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Abstract— We investigate infection-curing games on a net-
work epidemics model based on the classical Polya urn scheme
that accounts for spatial contagion among neighbouring nodes.
We first consider the zero-sum game between competing agents
using the cost measure for the average infection in the network.
Due to the complexity of this problem we define a game
on a proxy measure given by the so-called expected network
exposure, and prove the existence of a Nash equilibrium
that can be determined numerically using gradient descent
algorithms. Finally, a number of simulations are performed on
small test networks to provide empirical evidence that a Nash
equilibrium exists for games defined on the average network
infection.

Index Terms— Network epidemics, Polya contagion, Nash
equilibrium.

I. INTRODUCTION

The study of epidemics on networks is an active research
topic (e.g., see [1], [2], [3] and the references therein).
Real-life examples include the propagation of burst errors
in a wireless communication channel [4], of a biological
disease through a population [5], of malware in computer or
smartphone systems [6], and the dissemination of rumors [7]
and competing opinions [8] in social networks.

In this paper, we examine two player zero-sum games over
Polya contagion networks as introduced in [9], [10]. The
setup for this model is an adaptation of the classical Polya
contagion process [11], [12], [13] to allow for spatial inter-
actions between neighbouring nodes. This model is similar
to the well known class of Susceptible-Infected-Susceptible
(SIS) epidemics models [1]. Indeed in [10], it was empir-
ically shown that the network Polya contagion model can
mimic the behaviour of the SIS process. Furthermore, SIS
models have been studied in a game-theoretic context in [14],
[15] and references therein. We herein establish a similar
problem for the network Polya contagion model.

First, we define a two-player game on the average infection
rate for a connected network. This setup is an extension of
the contagion curing problem that was studied extensively
in [16]. In order to simplify the problem of finding optimal
control policies, we consider a game on the proxy measure
of the expected network exposure. We establish that the
expected network exposure is convex as a function of the
curing parameters and concave as a function of the infection
parameters. We prove that under budget constraints, there
exists a Nash equilibrium for the game on the expected
network exposure, which can be determined using gradient
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descent algorithms. Finally, we run a series of simulations
on small test networks, to provide empirical evidence that
a Nash equilibrium exists for the infection-curing game on
the average infection rate, and to support the claim that such
an equilibrium policy can be closely approximated using the
equilibrium policy for the expected network exposure.

The rest of the paper is organized as follows. Section II
familiarizes the reader with important preliminary material,
including a brief description of the classical Polya contagion
process as well as the network Polya contagion process.
Section III defines the two-player games that are studied
in this paper, and proves important convexity/concavity re-
sults as well as the existence of a Nash equilibrium for
the expected network exposure game. Section IV presents
illustrative simulation results. Finally, Section V concludes
the paper and highlights a few areas for potential future
research.

II. PRELIMINARIES

Let (Ω,F , P ) be a probability space. Consider the stochas-
tic process {Zn}∞n=1, where Zn = (Z1,n, . . . , ZN,n) is a
random vector on Ω. We represent by {Fn}∞n=1, the natural
filtration on the process {Zn}∞n=1. We write the sequence
(Zi,1, . . . , Zi,n) as Zn

i , and more generally we use the
notation Zt

i,s = (Zi,s, Zi,s+1, . . . , Zi,t), where 1 ≤ s < t ≤
n. Further clarification of standard probability concepts can
be found in various texts such as [17], [18].

A Nash equilibrium is a solution for a non-cooperative
multiplayer game from which no player may improve its
payoff by unilaterally changing its strategy [19], [20]. In
this paper, we consider games with deterministic (pure)
strategies. In the context of a two player zero-sum game,
denote by X and Y the set of allowable strategies for player
one and two, respectively. More precisely, consider the case
where player one receives a payoff f(x, y), with x ∈ X and
y ∈ Y strategies of player one and two, respectively. Then,
(x∗, y∗) ∈ X ×Y is a Nash equilibrium if ∀x ∈ X , ∀y ∈ Y:

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y).

A. Classical Polya Contagion Process

We recall the classical Polya contagion process [11], [12],
[13]. An urn contains R ∈ Z>0 red balls and B ∈ Z>0 black
balls. We use T = R+B to denote the total number of balls
in the urn. At each time, n, a ball is drawn from the urn and
returned with ∆ > 0 balls of the same colour. From an urn
sampling point of view the parameter ∆ is integer-valued;
however, we allow them to be real-valued for mathematical
convenience (e.g., when determining optimal policies). The
random variable Zn is used to indicate the colour of the ball



on the nth draw, where Zn = 1 if the drawn ball was red
and Zn = 0 if the drawn ball was black. We can then use
Un to denote the proportion of red balls in the urn after the
nth draw, where

Un :=
R+ ∆

∑n
t=1 Zt

T + n∆
=
ρc + δc

∑n
t=1 Zt

1 + nδc

where ρc = R
T is the initial proportion of red balls in the

urn and δc = ∆
T is a correlation parameter. The conditional

probability of drawing a red ball at time n , given the past
history of draws Zn−1 := (Z1, . . . , Zn−1), is given by

P (Zn = 1 | Zn−1) =
R+ ∆

∑n−1
t=1 Zt

T + (n− 1)∆
= Un−1.

B. Network Polya Contagion Process

We now review the network Polya contagion process
introduced in [9], [10]. Let G = (V, E) be a network, where
V = {1, . . . , N} is the set of N ∈ Z>0 nodes and E ⊂ V ×V
is the set of edges. Throughout, G is taken to be undirected,
and is assumed to be connected. The set of neighbours to
node i is given by Ni = {v ∈ V : (i, v) ∈ E}. We then
define N ′i = {i} ∪ Ni. Each node i ∈ V is assigned an
urn with Ri ∈ Z>0 red balls and Bi ∈ Z>0 black balls,
with the total number of balls at node i being denoted by
Ti = Ri +Bi.

We next introduce the concept of super urns for node i,
which contains the red and black balls at node i as well as
the red and black balls of each of its neighbouring nodes.
This concept is illustrated in Figure 1. For each node i ∈ V ,
we use R̄i =

∑
j∈N ′

i
Rj and B̄i =

∑
j∈N ′

i
Bj to denote the

number of red and black balls respectively in node i’s super
urn. The total number of balls in the ith super urn is given
by T̄i = R̄i + B̄i. Similar to the classical Polya process, a
draw is conducted for each node at each time, and then a
number of balls of the same colour is added to that node’s
individual urn. In this case, however, the draw is conducted
on the super urn of each node. As well, we may allow for
the number of added balls to vary based on which node the
draw was for, the colour of the draw, and the time at which
the draw occurred. Thus, for node i at time t, if a red ball
is drawn we add ∆r,i(t) red balls to node i’s individual urn
and if a black ball is drawn we add ∆b,i(t) black balls to
node i’s individual urn. We use an indicator, Zi,n to denote
the colour of the nth draw for node i, where Zi,n = 1 if the
draw was red and Zi,n = 0 if the draw was black. We refer
to {∆b,i(n)}∞n=1 as the curing parameters and {∆r,i(n)}∞n=1

as the infection parameters for node i.
For this process, we can represent the proportion of red

balls in node i after the nth draw by Ui,n, where

Ui,n =
Ri +

∑n
t=1 ∆r,i(t)Zi,t

Xi,n
.

Here

Xi,n = Ti +

n∑
t=1

∆r,i(t)Zi,t + ∆b,i(t)(1− Zi,t) (1)
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Fig. 1. Illustration of a super urn in a network.

represents the total number of balls in node i’s urn after the
nth draw. We represent the proportion of red balls in node
i’s super urn after the nth draw as Si,n, where

Si,n =
R̄i +

∑
j∈N ′

i

∑n
t=1 ∆r,j(t)Zj,t∑

j∈N ′
i
Xj,n

. (2)

We take Si,0 = R̄i

T̄i
, which is just the initial super urn

proportion of red balls for node i. We define

S̃n =
1

N

N∑
i=1

Si,n,

which we refer to as the network exposure.
The conditional probability of drawing a red ball for node

i at time n , given the past history of draws for all the nodes

{Zn−1
j }Nj=1 := {(Z1,1, . . . , Z1,n−1), . . . (ZN,1, . . . , ZN,n−1)},

is given by

P
(
Zi,n = 1|{Zn−1

j }Nj=1

)
=
R̄i +

∑
j∈N ′

i

∑n−1
t=1 ∆r,j(t)Zj,t∑

j∈N ′
i
Xj,n−1

= Si,n−1.

Finally, we refer to

Ĩn =
1

N

N∑
i=1

P (Zi,n = 1)

as the average infection rate.

III. GAME-THEORETIC SETUP

Previously, [16] has looked at the problem of minimizing
the limiting average infection rate subject to a budget B on
the curing parameters {∆b,i(n)}Ni=1 at each time step. In this
setup, B is fixed for each time step and all other values are
assumed to be given. We now consider a two player game,
where player one looks to minimize the average infection
rate, while player two looks to maximize this same value.
Player one controls the distribution of curing parameters in
accordance with a budget, Bb, while player two controls the
distribution of the infection parameters in accordance with a
budget, Br. In both cases the budget is fixed for all time steps,
and for any given time step the allocation of the budget is
performed prior to the draw. Thus, if either player allocates



resources to a node for which the opposite colour ball is
drawn, those resources will go to waste.

Formally, player one’s objective is as follows:

minimize
{{∆b,i(k)}Ni=1:

∑N
i=1 ∆b,i(k)=Bb},k=1,...,t

Ĩt, (3)

assuming the minimum exists, while player two’s objective
takes the form:

maximize
{{∆r,i(k)}Ni=1:

∑N
i=1 ∆r,i(k)=Br},k=1,...,t

Ĩt, (4)

assuming the maximum exists.
For a general network, finding an optimal control policy

for either player can be complicated, and the behaviour of
Ĩn is difficult to study. As discussed in [16], there is a strong
correlation between the behaviour of S̃n and Ĩn, and thus we
can simplify our problem by first considering a game on the
expected network exposure for a given time step, rather than
the limiting average infection rate.

We consider the expected network exposure E[S̃n|Fn−1]
as a two player zero-sum game, where player one looks to
minimize the expected network exposure over the curing pa-
rameters {∆b,i(n)}Ni=1 and player two looks to maximize the
same value over the infection parameters {∆r,i(n)}Ni=1. We
begin with an important result about the expected network
exposure:

Proposition 3.1: (Convexity-Concavity of Network Ex-
posure): Let G = (V, E) be a general network, and consider
the Polya network contagion model on G, with arbitrary
initial conditions. Then, the expected network exposure
E[S̃n|Fn−1] is convex with respect to the curing parameters
{∆b,i(n)}Ni=1 and concave with respect to the infection
parameters {∆r,i(n)}Ni=1, for all n.

Proof:
Using (1) and (2), we consider E[S̃n|Fn−1] as a function

of the vectors

x = (x1, . . . , xN )T = (∆b,1(n), . . . ,∆b,N (n))T

y = (y1, . . . , yN )T = (∆r,1(n), . . . ,∆r,N (n))T ,

by reformulating (2) as follows:

Si,n = fi,n(x,y, Zn) =
ci + δi(y, Zn)

ci + di + σi(x, Zn) + δi(y, Zn)
,

where

ci = R̄i +

n−1∑
t=1

∑
j∈N ′

i

∆r,j(t)Zj,t

di = B̄i +

n−1∑
t=1

∑
j∈N ′

i

∆b,j(t)(1− Zj,t)

δi(y, Zn) =
∑
j∈N ′

i

yjZj,n

σi(x, Zn) =
∑
j∈N ′

i

xj(1− Zj,n).

Alternatively, let A represent the adjacency matrix (in-
cluding self connections) for our given network G, where

Aij = 1 iff i ∈ N ′j , and Aij = 0, otherwise. Then construct
an N × N square matrix, D, where Dij = Aij(1 − Zj,n).
Letting Di represent the ith row of the matrix D, we get
σi(x, Zn) = Dix, where

Dix =
[
Ai1(1− Z1,n) · · · AiN (1− ZN,n)

] x1

...
xN

 .
Likewise, we can construct an N ×N square matrix, C,

where Cij = AijZj,n. Letting Ci represent the ith row of
the matrix C, we get the following:

δi(y, Zn) = Ciy =
[
Ai1Z1,n · · · AiNZN,n

]  y1

...
yN

 .
Allowing us to alternatively write

fi,n(x,y, Zn) =
ci + Ciy

ci + di + Ciy +Dix
,

noting of course that the matrices C and D are functions of
Zn.

Taking the expectation of Si,n given the history of the
contagion process up to time n− 1 we get

E[Si,n|Fn−1] = E[fi,n(x,y, Zn)|Fn−1]

=
∑

zn∈{0,1}N
fi,n(x,y, zn)P (Zn = zn|Zn−1).

(5)

We can note that P (Zn = zn|Zn−1) is independent
of our choice of x, and for any fixed realization Zn =
(z1,n, . . . , zN,n) ∈ {0, 1}N , fi,n(x,y, zn) is convex in x
over RN

≥0. Hence, it follows that E[Si,n|Fn−1] is convex in
x over RN

≥0, and thus so too is E[S̃n|Fn−1]. Concavity in y
follows from a symmetry argument wherein we note

1− fi,n(x,y, Zn) =
di +Dix

ci + di + Ciy +Dix

is convex in y, thus showing fi,n(x,y, Zn) is concave in y.
The rest of the proof follows as in the convexity argument
for x.

The natural symmetry of this model makes this result
rather intuitive, and allows for us to establish a nice
setup for the game theoretic problem. We have proven
that E[S̃n|Fn−1] is convex in x and concave in y over
RN
≥0 × RN

≥0. In order to get a better understanding of this
function, we consider the partial derivatives with respect to
x and y. We note that

∇xfi,n(x,y, zn) =
−∇xDix(ci + Ciy)

(ci + di + Ciy +Dix)2

∇yfi,n(x,y, zn) =
∇yCiy(di +Dix)

(ci + di + Ciy +Dix)2
,

and furthermore

∂

∂xj
Dix = Aij(1− zj,n)



∂

∂yj
Ciy = Aijzj,n.

Since Aij and zj,n can only take values in {0, 1}, we get
that ∂

∂xj
fi,n(x,y, zn) ≤ 0 and ∂

∂yj
fi,n(x,y, zn) ≥ 0. Using

this fact in conjunction with equation (5) we determine that
over the space X × Y = RN

≥0 × RN
≥0, E[S̃n|Fn−1] has no

saddle point. This lack of saddle point is demonstrated in
Figure 2, which depicts the shape of E[S̃n|Fn−1] for a single
node network. However, given our fixed allocation budgets
Bb and Br, we restrict ourselves to considering sets of the
form X × Y = {{∆b,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆b,i(n) ≤
Bb} × {{∆r,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆r,i(n) ≤ Br}.

Fig. 2. Sample plot of E[S̃n|Fn−1] for a single node network. A saddle
point will not exist over RN

≥0 × RN
≥0 regardless of the network structure.

Returning to our game over the expected network ex-
posure, we can then note that for any given n, the sets
X = {{∆b,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆b,i(n) ≤ Bb} and
Y = {{∆r,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆r,i(n) ≤ Br} are
convex and compact. This gives rise to the following result:

Theorem 3.2: (Nash Equilibrium for Network Expo-
sure): Let G = (V, E) be a general network equipped with
the Polya network contagion model, with arbitrary initial
conditions. For a given time n, consider a two-player zero-
sum game where player one tries to minimize E[S̃n|Fn−1]
over the parameters {∆b,i(n)}Ni=1 and player two tries to
maximize E[S̃n|Fn−1] over the parameters {∆r,i(n)}Ni=1.
Then, if we take our set of allowable policies to be of the
form X × Y = {{∆b,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆b,i(n) ≤
Bb} × {{∆r,i(n)}Ni=1 ∈ RN

≥0|
∑N

i=1 ∆r,i(n) ≤ Br}, the
resulting game admits a Nash equilibrium. Moreover, the
equilibrium policy will satisfy

∑N
i=1 ∆b,i(n) = Bb and∑N

i=1 ∆r,i(n) = Br.
Proof: Since the function is convex-concave and over

a compact set, the existence follows from the classical
minimax theorem, see [21]. By the definition of E[S̃n|Fn−1],
and since the function has no saddle point in the interior of
its domain, the optimal policy will utilize the full budget.

The equilibrium policy from Theorem 3.2 can be deter-
mined numerically using gradient descent algorithms [22]

(as we are optimizing a convex/concave function over a
simplex), but for large networks such algorithms can be
computationally expensive.

IV. SIMULATIONS

We have proven that there exists a Nash equilibrium when
we consider the two player infection-curing game for the
expected network exposure E[S̃n|Fn−1]. This however, does
not guarantee that the same holds true when considering a
similar setup for the average infection rate as in (3) and (4).
We need to check first of all, that we can find policies
for each player that mimic the behaviour of a hypothetical
equilibrium policy. As well, we want to see if the optimal
policies for the network exposure provide a good estimation
for our hypothetical equilibrium policy.

We consider three basic networks, as depicted in Fig-
ures 3(a), 3(b), and 3(c). Each network is assigned a uniform
initial distribution for both red and black balls. A fixed
budget of Bb = Br is given for both players at each
time step. At any given time, the optimal policy for the
infection-curing game over the expected network exposure
is calculated for both the curing and infection parameters.
The first set of simulations uses this optimal policy for both
players. In the second set of simulations only the curing
parameters are assigned using this optimal policy, while the
infection parameters are distributed uniformly. In the final set
of simulations, the infection parameteres are assigned using
the optimal policy, while the curing parameters are uniformly
distributed. At each time n, the draw values {Zi,n}Ni=1 are
averaged over 1000 trials, and then averaged over all nodes
to obtain the empirical average infection rate Ĩn. The plots
in Figure 3 display the resulting output for each network
plotted against time.

For all three networks, we observe that case 3 generally
leads to the highest average infection rate and case 2 results
in the lowest average infection rate. While we do not know
what the optimal policy for either player would be in the
case of Ĩn, we can see that the behaviour observed suggests
that a Nash equilibrium exists. This is less obvious when
we consider the network in Figure 3(c). For this network, it
makes sense that a hypothetically optimal policy would be
close to uniform, and so we observe less distinct separation
between each of the cases in Figure 3(f) as compared to
Figure 3(d) and Figure 3(e). The results in Figure 3(f) do
not, however, preclude the possibility that there exists an
equilibrium policy for both players.

In general, the results support the notion that a Nash
equilibrium exists for the game over the average network
infection, Ĩn, and that using the solutions obtained from the
gradient descent over the expected network exposure may
provide a good estimation as to what such an equilibrium
policy may look like. However, the desire to guarantee such
claims necessitates further follow up, as these simulations
provide only a narrow view.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we explored two player zero-sum games
over Polya contagion networks, verifying analytically the



(a) Seven node line network. (b) Six node star network. (c) Six node circular network.

(d) Plot of empirical average infection rate Ĩn for line network depicted
in Figure 3(a).

(e) Plot of empirical average infection rate Ĩn for star network depicted
in Figure 3(b).

(f) Plot of empirical average infection rate Ĩn for circular network
depicted in Figure 3(c).

Fig. 3. Comparison of simulation results for three test networks. Three cases were compared over each network. Case one used the equilibrium policies
for the infection-curing game on the expected network exposure. These policies were obtained through gradient descent algorithms [22]. Case two used
a uniform distribution for only the infection parameters. Case three used a uniform distribution for only the curing parameters. All simulations were
performed with a uniform initial distribution of 10 red and black balls per node. A budget of Br = Bb = 10N was used in all cases, where N is the
number of nodes in the network.

existence of a Nash equilibrium for an infection-curing game
on the expected network exposure, and providing empirical
evidence to support the existence of an equilbrium point for
the infection-curing game on the average network infection.
Future work may further investigate the existence of such
an equilibrium point. Considering variations of this problem
may also be of interest; for example, it may be useful to
explore the infection-curing game under the restriction that
only a single node be provided resources, or to consider the
case where the underlying ball distribution is unknown to the
participating players. Such problems could be considered for
both the expected network exposure and average infection
rates. The infection-curing game on the average infection
rate can also be further broken down into exploring both
finite and infinite horizon cases.
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competitive viruses over static and time-varying networks,” in 2017
American Control Conference (ACC), pp. 1685–1690, May 2017.

[16] M. Hayhoe, F. Alajaji, and B. Gharesifard, “Curing with the network
Polya contagion model,” Proc. 2017 American Cont. Conf., 2018.
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