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ABSTRACT

We introduce a novel class of nonlinear stochastic �lters

based on contagion urn schemes. These �lters which

rely on biologically inspired sampling processes, o�er

good restoration results on heavily corrupted binary

images.

1. INTRODUCTION

We present a new approach to binary image �ltering

using contagion urn schemes. Techniques modeling im-

ages as Markov random �elds (MRF) have been exten-

sively investigated in the past [1, 2]. MRF's appro-

priately represent spatial dependencies and the MRF-

Gibbs equivalence allows for the computation of the

maximum a posteriori (MAP) estimate of the original

image [1]. This approach su�ers nevertheless from var-

ious drawbacks among which are the di�culty in esti-

mating the model parameters and the necessity to solve

non-convex optimization problems.

In this work, we turn to a nonlinear �ltering pro-

cedure that preserves key features of the Gibbs sam-

pling process but is driven instead by urn schemes that

models the development of an infectious disease. Urn

sampling schemes are of interest since they may be

used to model Markov chains and also MRF's [3]. Fur-

thermore, contagion urn schemes can be employed to

generate what could be described as \`autocatalytic"

processes [4]: they constitute positive-feedback systems

that yield limiting patterns of the self-reinforcing type.

2. CONTAGION URN SCHEMES

In 1923, Polya and Eggenberger [5] introduced the fol-

lowing urn scheme as a model for the spread of a conta-

gious disease through a population. An urn originally

contains T balls, of whichW are white and B are black

(T = W +B). We make successive draws from the urn;

after each draw, we return to the urn 1 + � balls of

the same color as was just drawn, where � > 0. Let

� = W=T and � = �=T . De�ne the binary process

fZ

n

g

1

n=1

as follows:

Z

n

=

�

1; if the n

th

ball drawn is white;

0; if the n

th

ball drawn is black.

It can be shown that the process fZ

n

g is stationary and

non-ergodic [6, 7]. The urn scheme has in�nite memory,

in the sense that the very �rst ball drawn from the urn

and the 999,999th ball drawn from the urn have an

identical e�ect on the outcome of the millionth draw.

Alternatively, in [8], a �nite-memory version of the

Polya urn scheme is proposed in which the e�ects of

the \disease" fade in time. As before, consider an urn

with T balls, of which W are white and B are black.

At the j'th draw, j = 1; 2; : : :; we select a ball from

the urn and replace it with 1 + � balls of the same

color (� > 0); then, M draws later (M > 0) - after

the (j +M )'th draw - we retrieve from the urn � balls

of the color picked at time j. With this modi�cation

of the original Polya urn scheme, the total number of

balls in the urn is constant (T + M� balls) after an

initializationperiod ofM draws. It also limits the e�ect

of any draw to M draws in the future. In this case,

it can be shown that the process fZ

n

g is a stationary

ergodic Markov process of order M [8]. We will refer to

the above two schemes as the Polya scheme of memory

M : letting M !1 yields the original Polya model; if

0 < M <1, we get the �nite-memory urn model.

3. FILTERING BY CONTAGION

We propose an iterative �ltering scheme inspired by

the above urn sampling processes. Consider a binary

image I

n

= [p

(i;j)

n

] of size K�L, where p

(i;j)

n

2 f0; 1g is

the intensity of pixel (i; j) at iteration n, n = 0; 1; : : :,

(i; j) 2 I where I

4

= f(i; j) : i = 0; : : : ;K � 1; j =

0; : : : ; L�1g. We associate an urn u

(i;j)

n

4

= (B

(i;j)

n

;W

(i;j)

n

)

with each pixel (i; j) at time n, where B

(i;j)

n

and W

(i;j)

n

are respectively the number of black and white balls in

the urn. We allow for spatial interactions at each time



instant by associating the urns of the neighboring pix-

els in the determination of the new sampled intensity

value. Let I

0

be an image degraded by noise (at time

n = 0) that we wish to restore. We use the following

procedure.

1. Urn Initialization: For each pixel (i; j), the ini-

tial urn composition u

(i;j)

0

= (B

(i;j)

0

;W

(i;j)

0

) is ob-

tained by computing the relative frequencies of

white and black pixels in a spatial neighborhood

centered on (i; j).

2. Edge Detection: Horizontal (E

0;h

) and vertical

(E

0;v

) edge maps are derived from I

0

, of size

K�(L�1) and (K�1)�L, respectively. The hor-

izontal edge mapE

0;h

consists of an array of e

(r;s)

h

such that e

(r;s)

h

= 1 if an edge is detected between

neighboring elements p

(r;s)

0

and p

(r;s+1)

0

, and zero

otherwise, r = 0; : : : ;K � 1, s = 0; : : : ; L � 2.

The vertical edge map E

0;v

is de�ned similarly;

i.e., E

0;v

= [e

(l;m)

v

] such that e

(l;m)

v

= 1 if an edge

has been found between p

(l;m)

0

and p

(l+1;m)

0

, and

zero otherwise, l = 0; : : : ;K�2,m = 0; : : : ; L�1.

3. Iterative Image Sampling: For n > 0, �nd the

value of each pixel (i; j) by sampling from neigh-

boring urns V

(i;j)

n�1

with V

(i;j)

n�1

4

= fu

(r;s)

n�1

: (r; s) 2

N

(i;j)

d

g, where N

(i;j)

d

is the neighborhood set of

pixel (i; j) [1]: N

(i;j)

d

4

= f(r; s) 2 I : (i�r)

2

+(j�

s)

2

� dg. The sampling is performed according to

Polya's model of memoryM described earlier on

each neighboring urn and the outcomes of draws

from these urns are denoted by Z

(r;s)

n�1

; (r; s) 2

N

(i;j)

d

. The sampling from neighboring elements

is inhibited if an edge exists (in step 2) between

them. The new pixel con�guration [p

(i;j)

n

] is then

obtained by combining outcomes from the set of

participating urns Z

(i;j)

n�1

; i.e.,

Z

(i;j)

n�1

= fu

(r;s)

n�1

; (r; s) 2 N

(i;j)

d

^

(((r 6= i) =) (e

(r;s)

v

= 0)) _

((s 6= j) =) (e

(r;s)

h

= 0)))g:

(1)

Then

p

(i;j)

n

= select(Z

(i;j)

n�1

);

where the select operation is a generic operation

combining the various draws in Z

(i;j)

n�1

. A possi-

ble choice is to take a linear combination of these

draws with weights that represent the relative im-

portance of a given neighbor (in a fashion similar

to that of the way potentials of cliques are set in

MRF's). Alternatively, select can be chosen as

the mean or median operator.

4. Urn Updating: If p

(i;j)

n

= 1, add � white balls

to the urn; if it is zero, add � black balls to

the urn. In the case of the in�nite memory urn

scheme (original Polya scheme) , this yields a new

urn composition for each pixel as

u

(i;j)

n

:

(

W

(i;j)

n

= W

(i;j)

n�1

+ (p

(i;j)

n

) ��;

B

(i;j)

n

= B

(i;j)

n�1

+ (1� p

(i;j)

n

) ��:

In the case of �nite-memory urn scheme, we have

instead:

u

(i;j)

n

:

(

W

(i;j)

n

= W

(i;j)

n�1

+ (p

(i;j)

n

� p

(i;j)

n�M

) ��;

B

(i;j)

n

= B

(i;j)

n�1

+ (1� (p

(i;j)

n

� p

(i;j)

n�M

))��:

5. Let n = n + 1. If n � N , proceed to step 3;

otherwise, stop, where N is a prescribed number

of iterations.

4. STATISTICAL PROPERTIES

The resulting sequence of generated images exhibits

both spatial and temporal dependencies represented by

a Markovian relationship in terms of the urns u

(r;s)

n

,

more speci�cally:

Prfu

(i;j)

n

jU

n�1

; U

n�2

; : : : ; U

0

g = Prfu

(i;j)

n

jZ

(i;j)

n�1

g;

where U

n

4

= [u

(i;j)

n

] is the urn matrix associated with I

n

,

and Z

(i;j)

n�1

is the set of participating urns de�ned in the

previous section. Consider the in�nite memory Polya

scheme. The asymptotic properties of the joint distri-

bution can be characterized in the simple case d = 0;

i.e., when all spatial interactions are shut-o� at each

sampling step. In this case, as the number of draws

increases inde�nitely, the proportion of white balls in

each urn (or the sample average of Z

n

) converges with

probability one to Z [7]. This limiting proportion Z

is a continuous random variable with support the in-

terval (0; 1) and Beta probability density function with

parameters (�=�; (1� �)=�):

f

Z

(z) =

�(1=�)

�(�=�)�((1� �)=�)

z

�

�

�1

(1� z)

1��

�

�1

;

for 0 < z < 1; and zero otherwise. �(�) is the gamma

function, �(x) =

R

1

0

t

x�1

e

�t

dt for x > 0. The behavior

of this pdf is as follows: assuming � = 1 for simplicity,

if the original proportion of white balls in the urn is

close to one, then the limiting distribution of Z, will

be skewed towards 1. A similar behavior is obtained

for the case when � is close to zero. Therefore the

limiting pattern will reect the underlying probability

Pr(p

(i;j)

1

= x) = �

x

(1� �)

(1�x)

.



5. EXPERIMENTAL RESULTS

The above procedure was used to �lter images cor-

rupted by a combination of bursty and iid noise. The

iid additive noise process is a good model for transmis-

sion errors that arise in wireline communication sys-

tems, while the bursty noise process models transmis-

sion errors that occur in wireless communication chan-

nels (e.g., the digital cellular channel).

In our experiments, the select operator is chosen to

be the median �lter. An in�nite memory Polya urn

scheme is used, and a second order neighborhood is

assumed (d = 2). � is set to 20. Results of experiments

conducted on binary images of Lena (512 � 512) and

a headscan (512� 512) are displayed in Figure 2. The

original images are shown respectively in Figures 2.(a)

and 2.(g).

Lena is �rst corrupted by iid noise with bit error

rate of 0:20, as shown in Figure 2.(b). The edge map of

Figure 2.(b) is given in Figure 2.(d). The �ltered image

for N = 20 is shown in Figures 2.(c). The resulting

probability of error of the �ltered image is plotted as

a function of number of iterations N and is shown in

Figure 1. We can clearly remark that most of the gain

is achieved at N = 10.

Next, Lena is corrupted by a combination of iid

noise and bursty noise. The iid noise has a bit error

rate equal 0:1. The bursty noise process is a highly

correlated Markov process with a correlation parame-

ter of 0:91 and a 0:10 error rate. The overall bit er-

ror rate of the combined noise equals 0:18. The cor-

rupted image is shown in Figure 2.(e). The �ltered

image (for N = 20) shown in Figure 2.(f), yields a

probability of error of 0:054. For comparison, a me-

dian �lter iteratively applied for N = 10 times to the

noisy image yielded performance comparable to that

of the contagion �lter. This fact should be expected

since the select operator was chosen to be the median.

However, on closer inspection of the full size images,

we notice that the contagion �lter is more likely to

preserve details. For lack of space, these results are

not presented here. The reader is referred to the site

http://www.cfar.umd.edu/~burlina/polya.html.

Finally, we show the result of applying the conta-

gion �lter to the headscan image. An additive iid noise

with bit error rate 0:1 is used (Figure 2.(h)). The �l-

tered image (probability of error of 0:035) is shown in

Figure 2.(i) for N = 5. In sum, we conclude that the

contagion �ltering scheme o�ers good performance.

6. CONCLUSION

We have presented a nonlinear �ltering procedure in-

spired from contagion urn schemes. This has been ap-
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Figure 1: Pe. vs. time step N .

plied to the �ltering of heavily corrupted binary images.

Extensions to �ltering of grey level images as well as

applications to medical imaging are currently under in-

vestigation.
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(c) Restored from iid(b) Iid noise on Lena(a) Binary Lena

(e) Bursty + iid noise on Lena (f) Restored from bursty + iid noise(d) Edge Map of 2.(b)

(i) Restored from iid(h) Iid noise on headscan(g) Headscan

Figure 2: Restoration of images with a combination of iid and bursty noise using contagion urn schemes.


