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Abstra
t |

We 
onsider two time-invariant Markov sour
es of

arbitrary order and �nite alphabet des
ribed by the

probability distributions p

(n)

and q

(n)

, respe
tively.

We show that the Kullba
k-Leibler divergen
e rate,

lim

n!1

1

n

D(p

(n)

kq

(n)

), between p

(n)

and q

(n)

exists and

is 
omputable. We also examine its rate of 
onver-

gen
e and illustrate it numeri
ally. The main tools

used to obtain these results are the theory of non-

negative matri
es and Perron-Frobenius theory. Fi-

nally, we provide a formula for the Shannon entropy

rate lim

n!1

1

n

H(p

(n)

) of Markov sour
es and examine

its rate of 
onvergen
e.

I. Introdu
tion

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov

sour
e with �nite alphabet X = f1; : : : ;Mg. Consider the

following two di�erent probability laws for this sour
e. Under

the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

;

i; j 2 X ; so that

p

(n)

(i

n

) =: PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � � p

i

n�1

i

n

;

i

1

; : : : ; i

n

2 X ; while under the se
ond law the initial prob-

abilities are q

i

, the transition probabilities are q

ij

, and the

n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and

q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respe
tively.

The Kullba
k-Leibler divergen
e [11℄ between two distribu-

tions p̂ and q̂ de�ned on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;
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where the base of the logarithm is arbitrary. The appli
ation

of this measure 
an be found in many areas su
h as approxi-

mation of probability distributions [3℄, [10℄, signal pro
essing

[8℄, [9℄, pattern re
ognition [1℄, [2℄, et
. One natural dire
tion

for further studies is the investigation of the Kullba
k-Leibler

divergen
e rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on

X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for sour
es with memory. In [6, p. 40℄, Gray proved that the

Kullba
k-Leibler divergen
e rate exists between a stationary

sour
e p

(n)

and a time-invariant Markov sour
e q

(n)

. This

result 
an also be found in [13, p. 27℄. To the best of our

knowledge, this is the only result available in the literature

about the existen
e and the 
omputation of the Kullba
k-

Leibler divergen
e rate between sour
es with memory. In the

sequel, we provide a 
omputable expression for the Kullba
k-

Leibler divergen
e rate between two arbitrary time-invariant

�nite alphabet Markov sour
es. Let us �rst re
all some useful

results about non-negative sto
hasti
 matri
es (i.e., with the

property that the sum of the entries in ea
h row is equal to 1)

most of whi
h may be found in [4, Chapter 3℄, [5, Chapter 4℄,

and [12, Chapter 1℄.

II. Preliminaries

Matri
es and ve
tors are positive if all their 
omponents are

positive and non-negative if all their 
omponents are non-

negative. Throughout this se
tion, P denotes an M � M

sto
hasti
 matrix with elements p

ij

. The ij-th element of P

m

is denoted by p

(m)

ij

. We write i ! j if p

(m)

ij

> 0 for some

positive integer m, and we write i 6! j if p

(m)

ij

= 0 for every

positive integer m. We say that i and j 
ommuni
ate and

write i $ j if i ! j and j ! i. If i ! j but j 6! i for some



index j, then the index i is 
alled inessential (or transient);

otherwise, it is 
alled essential (or re
urrent). Thus if i is es-

sential, i ! j implies i $ j, and there is at least one j su
h

that i! j.

With these de�nitions, it is possible to partition the set of

indi
es f1; 2; : : : ;Mg into disjoint sets, 
alled 
lasses. All es-

sential indi
es 
an be subdivided into essential 
lasses in su
h

a way that all the indi
es belonging to one 
lass 
ommuni
ate,

but 
annot lead to an index outside the 
lass. Moreover, all

inessential indi
es (if any) may be divided into two types of

inessential 
lasses: self-
ommuni
ating 
lasses and non self-


ommuni
ating 
lasses. Ea
h self-
ommuni
ating inessential


lass 
ontains inessential indi
es whi
h 
ommuni
ate with ea
h

other. A non self-
ommuni
ating inessential 
lass is a single-

ton set whose element is an index whi
h does not 
ommuni-


ate with any index (in
luding itself). A matrix is irredu
ible

if its indi
es form a single essential 
lass; i.e., if every index


ommuni
ates with every other index.

Proposition 1 [12, p. 14℄ By renumbering the indi
es (i.e.,

by performing row and 
olumn permutations), it is possible

to put a sto
hasti
 matrix P in the 
anoni
al form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

1

: : : 0 0 : : : 0 : : : 0

0 : : : 0 0 : : : 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

0 : : : P

h

0 : : : 0 : : : 0

P

h+11

: : : P

h+1h

P

h+1

: : : 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

P

g1

: : : P

gh

P

gh+1

: : : P

g

: : : 0

P

g+11

: : : P

g+1h

P

g+1h+1

: : : P

g+1g

: : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

P

l1

: : : P

lh

P

lh+1

: : : P

lg

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where P

i

, i = 1; : : : ; g, are irredu
ible square matri
es, and

in ea
h row i = h + 1; : : : ; g at least one of the matri
es

P

i1

; P

i2

; : : : ; P

ii�1

is not zero. The matrix P

i

for i = 1; : : : ; h


orresponds to the essential 
lass C

i

; while the matrix P

i

for

i = h+1; : : : ; g 
orresponds to the self-
ommuni
ating inessen-

tial 
lass C

i

. The other diagonal blo
k sub-matri
es whi
h 
or-

respond to non self-
ommuni
ating 
lasses C

i

, i = g+1; : : : ; l,

are 1� 1 zero matri
es.

A right eigenve
tor, b, 
orresponding to an eigenvalue �, is

a nonzero ve
tor su
h that Pb = �b. A left eigenve
tor, a,


orresponding to �, is a nonzero ve
tor su
h that aP = �a.

Note that a is a row ve
tor while b is a 
olumn ve
tor.

Proposition 2 [5, p. 115℄ If P is irredu
ible, then P has a

real positive eigenvalue � = 1 that is greater than or equal to

the magnitude of ea
h other eigenvalue. There is a positive left

(right) eigenve
tor, a(b), 
orresponding to �, unique within a

s
ale fa
tor.

Remark: The left eigenve
tor a is the unique stationary dis-

tribution � of P asso
iated with the largest positive real eigen-

value � = 1 and b

t

= (1; : : : ; 1), where t denotes the transpose

operation.

Proposition 3 [7, p. 524℄ Let P be the probability tran-

sition matrix for an irredu
ible Markov sour
e. Also, let a(b)

be the left (right) eigenve
tor asso
iated with the largest pos-

itive real eigenvalue � = 1 su
h that ab = 1. Also, let L = ba.

Then

lim

n!1

1

n

n

X

i=1

P

i

= L:

Moreover, there exists a �nite positive 
onstant C su
h that
















1

n

n

X

i=1

P

i

� L
















1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the

l

1

norm of an M � M matrix A is de�ned by kAk

1

4

=

max

1�i;j�M

ja

ij

j.

With the aid of Proposition 1 and Proposition 3, it 
an be

shown that the 
es�aro limit lim

n!1

1

n

P

n

i=1

P

i

of an arbitrary

(not ne
essarily irredu
ible) sto
hasti
 matrix P exists and is


omputable.

Proposition 4 [4, p. 129℄ Let P be the probability tran-

sition matrix for an arbitrary Markov sour
e with asso
iated


anoni
al form as in Proposition 1. Let a

i

(b

i

) be the left

(right) eigenve
tor asso
iated with � = 1 su
h that a

i

b

i

= 1,

for i = 1; : : : ; h. Let

D =

2

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

5

:

Also, let

C =

2

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

5

:

We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

"

D 0

(I � C)

�1

BD 0

#

;

where I is the identity matrix.



Proposition 5 [7, p. 492℄ Let A be a non-negative matrix.

The spe
tral radius �(A)

4

= max fj�j : � eigenvalue of Ag

satis�es

minfrow sumg � �(A) � maxfrow sumg:

The following lemma follows by appropriately modifying the

proof of the above proposition.

Lemma 1 If A is non-negative and irredu
ible and the row

sums are not all identi
al, then the spe
tral radius �(A) sat-

is�es

minfrow sumg < �(A) < maxfrow sumg:

Proof: Let � be the largest positive real eigenvalue of A with

asso
iated stri
tly positive left eigenve
tor a. Without loss of

generality a 
an be normalized, i.e., the sum of its 
omponents

is equal to 1. Let 1

t

be the row ve
tor

1

t

= (1; : : : ; 1):

Note that a1 = 1. We have aA = �a. Hen
e aA1 = �a1 = �.

On the other hand

aA1 = a

2

6

6

6

6

4

R

1

R

2

.

.

.

R

M

3

7

7

7

7

5

;

where R

i

, i = 1; : : : ;M denotes the sum of the i-th row. Let

R

max

= maxfR

1

; : : : ; R

M

g:

Then

aA1 < a

2

6

6

6

6

4

R

max

R

max

.

.

.

R

max

3

7

7

7

7

5

=

M

X

i=1

a

i

R

max

= R

max

:

Therefore

� < R

max

Similarly, we 
an show that

� > R

min

;

where

R

min

= minfR

1

; : : : ; R

M

g:

Finally we 
on
lude that

R

min

< �(A) < R

max

:

Proposition 6 [7, p. 494℄ If a non-negative matrix A has

a right positive eigenve
tor b, then for all n = 1; 2; : : : and for

all i = 1; : : : ;M we have

M

X

j=1

a

(n)

ij

�

�

max

1�k�M

b

k

min

1�k�M

b

k

�

�

n

(A):

The following 
orollary follows dire
tly from the previous

proposition by observing that, a

(n)

ij

�

P

M

j=1

a

(n)

ij

for all i =

1; : : : ;M and j = 1; : : : ;M .

Corollary 1 If A is non-negative and irredu
ible, then A

n

�

�

n

(A)C (i.e., a

(n)

ij

� �

n

(A)


ij

), for all n = 1; 2; : : :, where

C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with identi
al entries that are

independent of n.

III. Kullba
k-Leibler divergen
e rate

A First-order Markov sour
es

We assume �rst that the Markov sour
e fX

1

; X

2

; : : :g is of

order one. Later, we generalize the results for sour
es of ar-

bitrary order k. Let p and q be the initial distributions with

respe
t to p

(n)

and q

(n)

respe
tively. Also, let P and Q be the

probability transition matri
es with respe
t to p

(n)

and q

(n)

respe
tively. Without loss of generality, we may assume that

p and P are absolutely 
ontinuous with respe
t to q and Q

respe
tively (i.e., q

i

= 0 ) p

i

= 0 and q

ij

= 0 ) p

ij

= 0 for

all i; j 2 X ). We have the following results.

Theorem 1 Suppose that the Markov sour
e fX

1

; X

2

; : : :g

under p

(n)

and q

(n)

is irredu
ible. Let

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

where

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

The Kullba
k-Leibler divergen
e rate between p

(n)

and q

(n)

is

given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution

of P .

Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � � + p(X

n�1

= i)℄S(X

2

jX

1

= i)

+

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;



whi
h 
an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (1)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (2)

Note that (2) approa
hes 0 as n!1. Hen
e, by Proposition

3, we obtain the desired result.

Theorem 2 Suppose that the Markov sour
es p

(n)

and q

(n)

are arbitrary (not ne
essarily irredu
ible, stationary, et
.). Let

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)), where

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Let the 
anoni
al form of P be as in Proposition 1. Also, let B,

D and C be as de�ned in Proposition 4. The Kullba
k-Leibler

divergen
e rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

"

D 0

(I � C)

�1

BD 0

#

V:

Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V

+

1

n

X

i2X

p

i

log

p

i

q

i

:

Then, the desired result follows immediately from Proposition

4.

Theorem 3 The rate of 
onvergen
e of the Kullba
k-Leibler

divergen
e rate between p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of 
onvergen
e of (2) to 0 is of the

order 1=n. In Proposition 3, it is proved that the rate of


onvergen
e of the 
es�aro sum of an irredu
ible matrix is of

the order 1=n. On the other hand, if P is not irredu
ible,

let P

i

, i = h + 1; : : : ; g be the sub-matri
es 
orresponding to

inessential 
lasses as in Proposition 1. Every P

i

is irredu
ible

and hen
e, by Corollary 1, we have that

P

n

i

� �

n

(P

i

)G

i

; i = h+ 1; : : : ; g (3)

where G

i

is a matrix with identi
al entries that are indepen-

dent of n. If P

i

has all row sums identi
al then �(P

i

) < 1 by

Proposition 5. Otherwise, �(P

i

) < 1 by Lemma 1. Hen
e, by

(3), P

n

i


onverges exponentially fast to the zero matrix of the

same dimensions for ea
h i = h+1; : : : ; g. By 
onsidering the


es�aro sum of the 
anoni
al form of P , we get that the rate of


onvergen
e of (1) is of the order 1=n. Therefore the rate of


onvergen
e of the Kullba
k-Leibler divergen
e rate is of the

order 1=n.

B k-th order Markov sour
es

Now, suppose that the Markov sour
e has an arbitrary order

k. De�ne fW

1

;W

2

; : : :g as the pro
ess obtained by k-step

blo
king the Markov sour
e fX

1

; X

2

; : : :g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov sour
e with M

k

states.

Let p

w

n�1

w

n

:= Pr(W

n

= w

n

jW

n�1

= w

n�1

). Let p =

(p

1

; : : : ; p

M

k

) and q = (q

1

; : : : ; q

M

k

) denote the arbitrary ini-

tial distributions of W

1

under p

(n)

and q

(n)

respe
tively. Also,

let p

ij

and q

ij

denote the transition probability that W

n

goes

from index i to index j under p

(n)

and q

(n)

respe
tively,

i; j = 1; : : : ;M

k

. Then 
learly D(p

(n)

kq

(n)

) 
an be written

as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

:

It follows dire
tly that the previous results also hold for a

Markov sour
e of arbitrary order.

IV. Shannon entropy rate

The existen
e and the 
omputation of the Shannon entropy

rate of an arbitrary time-invariant �nite-alphabet Markov

sour
e 
an be dedu
ed from the existen
e and the 
ompu-

tation of the Kullba
k-Leibler divergen
e rate. We have the

following 
orollaries.

Corollary 2 Suppose that the Markov sour
e fX

1

; X

2

; : : :g

under p

(n)

is irredu
ible. Let

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

where

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

The Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution

of P .

Corollary 3 Let the 
anoni
al form of P be as in Proposition

1. Also, let B, D and C be as de�ned in Proposition 4. Then,

the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

"

D 0

(I � C)

�1

BD 0

#

V;

where V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M)), and

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:



Corollary 4 The rate of 
onvergen
e of the Shannon entropy

rate of p

(n)

is of the order 1=n.

V. Numeri
al examples

In this se
tion, we use the natural logarithm.

Example 1: Let P and Q be two possible probability tran-

sition matri
es for fX

1

; X

2

; : : :g de�ned as follows:

P =

2

6

6

6

6

6

6

4

1=4 0 0 1=2 1=4

2=3 0 1=3 0 0

0 0 1=5 0 4=5

4=7 0 3=7 0 0

0 0 3=4 0 1=4

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

2=5 0 0 2=5 1=5

4=5 0 1=5 0 0

0 0 2=3 0 1=3

5=6 0 1=6 0 0

0 0 3=8 0 5=8

3

7

7

7

7

7

7

5

:

Let p = (2=7; 4=7; 1=7; 0; 0) and q = (1=5; 1=5; 3=5; 0; 0) be two

possible initial distributions under p

(n)

and q

(n)

, respe
tively.

In 
anoni
al form, P and Q 
an be rewritten as

P =

2

6

6

6

6

6

6

4

1=5 4=5 0 0 0

3=4 1=4 0 0 0

0 1=4 1=4 1=2 0

3=7 0 4=7 0 0

1=3 0 2=3 0 0

3

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

4

2=3 1=3 0 0 0

3=8 5=8 0 0 0

0 1=5 2=5 2=5 0

1=6 0 5=6 0 0

1=5 0 4=5 0 0

3

7

7

7

7

7

7

5

;

simply by permuting the se
ond and �fth rows (
olumns)

and the �rst and third rows (
olumns). Note that P has 1

essential 
lass, 1 inessential self-
ommuni
ating 
lass and 1

inessential non self-
ommuni
ating 
lass. A

ordingly, the ini-

tial distributions are rewritten as p = (1=7; 0; 2=7; 0; 4=7) and

q = (3=5; 0; 1=5; 0; 1=5), after permuting the �rst and third

indi
es and the se
ond and �fth indi
es. We obtain the fol-

lowing.

n

1

n

D(p

(n)

kq

(n)

)

10 0.3473

50 0.3671

100 0.3698

By Theorem 2, the Kullba
k-Leibler divergen
e rate is equal

to 0.3725. Clearly, as n gets large

1

n

D(p

(n)

kq

(n)

) is 
loser to

the Kullba
k-leibler divergen
e rate.

Example 2: Suppose that the Markov sour
e is of order 2

under p

(n)

and q

(n)

respe
tively. Let fW

1

;W

2

; : : :g be the

pro
ess obtained by 2-step blo
king the Markov sour
e. Let

P and Q be two possible transition matri
es for fW

1

;W

2

; : : :g

de�ned as follows:

P =

2

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

5

;

and

Q =

2

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

5

;

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote

two possible initial distributions of W

1

under p

(n)

and q

(n)

respe
tively. The set of indi
es f1; 2; 3g forms an essential


lass, while the singleton set f4g forms a self-
ommuni
ating

non-essential 
lass. Hen
e, P and Q are not irredu
ible. We

obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277

By Theorem 2, the Kullba
k-Leibler divergen
e rate is equal

to .3301. Clearly, as n gets large

1

n

D(p

(n)

kq

(n)

) is 
loser to

the Kullba
k-leibler divergen
e rate.

Example 3: Consider the Markov sour
e under p

(n)

as in

Example 1. We obtain the following.

n

1

n

H(p

(n)

)

10 0.5437

50 0.5088

100 0.5044

By Corollary 3, the Shannon entropy rate is equal to 0.5001.

Clearly, as n gets large

1

n

H(p

(n)

) is 
loser to the Shannon

entropy rate.

Example 4: Consider the following se
ond order Markov

sour
e with probability transition matrix

P

2

6

6

6

4

1=3 2=3 0 0

0 0 1 0

1=2 1=2 0 0

0 0 1=4 3=4

3

7

7

7

5

;



and initial distribution p = (1=5; 2=5; 0; 2=5). The set of in-

di
es f1; 2; 3g forms an essential 
lass, while the singleton set

f4g forms a self-
ommuni
ating non-essential 
lass. Hen
e, P

is not irredu
ible. We obtain the following.

n

1

n

H(p

(n)

)

10 0.4641

50 0.4339

100 0.4298

By Corollary 3, the Shannon entropy rate is equal to 0.4256.

Clearly, as n gets large

1

n

H(p

(n)

) is 
loser to the Shannon

entropy rate.

VI. Con
lusion and Future work

In this work, we derived a formula for the Kullba
k-Leibler

divergen
e rate between two time-invariant �nite-alphabet ar-

bitrary Markov sour
es (not ne
essarily, irredu
ible, station-

ary, et
.). We illustrated numeri
ally and investigated its rate

of 
onvergen
e. Finally, we examined the 
omputation and

the existen
e of the Shannon entropy rate for Markov sour
es

and investigated its rate of 
onvergen
e. A possible future di-

re
tion is the investigation of the results for Hidden Markov

sour
es and for more general sour
es with memory su
h as

stationary ergodi
 sour
es.
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