
On the Joint Source-Channel Coding Error
Exponent for Systems with Memory

Yangfan Zhong
Dept. of Mathematics & Statistics

Queen’s University
Kingston, ON K7L 3N6, Canada.
Email: yangfan@mast.queensu.ca

Fady Alajaji
Dept. of Mathematics & Statistics

Queen’s University
Kingston, ON K7L 3N6, Canada.
Email: fady@mast.queensu.ca

L. Lorne Campbell
Dept. of Mathematics & Statistics

Queen’s University
Kingston, ON K7L 3N6, Canada.
Email: campblll@mast.queensu.ca

Abstract—We establish an upper bound for the joint source-
channel coding (JSCC) error exponent for a discrete
stationary ergodic Markov (SEM) source and a discrete
channel with additive SEM noise. This bound, which is
expressed in terms of the Rényi entropy rates of the source
and noise processes, admits an identical form to Csiszár’s
sphere-packing upper bound for the JSCC error exponent for
memoryless systems [3]. In this regard, our result is a natural
extension of Csiszár’s upper bound of the JSCC error exponent
from the case of memoryless systems to the case of SEM systems.
We also investigate the analytical computation of
by comparing our bound with Gallager’s random-coding lower
bound [5], when the latter one is specialized to the SEM source-
channel system.

I. INTRODUCTION
The lossless joint source-channel coding (JSCC) error expo-

nent , for a discrete memoryless source (DMS)
and a discrete memoryless channel (DMC) was thoroughly
studied in [3]-[5], [13]-[15]. In [3], [4], Csiszár establishes two
lower bounds and an upper bound for based on the
random-coding and expurgated lower bounds and the sphere-
packing upper bound for the DMC error exponent. In [13]-
[15], we investigate the analytical computation of Csiszár’s
lower and upper bounds for , and provide equivalent
expressions for these bounds. As a result, we are able to
systematically compare the JSCC error exponent with the
traditional tandem coding error exponent , the ex-
ponent resulting from separately performing and concatenating
optimal source and channel coding. We show that JSCC can
double the error exponent vis-a-vis tandem coding by proving
that and give the condition for
equality. Our numerical results also indicate that
can be nearly twice as large as for many DMS-
DMC pairs, hence illustrating the substantial gain that JSCC
can achieve over tandem coding. It is also shown in [15] that
this gain translates into a power saving larger than 2 dB for
binary DMS sent over binary-input white Gaussian noise and
Rayleigh-fading channels with finite output quantization.
As most real-world data sources (e.g., multimedia sources)

and communication channels (e.g., wireless channels) exhibit
statistical dependency or memory, it is of natural interest to
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study the JSCC error exponent for systems with memory.
Furthermore, the determination of the JSCC error exponent
(or its bounds), particularly in terms of computable paramet-
ric expressions, may lead to the identification of important
information-theoretic design criteria for the construction of
powerful JSCC techniques that fully exploit the source-channel
memory. In this paper, we investigate the JSCC error exponent
for a communication system with memory. Specifically, we es-
tablish an upper bound for for a system consisting
of a stationary ergodic (irreducible) Markov (SEM) source
and a channel with additive SEM noise (for the sake of
brevity, we hereafter refer to this channel as the SEM channel
). Note that Markov sources are widely used to model

realistic data sources, and SEM channels can approximate
well discretized fading channels with memory (e.g., see [12]).
The proof of the bound, which follows the standard lower
bounding technique of [1] for the average probability of error,
is based on the judicious construction from the original SEM
source-channel pair ( , ) of an artificial1 Markov source

and an artificial channel with additive Markov noise
, where is a parameter to be optimized, such that

the stationarity and ergodicity properties are retained by
and . The proof then employs the strong converse
JSCC Theorem for ergodic sources and channels with ergodic
additive noise and the fact that the normalized log-likelihood
ratio between -tuples of two SEM sources asymptotically
converges (as ) to their Kullback-Leibler divergence
rate. To the best of our knowledge, this upper bound, which is
expressed in terms of the Rényi entropy rates of the source and
noise processes, is new and the analytical computation of the
JSCC error exponent for systems with Markovian memory has
not been addressed before. The bound is also shown to admit
an equivalent representation to Csiszár’s sphere-packing upper
bound for the case of DMS-DMC pairs [3]. In this regard, our
result is a natural extension of Csiszár’s upper bound from the
case of memoryless systems to the case of SEM systems.
We next examine Gallager’s lower bound for

[5, Problem 5.16] (which is valid for arbitrary source-channel

1The notion of artificial (or auxiliary) Markov sources is herein adopted
from [10], where Vašek employed it to study the source coding error exponent
for ergodic Markov sources.



pairs with memory), when specialized to the SEM source-
channel system. By comparing our upper bound with Gal-
lager’s random-coding lower bound, we provide the condi-
tion under which they coincide, hence exactly determining

. We note that this condition holds for a large class
of SEM source-channel pairs.

II. PRELIMINARIES
Definition 1: A joint source-channel code with blocklength
for a discrete source with finite alphabet described by the

sequence of -dimensional distributions
and a discrete channel described by the sequence

of -dimensional transition distributions
with common input and output alphabets

is a pair of mappings:
and
In this paper, we confine our attention to discrete channels

with (modulo ) additive noise of -dimensional distribution
. The channels are described by

where , and are the output, input and noise symbols
at time , and is independent
of , . For the sake of convenience, we will
use throughout and to stand for modulo- addition and
modulo- subtraction, respectively.
Denote the transmitted source message by s ,

the corresponding -length codeword by s x
and the received codeword at the chan-

nel output by y . Then the probability
of receiving y under the conditions that the message s is
transmitted (i.e., the input codeword is s x) is given
by y s y s y x y x x

z , where the last equality follows by the independence
of input codeword x and the additive noise z y x.
The decoding operation is the rule decoding on a set of
nonintersecting sets of output words s such that s s
. If y s , then we conclude that the source s has

been transmitted. If the source s has been transmitted, the
conditional error probability in decoding is given by y
s s y s s , where s s, and the

average probability of error of the code ( ) is

s
s
y s

y s

Since source symbols are mapped to channel symbols,
source symbols/channel use is called the code’s

transmission rate, which is assumed to be independent of .
Definition 2: The JSCC error exponent for

source and channel is defined as the largest number
for which there exists a sequence of joint source-channel

codes with

A lower bound for for arbitrary discrete source-
channel pairs with memory was already obtained by Gallager
[5]. In this work, we establish an upper bound for
for an SEM source and an SEM channel. For a discrete source
, its entropy rate is defined by

where is the Shannon entropy rate of ;
admits an operational meaning (in the sense of the lossless
fixed length source coding theorem) if is information stable
[6]. The source Rényi entropy rate of order ( ) is
defined by

where

s

s

is the Rényi entropy, and the special case of should be
interpreted as

s

s

The channel capacity for any discrete (information stable [6],
[11]) channel is given by

where denotes mutual information. If the channel
is an additive noise channel with noise process , then

, where is the noise
entropy rate.

III. MARKOV AND ARTIFICIAL MARKOV SOURCES
Without loss of generality, we only deal with first-order

Markov sources since any -th order Markov source can be
converted to a first-order Markov source by -step blocking it.
For the sake of convenience (since we will apply the following
results to both the SEM source and the SEM channel), we
use, throughout this section, to denote a
first-order SEM source with finite alphabet ,
initial distribution , and transition
distribution , , so that
the -tuple probability is given by

Denote the transition matrix by , we then
set for any , which is
nonnegative and irreducible. The Perron-Frobenius Theorem
[9] asserts that the matrix possesses a maximal positive
eigenvalue with positive (right) eigenvector v

such that . As in [10], we
define the artificial Markov source



with respect to the original source such that the transition
matrix is , where

(1)

(It can be easily verified that .) We emphasize
that the artificial source retains the stochastic characteristics
(ergodicity) of the original source because if and
only if , and clearly, for all , the -th marginal of
is absolutely continuous with respect to the -th marginal of
. The entropy rate of the artificial Markov process is hence

given by

where is the stationary
distribution of the stochastic matrix . We call the artificial
Markov source with initial distribution the artificial SEM
source. It is known [10, Lemmas 2.1-2.4] that is a
continuous and decreasing function of . To compare

with the entropy of the DMS with uniform distribution
, we have the following lemma.

Lemma 1: with equality if and only if
, i.e., for all .

Lemma 2: For an SEM source and the artificial SEM
source ,

almost surely under as .
The proof of Lemma 2 follows by the definition of artificial

SEM sources and the fact that the normalized log-likelihood
ratio between -tuples of two SEM processes converges as

to their Kullback-Leibler divergence rate (by the
Ergodic Theorem [2]).
Lemma 3: [8], [10] For an SEM source and any ,

we have

and

IV. BOUNDS FOR
We first derive an upper bound for for an SEM

source-channel pair by employing a strong converse JSCC
theorem for ergodic sources and channels with ergodic additive
noise (Theorem 1) and Lemma 2.
Theorem 1: (Strong converse JSCC Theorem) For a source
and a channel with additive noise such that and
are ergodic processes, if

, then .
Theorem 1 is proved via a lower bounding technique [1]

on the probability of error and the well known Shannon-
McMillan-Breiman Theorem for ergodic processes [2].

Theorem 2: For an SEM source and a discrete channel
with additive SEM noise such that
, the JSCC error exponent satisfies

(2)

Remark: Using the first identity of Lemma 3, the upper
bound can be equivalently represented as

where and are the Rényi entropy rates
of and , respectively.
Sketch of Proof of Theorem 2: We introduce an auxiliary

function

which is continuous and increasing in . We assume that

such that

is finite; otherwise the upper bound is trivial. Noting that
provided that , we conclude

that there must exist some such that
, where is small enough. For the SEM source

, we introduce an artificial SEM source (as described
in Section III) such that . For the SEM
channel , we introduce an artificial additive channel for
which the corresponding SEM noise is .
Based on the construction of the artificial SEM source-

channel pair ( ), we define for some ( ) the
set

s y y s s
y s s

s

We then have a lower bound for the average probability of
error

s
s
y s s

y s

s
s y s s s (3)



where the last sum can be lower bounded as follows

s
s y s s s

s
s y s s

s
s y s s (4)

We point out that the first sum in the right hand side (RHS) of
(4) is exactly the error probability of the joint source-channel
system consisting of the artificial SEM source and the
artificial SEM channel . Since by definition ,
which implies

then applying the strong converse JSCC Theorem (Theorem
1) to and , the first sum in the RHS of (4) converges
to 1 as goes to infinity. On the other hand, according to
Lemma 2, it can be shown that the second sum in the RHS of
(4) vanishes as goes to infinity. On account of these facts
along with (3), and noting that and are arbitrary, we obtain
that

Finally, replacing by in the above RHS term and
taking the maximum over complete the proof.
We next introduce Gallager’s random-coding lower bound

for , and specialize it for SEM source-channel pairs
by using Lemma 3.
Proposition 1: [5, Problem 5.16] The JSCC error exponent

for a discrete source and a discrete channel
with transmission rate admits the following lower bound

(5)

where , in which

s
s (6)

is Gallager’s source function for and

(7)

with

y x
x y x

is Gallager’s channel function for .
The proof of Proposition 1 follows from the random-coding

argument [5], and we thereby call this bound the random-
coding lower bound for . We remark that this bound
is suitable for arbitrary discrete source and channel pairs with
memory. It can be seen that the function is concave over

since and are both concave functions
of . It can also be easily verified that and

(8)

where is the entropy rate of and is the channel
capacity of . This implies that Gallager’s random-coding
lower bound given in (5) is positive if for
arbitrary source-channel pairs. Particularly, when the channel
is symmetric (in the Gallager sense [5]), which directly applies
to channels with additive noise, the maximum in (7) is
achieved by the uniform distribution: x for
all x . Thus for our (modulo ) additive noise channels,

reduces to

z
z

Consequently, it follows by Lemma 3 that for our SEM source-
channel pair,

(9)

Note that for an SEM source-channel pair ( ), the lower
bound (9) is positive if and only if since
the limsup and liminf in (6) and (7) become limits and equality
holds in (8).
Comparing (9) and (2), we obtain the following results

regarding the computation of .
Theorem 3: For an SEM source and an SEM channel
with noise such that ,

is positive and determined exactly by

if , where satisfies the equation

Otherwise (if ), the following bounds hold

and

Remark: For a source-channel pair ( , ) with
, .

To illustrate Theorem 3, we consider the simple example
of a binary SEM source and a binary SEM channel
with transmission rate , both with symmetric transition
matrices given by

and



Fig. 1. Binary SEM source and binary SEM channel.

such that . The upper and lower bounds for
are plotted as a function of parameters and in

Fig. 1. We note that for this source-channel pair, the bounds
are tight for a large class of pairs. Only when or is
extremely close to 0 or 1, is not exactly known.
One may next ask if the lower and upper bounds for

SEM source-channel pairs enjoy a form that is similar to
Csiszár’s bounds for DMS-DMC pairs, which are expressed
as the minimum of the sum of the source error exponent and
the lower/upper bound of the channel error exponent. The
answer is indeed affirmative. To elucidate this point, let us
first introduce the following quantities for a discrete source-
channel pair ( , ).

where denotes the Kullback-Leibler divergence,

and

where and denotes the
conditional divergence given .
Theorem 4: The following equivalent representations hold

(10)

(11)

The proof of (10) and (11) is based on the Fenchel-Legendre
Duality Theorem [7], [15]. We remark that Theorem 4 applies
to any discrete source-channel pairs. When the source and
channel are discrete memoryless, the left hand sides of
(10) and (11) reduce to Csiszár’s lower and upper bounds for

[3]. For the SEM source and the SEM channel
, we note that the lower bound (9) and the upper bound (2)

are exactly the same as the right hand sides of (10) and (11),
respectively.

V. CONCLUSION
In this work, we establish the sphere-packing upper bound

for the JSCC error exponent of SEM source-
channel systems. We also examine Gallager’s random-coding
lower bound for for the same systems. We
hence are able to investigate the analytical computation of

for a large class of SEM source-channel pairs.
In [16], we apply these results to study the advantages of
JSCC over traditional tandem coding by providing a systematic
comparison of with the tandem coding exponent

for systems with Markovian memory. We obtain
sufficient conditions for which ,
which are satisfied by many SEM source-channel pairs. Fi-
nally, note that our results directly carry over for SEM source-
channel pairs of arbitrary Markovian order.
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