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Divergence

Ananya Omanwar, Fady Alajaji, Tamás Linder
Department of Mathematics and Statistics

Queen’s University
Kingston, ON, Canada

{a.omanwar,fa,tamas.linder}@queensu.ca

Abstract—Given finite dimensional random vectors Y , X and
Z that form a Markov chain in that order (Y → X → Z), we
derive Rényi divergence based upper bounds for excess minimum
risk, where Y is a (target) vector that is to be estimated from
an observed (feature) vector X or its (stochastically) degraded
version Z. We define the excess minimum risk as the difference
between the minimum expected loss in estimating Y from X
and the minimum expected loss in estimating Y from Z. We
obtain a family of bounds which generalize the bounds developed
by Györfi et al. (2023) expressed in terms of Shannon’s mutual
information. Our bounds are similar to the bounds by Modak et
al. (2021) obtained in the context of the generalization error of
learning algorithms, but unlike the latter they do not involve fixed
sub-Gaussian parameters and therefore hold for more general
joint distributions of Y , X , and Z. We also provide an example
with Bernoulli random variables where Rényi’s divergence based
upper bound are tighter than mutual information bounds.

I. INTRODUCTION

The excess minimum risk in statistical inference quantifies
the difference between the minimum expected loss attained
by estimating a (target) hidden random vector from a feature
(observed) random vector and the minimum expected loss
incurred by estimating the hidden vector from a stochastically
degraded version of the feature vector. The aim of this work is
to derive upper bounds on the excess minimum risk in terms
of the Rényi divergence measure [1].

Recently, several bounds of this nature expressed in terms of
information theoretic measures have appeared in the literature,
including among others [2]–[13]. Most of these works have
focused on the (expected) generalization error of learning
algorithms. In [2], Xu and Raginsky establish bounds on the
generalization error in terms of Shannon’s mutual informa-
tion between the (input) training data set and the (output)
hypothesis; these bounds are tightened in [3] using the mutual
information between individual data samples (instead of the
entire data set) and the hypothesis. In [7], Modak et al. extend
the later works, obtaining upper bounds on the generalization
error in terms of the Rényi divergence by employing the
variational characterization of the Rényi divergence [14]–
[16]. The authors also derive bounds on the probability of
generalization error via Rényi’s divergence, which recover the
bounds of Esposito et al. in [5] (see also [4], [6] for bounds
expressed in terms of the f -divergence [17]). More recently,
Aminian et al. [13] obtained a family of bounds on the

generalization error that are applicable to supervised learning
settings using a so-called “auxiliary distribution method.” In
particular, they obtain new bounds based on the α-Jensen-
Shannon and the α-Rényi mutual informations. Here both
mutual information measures are defined via a divergence
between a joint distribution and a product of its marginals: the
former using the Jensen-Shannon divergence of weight α [18,
Eq. (4.1)] (which is always finite), while the later using the
Rényi divergence of order α. Other work on the analysis of
the generalization error include [8], [19] for deep learning
generative adversarial networks [20] and [12] for the Gibbs
algorithm (see also the extensive lists of references therein).

In this work, we focus on the excess minimum risk in
statistical inference. Our motivation is to generalize the work
of Györfi et al. [10], where mutual information based upper
bounds on the minimum excess risk were derived that hold
for a larger class of loss functions satisfying some (standard)
sub-Gaussianity conditions. Prior related (but different) work
on information-theoretic bounds on excess risk include [9]
and [11], where the bounds are developed in a Bayesian
learning framework (involving training data). Using Rényi’s
divergence, we herein extend the bound in [10] by providing
a family of bounds (parameterized by the Rényi order). We
adopt a similar approach to [7] by leveraging the variational
representation of the Rényi divergence. However unlike the
bounds in [7] (and other generalization error bounds in the
literature including [13]) where the sub-Gaussian parameter
is a constant, our bounds are expressed in terms of a sub-
Gaussian parameter that is dependent on the (target) estimated
vector; as a result, our bounds are valid for more general joint
distributions of the involved random vectors.

This paper is organized as follows. In Section II, we provide
preliminary definitions and introduce the statistical inference
problem. In Section III, we prove a family of upper bounds
on the excess minimum risk in terms of the Rényi divergence
of order α ∈ (0, 1). We also present an example involving
two concatenated binary symmetric channels (BSCs) which
numerically shows that the derived Rényi divergence based
bounds perform better than the mutual information bound
for a certain range of α values. In Section IV, we provide
concluding remarks and point out directions for future work.



II. PROBLEM SETUP

Consider a random vector Y ∈ Rp, p ≥ 1, that is to be
estimated (predicted) from a random observation vector X
taking values in Rq , q ≥ 1. Given a measurable estimator (pre-
dictor) f : Rq → Rp and a loss function l : Rp × Rp → R+,
the loss (risk) realized in estimating Y by f(X) is given by
l(Y, f(X)). The minimum expected risk in predicting Y from
X is defined by

L∗
l (Y |X) = inf

f :Rq→Rp
E[l(Y, f(X))] (1)

where the infimum is over all measurable f .
We also consider another random observation vector Z that

is a random transformation or stochastically degraded version
of X , obtained for example by observing X through a noisy
channel. Here Z takes values in Rr, r ≥ 1, and Y , X and
Z form a Markov chain in this order, which we denote as
Y → X → Z. We similarly define the minimum expected
risk in predicting Y from Z as

L∗
l (Y |Z) = inf

g:Rr→Rp
E[l(Y, g(Z))], (2)

where the infimum is over all measurable predictors g. With
above two predictions, we define the excess minimum risk
as the difference L∗

l (Y |Z)−L∗
l (Y |X), which is always non-

negative due to the Markov chain condition Y → X → Z
(e.g., see the data processing inequality for expected risk in [9,
Lemma 1]). Our objective is to establish an upper bound to
this difference using the Rényi’s divergence of order α, hence
an upper parameterized by α.

In [10], the random vector Z is taken as T (X), a trans-
formation of random vector X , where T : Rp → Rr is
measurable. The authors derive bounds on the excess minimum
risk using Shannon’s mutual information. We herein generalize
these bounds via Rényi’s divergence of order α ∈ (0, 1), which
recovers the mutual information as α → 1. Furthermore, we
use an arbitrary random vector Z, as the degraded version
of the observation X instead of T (X). We also provide an
example where the Rényi divergence based bounds perform
better than the mutual information based bounds of [10] for a
certain range α.

We close this section with some definitions that we will
invoke when deriving our results.

Definition 1: The Rényi’s divergence of order α ∈ (0,∞)
(with α ̸= 1) between two probability measures P and Q on a
measurable space (Ω,M), is denoted Dα(P∥Q) and defined
as follows [1], [21]. Given a sigma-finite positive measure ν,
let P and Q be absolutely continuous with respect to ν, written
as P,Q ≪ ν, with Radon–Nikodym derivatives dP

dν = p and
dQ
dν = q, respectively. Then

Dα(P∥Q)

=


1

α−1 log
[∫

pαq1−αdν
]

if 0 < α < 1 or α > 1

and P ≪ Q
+∞ if α > 1 and P ≪̸ Q.

For finite sample space Ω of size n, the Rényi divergence of or-
der α > 0, α ̸= 1, between distributions P = (p1, p2, ...., pn)
and Q = (q1, q2, ...., qn) is given by

Dα(P∥Q) =
1

α− 1
log

n∑
i=1

pαi q
1−α
i , (3)

where, for α > 1 and pi = 0, we use the convention that
pαi q

1−α
i equals 0 (resp., ∞) when pi = 0 (resp., Pi > 0).

Definition 2: The conditional Rényi divergence of order α
between the conditional distributions PV |U and QV |U given
PU is denoted by Dα(PV |U∥QV |U |PU ) and given by

Dα(PV |U∥QV |U |PU )

= EPU

[
Dα(PV |U ( · |U)∥QV |U ( · |U))

]
, (4)

where EPU
[ · ] denotes expectation with respect to the distri-

bution of U .
Note that the above definition of conditional Rényi di-

vergence differs from the standard one, which is given as
Dα(PV |UPU∥QV |UPU ), e.g., see [22, Definition 3]. However
as α → 1, both notions of conditional Rényi divergence
recover the conditional Kullback-Liebler (KL) divergence,
which is

DKL(PV |U∥QV |U |PU ) = DKL(PV |UPU∥QV |UPU ).

Definition 3: A real random variable U with finite expecta-
tion is said to be σ2-sub-Gaussian for some σ2 > 0 if

logE[eλ(U−E(U))] ≤ σ2λ2

2
(5)

for all λ ∈ R.

III. BOUNDING EXCESS MINIMUM RISK

In this section, we derive Rényi’s divergence based bounds
on excess minimum risk. We first state the variational charac-
terization of the Rényi divergence [16], which generalizes the
Donsker-Varadhan variational formula for KL divergence [23].

Lemma 1: [16, Theorem 3.1] Let P and Q be two proba-
bility measures on (Ω,M) and α ∈ (0,∞), α ̸= 1. Let g
be a measurable function such that e(α−1)g ∈ L1(P ) and
eαg ∈ L1(Q), where L1(µ) denotes the collection of all
measurable functions with finite L1-norm. Then,

Dα(P∥Q)

≥ α

α− 1
logEP [e

(α−1)g(X)]− logEQ[e
αg(X))]. (6)

We next provide the following lemma, whose proof is an
extension of [7, Lemma 2] and [10, Lemma 1].

Lemma 2: Consider two arbitrary jointly distributed random
variables U and V defined on the same probability and taking
values in spaces U and V , respectively. Given a measurable
function h : U × V → R, assume that h(u, V ) is σ2(u)-
sub-Gaussian under PV and PV |U=u for all u ∈ U , where
E[σ2(U)] < ∞. Then for α ∈ (0, 1),

|E[h(U, V )]−E[h(Ū , V̄ )]|

≤
√

E[2σ2(U)]
Dα(PV |U∥PV |PU )

α
,



where Ū and V̄ are independent copies of U and V , respec-
tively.

Proof: By the sub-Gaussian property, we have

logE
[
e(α−1)λh(u,V )−E[(α−1)λh(u,V )|U=u]|U = u

]
≤ λ2(α− 1)2σ2(u)

2
(7)

and
logE[eαλh(u,V )−E[αλh(u,V )]] ≤ λ2α2σ2(u)

2
. (8)

Re-arranging the terms gives us

− logE
[
e(α−1)λh(u,V )|U = u

]
≥ −λ2(α− 1)2σ2(u)

2
+ E[(1− α)λh(u, V )|U = u] (9)

and

− logE[eαλh(u,V )] ≥ −λ2α2σ2(u)

2
− E[αλh(u, V )]. (10)

Note that by (7) and (8), e(α−1)λh(u,V ) ∈ L1(PV |U=u) and
eαλh(u,V ) ∈ L1(PV ). Thus by Rényi’s variational formula
in (6), we have that

Dα(PV |U=u∥PV ) ≥
α

α− 1
logE[e(α−1)λh(u,V )|U = u]

− logE[eαλh(u,V )]. (11)

Substituting (9) and (10) in (11) yields

Dα(PV |U=u∥PV ) ≥
α

1− α

(
−λ2(α− 1)2σ2(u)

2
+ E[(1− α)λh(u, V )|U = u]

)
− λ2α2σ2(u)

2
− E[αλh(u, V )]

= αλ(E[h(u, V )|U = u]− E[h(u, V )])− λ2α(1− α)σ2(u)

2

− λ2α2σ2(u)

2

= αλ(E[h(u, V )|U = u]− E[h(u, V )])− λ2ασ2(u)

2
.

The left-hand side of the resulting inequality

λ2ασ2(u)

2
− αλ(E[h(u, V )|U = u]− E[h(u, V )])

+Dα(PV |U=u∥PV ) ≥ 0

is a non-negative quadratic polynomial in λ. Thus the discrim-
inant is non-positive and we have

(αλ(E[h(u, V )|U = u]− E[h(u, V )]))2

≤ 4

(
ασ2(u)

2

)
Dα(PV |U=u∥PV ).

Therefore,

|E[h(u, V )|U = u]− E[h(u, V )]|

≤
√

2σ2(u)Dα(PV |U=u∥PV )

α
. (12)

Since, Ū and V̄ are independent, we have that

E[h(u, V )] = E[h(Ū , V̄ )|Ū = u].

Therefore, we have

|E[h(U, V )]− E[h(Ū , V̄ )]|

=

∣∣∣∣∫ (E[h(U, V )|U = u]− E[h(Ū , V̄ )|Ū = u])PU (du)

∣∣∣∣
=

∣∣∣∣∫ (E[h(u, V )|U = u]− E[h(u, V )])PU (du)

∣∣∣∣
≤
∫ ∣∣∣∣∫ (E[h(u, V )|U = u]− E[h(u, V )]

∣∣∣∣PU (du) (13)

≤
∫ √

2σ2(u)Dα(PV |U=u∥PV )

α
PU (du) (14)

≤

√∫
2σ2(u)PU (du)

√∫
Dα(PV |U=u∥PV )

α
PU (du) (15)

=

√
E[2σ2(U)]

Dα(PV |U∥PV |PU )

α
, (16)

where (13) follows from Jensen’s inequality, (14) follows from
(12), (15) follows from the Cauchy-Schwarz inequality and
the definition of conditional Rényi divergence in (4) with
Dα(PV |U∥PV |PU ) = EU [Dα(PV |U (·|U)∥PV )].

We next use Lemma 2 to derive our main theorem; its proof
is a generalization of [10, Theorem 3].

Theorem 1: Let X , Y and Z be random vectors such that
Y → X → Z, as described in Section II. Assume that there
exists an optimal estimator f of Y from X such that l(y, f(X))
is σ2(y)-sub-Gaussian under PX|Z and PX|Z,Y=y for all y ∈
Rp, i.e.,

logE[e(λ(l(y,f(X)))−E[l(y,f(X))|Z])|Z] ≤ σ2(y)λ2

2

and

logE[e(λ(l(y,f(X)))−E[l(y,f(X))|Z,Y=y])|Z, Y = y] ≤ σ2(y)λ2

2

for all λ ∈ R and y ∈ R, where σ2 : R → R, satisfies
E[σ2(Y )] < ∞. Then for α ∈ (0, 1), the excess minimum
risk satisfies

L∗
l (Y |Z)− L∗

l (Y |X)

≤
√

2E[σ2(Y )]

α
Dα(PX|Y,Z∥PX|Z |PY,Z). (17)

Remark 1: If Y → X → Z have a joint probability density
function fY XZ then in terms of conditional densities, the
conditional Rényi’s divergence on the right hand side of (17)
can be written as

Dα(PX|Y,Z∥PX|Z |PY,Z)

=

∫∫
1

α− 1
log

(∫
(fX|Y,Z(x|y, z))α

× (fX|Z(x|z))(1−α) dx

)
fY,Z(y, z) dy dz.



Remark 2: One setup (of the many possible) where our sub-
Gaussian conditions allow for a more general class of distribu-
tion for X , Y and Z is the regression problem with squared
loss l(y, y′) = (y − y′)2, y, y′ ∈ R. Let Y = m(X) + N ,
where X and N are independent real random variables with
E[N ] = 0, E[N4] < ∞, and m is a bounded (regression)
function, such that |m(x)| ≤ K. Then the optimal predictor
of Y from X is f(x) = m(x) and l(y, f(X)) ≤ (|y| +K)2

for all y. Thus l(y, f(X)) is σ2(y) = (|y| + K)4/4-sub-
Gaussian under PX|Z and PX|Z,Y=y , and E

[
σ2(Y )

]
< ∞;

see [10, Section 4.2] (note that Z can be arbitrary as long as
the Markov-chain condition Y → X → Z holds). Thus the
conditions of the theorem are satisfied for this setup, while the
sub-Gaussian conditions in [7] or [13] fail in this case.

Proof of Theorem 1: Let X̄ , Ȳ and Z̄ be random variables
such that PȲ |Z̄ = PY |Z , PX̄|Z̄ = PX|Z , PZ̄ = PZ and Ȳ
and X̄ are conditionally independent given Z̄, i.e., PȲ ,X̄,Z̄ =
PY |ZPX|ZPZ .

We apply Lemma 2 by setting U = Y , V = X and
h(u, v) = l(y, f(x)). Consider E[l(Y, f(X))|Z = z]) and
E[l(Ȳ , f(X̄))|Z = z] as regular expectations taken with
respect to PY,X|Z=z and PȲ ,X̄|Z=z . Since, Ȳ and X̄ are
conditionally independent given Z̄ = z and PZ̄ = PZ , we
have that

|E[l(Y, f ′(X))|Z = z])− E[l(Ȳ , f(X̄))|Z = z])|

≤
√

2E[σ2(Y )|Z = z]

α
Dα(PX|Y,Z=z∥PX|Z=z|PY |Z=z).

(18)

Now,∣∣E[l(Y, f(X))]− E[l(Ȳ , f(X̄))]
∣∣ ≤∫ ∣∣E[l(Y, f(X))|Z = z])− E[l(Ȳ , f(X̄))|Z = z])

∣∣PZ(dz)

≤
∫ (√

2E[σ2(Y )|Z = z]

α

×
√

Dα(PX|Y,Z=z∥PX|Z=z|PY |Z=z)

)
PZ(dz)

≤

√
2

∫
E[σ2(Y )|Z = z]PZ(dz)

×

√∫
Dα(PX|Y,Z=z∥PX|Z=z|PY |Z=z)

α
PZ(dz)

=

√
2E[σ2(Y )]

α
Dα(PX|Y,Z∥PX|Z |PY,Z), (19)

where the first inequality follows from Jensen’s inequality and
since PZ̄ = PZ , the second inequality follows from (18), the
third from the Cauchy-Schwarz inequality, and the equality
follows from (4). Since, Ȳ and X̄ are conditionally indepen-
dent given Z̄, we get the Markov chain Ȳ → Z̄ → X̄ . Then
we have

E[l(Ȳ , f(X̄))]) ≥ L∗
l (Ȳ |X̄)

≥ L∗
l (Ȳ |Z̄)

= L∗
l (Y |Z), (20)

where the first inequality follows since Ȳ → X̄ → f(X̄), the
second inequality holds since Ȳ → Z̄ → X̄ by construction,
and the equality follows since (Ȳ , Z̄) and (Y, Z) have the same
distribution by construction. Since, f is an optimal estimator
of Y from X , we also have

E[l(Y, f(X))]) = L∗
l (Y |X). (21)

Therefore using (20) and (21) in (19) combined with the fact
that L∗

l (Y |Z) ≥ L∗
l (Y |X), we arrive at the desired inequality:

L∗
l (Y |Z)− L∗

l (Y |X)

≤
√

2E[σ2(Y )]

α
Dα(PX|Y,Z∥PX|Z |PY,Z).

Remark 3: Taking the limit as α → 1 of the right-hand side
of (17) in Theorem 1, we have that

L∗
l (Y |Z)− L∗

l (Y |X)

≤
√
2E[σ2(Y )]DKL(PX|Y,Z∥PX|Z |PY,Z)

=
√
2E[σ2(Y )] (I(X;Y )− I(Z;Y )), (22)

recovering the bound in [10, Theorem 3].

We next give a corollary for bounded loss functions.

Corollary 1: Suppose the loss function l is bounded, i.e.,
∥l∥∞ = supy,y′ l(y, y′) < ∞. Then for random vectors X ,
Y and Z such that Y → X → Z as described in Section II,
we have the following inequality for α ∈ (0, 1) on the excess
minimum risk:

L∗
l (Y |Z)− L∗

l (Y |X) ≤ ∥l∥∞√
2

√
Dα(PX|Y,Z∥PX|Z |PY,Z)

α
.

(23)
Proof: We show that the bounded loss function l satisfies

the sub-Gaussian property in Theorem 1. Since l is bounded
we have that for any f : Rq → Rp, x ∈ Rq and y ∈ Rp,
l(y, f(x)) ∈ [0, ∥l∥∞]. Then by Hoeffding’s lemma [24], we
can write

logE[e(λ(l(y,f(X)))|Z] ≤ E[l(y, f(X))|Z]) +
∥l∥2∞λ2

2

and

logE[e(λ(l(y,f(X)))|Z, Y = y]

≤ E[l(y, f(X))|Z, Y = y]) +
∥l∥2∞λ2

2

for all λ ∈ R and y ∈ R. Rearranging the above inequalities
gives us that l(y, f(X)) is ∥l∥2∞-sub-Gaussian under both
PX|Z and PX|Z,Y=y for all y ∈ Rp. Then by (17), we have

L∗
l (Y |Z)− L∗

l (Y |X) ≤ ∥l∥∞√
2

√
Dα(PX|Y,Z∥PX|Z |PY,Z)

α
.

(24)



Remark 4: Taking the limit as α → 1 of (24) in Corollary 1
yields the mutual information based bound:

L∗
l (Y |Z)− L∗

l (Y |X) ≤ ∥l∥∞√
2

√
DKL(PX|Y,Z∥PX|Z |PY,Z)

=
∥l∥∞√

2

√
I(X;Y )− I(Z;Y ), (25)

which recovers the bound in [10, Corrolary 1].

Example 1: We consider a concatenation of two BSCs
and set X , Y and Z as scalar binary-valued (Bernoulli)
random variables. More specifically, we let Y have distribution
PY (0) = p = 1−PY (0) and be the input of the first BSC with
crossover probability ϵ1. We let X be the resulting output; its
distributions is given by PX(0) = p(1 − ϵ1) + (1 − p)ϵ1 =
1 − PX(1). We then take X as the input of the second BSC
with crossover probability ϵ2 and set Z as the output. This
construction yields the Markov chain, Y → X → Z. Using
a 0 − 1 loss function (given by l(y, y′) = 1(y ̸= y′), where
1(·) is the indicator function) for Corollary 1, we compute the
bound in (23) as a function of α ∈ (0, 1). Figure 1 compares
the Rényi based bound in (23) with the mutual information
based bound in (25). We note that the Rényi based bound is
tighter for the region of α values between about 0.4 and 1;
this improvement is similar to the one obtained in the binary
example of [7] regarding generalization error.

Fig. 1. Comparison of bounds vs α on minimum excess risk for two
concatenated BSCs, where p = 0.4, ϵ1 = 0.2 and ϵ2 = 0.05.

IV. CONCLUSION

We derived Rény divergence based bounds (parameterized
by the Rényi order α ∈ (0, 1)) on the excess minimum risk us-
ing the variational characterization of Rényi’s divergence [16]
and generalizing the mutual information based bounds recently
obtained in [10]. Unlike the related generalization error bounds
in [7], [12] where the sub-Gaussian parameter is a fixed
constant, the derived bounds involve a sub-Gaussian parameter
that can depend on the estimated vector Y and therefore
allow for more general joint distributions of the involved
random vactors. We also illustrate the upper bounds via an
example using a cascade of two BSCs, showing that the

Rényi divergence based bounds perform better than the mutual
information bounds for certain values of α. Future directions
include tightening the Rényi-type bounds as well as identifying
other examples where the bounds are sharp.
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functionals via Rényi divergence,” SIAM/ASA J. Uncertain. Quantif.,
vol. 3, no. 1, pp. 18–33, 2015.

[15] V. Anantharam, “A variational characterization of Rényi divergences,”
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Leibler divergence,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797-
3820, 2014.

[22] S. Verdú, “α-mutual information,” Proc. Workshop Inf. Theory Appl.,
San Diego, 2015.

[23] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation of certain
Markov process expectations for large time IV,” Commun. Pure Appl.
Math., vol. 36, no. 2, pp. 183–212, 1983.

[24] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Am. Stat. Assoc. vol. 58, no. 301, pp. 13-30, 1963.


