0.2982
50 0.3253
100 0.3277

By Theorem 2, the Kullback-Leibler divergence rate is equal
to .3301. Clearly, as n gets large %D(p(")Hq(")) is closer to
the Kullback-leibler divergence rate.

Example 3: Consider the Markov source under p™ as in

Example 1. We obtain the following.

n | tHE™)
10 | 0.5437
50 | 0.5088
100 | 0.5044

By Corollary 3, the Shannon entropy rate is equal to 0.5001.
Clearly, as n gets large %H(p(")) is closer to the Shannon

entropy rate.

Example 4: Consider the following second order Markov
source with probability transition matrix
1/3 2/3 0 0
0 0 1 0
1/2 1/2 0 0
0 0 1/4 3/4



and initial distribution p = (1/5,2/5,0,2/5). The set of in-
dices {1, 2, 3} forms an essential class, while the singleton set
{4} forms a self-communicating non-essential class. Hence, P

is not irreducible. We obtain the following.

n | 2H(pP™)
10 | 0.4641
50 | 0.4339
100 | 0.4208

By Corollary 3, the Shannon entropy rate is equal to 0.4256.
Clearly, as n gets large %H(p(”)) is closer to the Shannon

entropy rate.

VI. CONCLUSION AND FUTURE WORK

In this work, we derived a formula for the Kullback-Leibler
divergence rate between two time-invariant finite-alphabet ar-
bitrary Markov sources (not necessarily, irreducible, station-
ary, etc.). We illustrated numerically and investigated its rate
of convergence. Finally, we examined the computation and
the existence of the Shannon entropy rate for Markov sources
and investigated its rate of convergence. A possible future di-
rection is the investigation of the results for Hidden Markov
sources and for more general sources with memory such as

stationary ergodic sources.
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