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Abstract—We investigate the tradeoff between privacy and
utility in a situation where both privacy and utility are measured
in terms of mutual information. For the binary case, we fully
characterize this tradeoff in case of perfect privacy and also
give an upper-bound for the case where some privacy leakage
is allowed. We then introduce a new quantity which quantifies
the amount of private information contained in the observable
data and then connect it to the optimal tradeoff between privacy
and utility.

I. INTRODUCTION

Suppose Alice has some personal information which is
represented by random variable X and she wants to keep
this personal information as private as possible. However
there exists some correlated information, represented by Y ,
observable by an advertising company and to be displayed
publicly by this company. The company gets paid to send the
most information about Y , and at the same time it does not
want to violate the privacy of Alice. The question raised in
this situation is then how much information about Y can be
displayed without breaching privacy? Hence, it is of interest
to characterize such competing objectives in the form of
a quantitative tradeoff. Such a characterization provides a
controllable balance between utility and privacy.

Statistical studies regarding privacy were started by Warner
[1] who suggested privacy-preserving methods for survey
sampling. More recently, a measure known as differential
privacy was introduced by Dwork et al. [2]. In this set-
ting, usually the source is modelled as a database X =
(X1, X2, . . . , Xn) ∈ Dn where D = {0, 1}`. A mechanism
M : Dn → S, where S is a set not necessarily equal to Dn,
then produces the sanitized database based on the tradeoff
between accuracy and privacy. The accuracy of differential
privacy is defined via a query q : S → R where R is some
abstract set. The query can be viewed as a question about the
original database X that one might ask. Each query is then
answered using the sanitized database Z. On the one hand,
the data provider wants to have an accurate answer to each
query, and on the other hand, the provider needs to satisfy a
certain level of privacy.

In an information-theoretic context,M is simply a Markov
kernel (i.e., channel) Qn(·|X) with output Z := M(X)
which takes values in S. The privacy is then measured by
the upper-bound of the likelihood ratio of x and x′ with

*The first lemma in the version published in Allerton 2014 is incorrect.
We could fortunately prove the other results in this version without invoking
that lemma.

Hamming distance 1, that is, the mechanism is called ε-
differentially private if Qn(B|x)

Qn(B|x′) ≤ exp(ε) for all measurable
B ⊂ S and all x, x′ ∈ Dn such that dH(x, x′) = 1, where dH
is the Hamming distance. Note that this definition does not
involve the prior distribution of x and x′. Another measure of
privacy was recently proposed under the name of a posteriori
differential privacy which incorporates the prior distributions
by Wang et al. [3].

The locality requirement of dH(x, x′) = 1 in the definition
makes it hard to connect differential privacy to information
theory. To overcome this problem, Duchi et al. [4] removed
the condition dH(x, x′) = 1. This generalized definition
yields the upper bound I(X,Z) ≤ ε on the mutual infor-
mation, which gives an information-theoretic interpretation of
differential privacy. Hence generalized ε-differentially private
mechanism leaks at most ε private information.

Despite its frequent use in computer science, differential
privacy does not characterize the optimal balance between
privacy versus accuracy. For example, if we want only 1%
privacy leakage, it is not clear what the best achievable
accuracy is. Furthermore, it is not clear how to define
differential privacy when instead of the database X , another
database Y , correlated with X , is observable.

The problem treated in this paper can also be contrasted
with the more well-studied concept of secrecy. While in
secrecy problems, e.g., in cryptography, wiretap channel
problems, etc., the aim is to keep information secret only
from wiretappers, the problem treated in privacy further
aims to keep the correlated source private from the intended
receiver.

Although there has been no universal way of measuring
privacy in the literature, in this work we follow Yamamoto [5]
who proposed a private source coding model. He introduced
the equivocation as the conditional entropy of the private
message given the observation and then defined the privacy
in the system as the equivocation involved in the decoding.
He then defined the rate-distortion-equivocation function as
the tradeoff between utility (i.e., distortion) and privacy (i.e,
equivocation). Inspired by this work, we use the mutual
information between private information X and the displayed
information Z as the measure of privacy and also use the
mutual information between the observable data Y and Z as
utility and then define the rate-privacy function as the optimal
tradeoff between these quantities. Defining utility and privacy
using the mutual information gives a more intuitive measure
of how much the receiver knows about Y and how much of
the private information is leaked to the receiver.



The paper is organized as follows. In section II, we
formulate the problem in terms of the rate-privacy function
and also study the binary case. We show that if zero privacy
leakage is required, then in the binary case, no information
from Y can be transmitted. In section III we give a multi-
letter version of the rate-privacy function in a special case and
show that even if n different copies of Y are observed, non-
zero information can be transmitted about Y when vanishing
privacy leakage is required. In section IV, we define a new
quantity related with privacy and pose an intuitive question
connecting the new quantity with the rate-privacy function
for the case of zero privacy leakage.

II. PROBLEM FORMULATION AND THE RATE-PRIVACY
FUNCTION

Consider two random variables X ∈ X and Y ∈ Y
with |X |, |Y|<∞ and fixed joint distribution PXY . X is
the private data and Y is the observable data correlated
with X . Suppose there exists a channel PZ|Y such that Z,
the displayed data, has limited information about X . This
channel is called the privacy filter. The objective is then
to find the most informative privacy filter, i.e., a channel
which preserves most of the information contained in Y . This
setup is shown in Fig. 1. In particular, we are interested in

X Y Z
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Fig. 1. Information-theoretic privacy.

characterizing the quantity,

gε(X;Y ) := max
PZ|Y :I(X;Z)≤ε

I(Y ;Z), (1)

which we call, the rate-privacy function. The dual represen-
tation of gε(X;Y ) is given in [6] and called the privacy
funnel. Basically, in this model, the privacy and utility are
both measured using mutual information. Note that since
I(Y ;Z) is a convex function of PZ|Y and furthermore the
constraint set Dε := {PZ|Y : I(X;Z) ≤ ε} is convex and
compact, the maximum in (1) occurs at the extreme points,
namely for a PZ|Y ∈ Dε such that I(X;Z) = ε. If we restrict
PZ|Y to be a deterministic function f , we get the simplified
quantity

g̃ε(X;Y ) := sup
f :I(f(Y );X)=ε

H(f(Y )). (2)

Using the Carathéodory-Fenchel theorem, one can readily
show that it suffices that the random variable Z is supported
on an alphabet Z with cardinality |Z| ≤ |Y|+ 1.

In the study of gε(X;Y ) for general PXY , the most
interesting case is when ε = 0 (the so-called prefect privacy),
i.e., no privacy leakage is allowed. The following theorem
shows that for binary X and Y and an arbitrary channel
between X and Y the requirement of perfect privacy allows
no information transfer from Y .

Theorem 1. For any pair of dependent binary random
variables X and Y , we have

g0(X;Y ) = 0.

Proof. In the perfect privacy regime the constraint set re-
duces to D0 = {PZ|Y : Z⊥⊥X}. Since X , Y and Z form
the Markov chain X → Y → Z, we can write

PZ|Y (·|0)PY |X(0|1) + PZ|Y (·|1)PY |X(1|1) = PZ|X(·|1)
PZ|Y (·|0)PY |X(0|0) + PZ|Y (·|1)PY |X(1|0) = PZ|X(·|0).

The condition Z⊥⊥X implies that PZ|X(·|1) = PZ|X(·|0) =
PZ(·) and hence from the above,

PZ|Y (·|0)PY |X(0|1) + PZ|Y (·|1)PY |X(1|1) = PZ(·)
PZ|Y (·|0)PY |X(0|0) + PZ|Y (·|1)PY |X(1|0) = PZ(·).

From the assumption that X and Y are dependent, it follows
that the above system of equations has a unique solution. The
unique solution turns out to satisfy PZ|Y (·|0) = PZ|Y (·|1) =
PZ(·), which implies that I(Y ;Z) = 0.

Note that the theorem does not necessarily hold for non-
binary X and Y . In fact, it is easy to construct an example for
ternary Y and binary X in which g0(X;Y ) > 0 (for instance,
see Example 1). Berger and Yeung [7, Appendix II], gave a
necessary condition for g0(X;Y ) > 0, in a different context.

Definition 1 ( [7]). The random variable X is said to be
weakly independent of Y if the rows of the transition matrix
PX|Y , i.e., the set of vectors {PX|Y (·|y), y ∈ Y}, are
linearly dependent.

In [7], it is proved that if X is weakly independent of Y
then there exists a binary random variable Z such that Z⊥⊥X
which is correlated with Y , and hence g0(X;Y ) > 0. This
condition is met, for example, if |Y| > |X |. It is also straight-
forward to show that this condition is indeed a necessary and
sufficient for g0(X;Y ) > 0. It is straightforward to see that
if Y is binary then X is weakly independent of Y if and only
if X and Y are independent. This together with the fact that
weak independence is a necessary and sufficient condition for
g0(X;Y ) > 0, imply the following lemma which generalizes
Theorem 1.

Lemma 1. Let Y be a binary random variable. Then
g0(X;Y ) is equal to either H(Y ) or zero.

III. A MULTI-LETTER VERSION OF g̃ε(X;Y )

We next consider the simplified version of the rate-privacy
function g̃ε(X;Y ) defined in (2), in the limit when ε → 0.
Suppose for any x ∈ X , inducing the distribution PY |X(·|x)
over Y , one takes n independent copies of Y with distribution
PY n|X(yn|x) =

∏n
i=1 PY |X(yi|x). The privacy constraint is

that; I(f(Y n);X) = ε for every n and every deterministic
function f : Yn → Z where |Z| ≤ |Y|. Let g̃n,ε(X;Y )
denote 1

n g̃ε(X;Y n) when the distribution PY n|X is specified
as above, so that

g̃n,ε(X;Y ) :=
1

n
sup

f : I(f(Y n);X)=ε

H(f(Y n)). (3)



The following theorem gives an asymptotic lower bound on
g̃n,ε(X;Y ).

Theorem 2. For any pair of random variables (X,Y ) with
fixed joint distribution PXY , we have

lim
ε→0

lim
n→∞

1

n
g̃n,ε(X;Y ) ≥ H∗∞(Y |X),

where the min-entropy is defined as

H∗∞(Y |X) := min
x∈X

min
y∈Y

(
− logPY |X(y|x)

)
. (4)

Proof. Suppose |X | = m and each xj ∈ X , j = 1, . . . ,m,
induces the product distribution Pnj (y

n) := PY n|X(yn|xj) =∏n
k=1 PY |X(yk|xj) over Y . Given these m distributions Pnj

for j = 1, 2, . . . ,m, we construct nearly equiprobable bins
Kn
j (i) ⊂ Yn for i = 1, 2, . . . , 2r, (with r to be determined

later), such that Pnj (K
n
j (i)) := Pnj (Y

n ∈ Kn
j (i)) is close to

2−r for each j = 1, 2, . . . ,m and i = 1, 2, . . . , 2r. Let Ur

denote the uniform distribution over {0, 1}r and V (P,Q)
denote the total variation distance between distributions P
and Q.

Note that each bin Kn
j (i) is an agglomeration of some

mass points of Pnj (y
n) for each j = 1, 2, . . . ,m and

therefore the probability of each bin is equal to the sum
of the probabilities of points yn it contains. Recalling the
definition of H∗∞(Y |X) in (4), we can write

Pnj (y
n) ≤ 2−nH

∗
∞(Y |X), j = 1, 2, . . . ,m. (5)

We start the construction of the bins
Kn
j (1),K

n
j (2), . . . ,K

n
j (Jj) for each j = 1, 2, . . . ,m

where Jj ≤ 2r−1 is the number of bins for each j. The first
bin is constructed as follows. We agglomerate the minimal
number of mass points of Pnj into Kn

j (1) as needed to make
sure

Pnj (Kn(1)) ≥ 2−r − 2−s, (6)

for some s < nH∗∞(Y |X). This together with (5) shows that

Pn1 (Kn(1)) < 2−r − 2−s + 2−nH
∗
∞(Y |X), (7)

which can be simplified as

Pn1 (Kn(1)) < 2−r, (8)

because s < nH∗∞(Y |X).
Once condition (6) is met, the construction for the first

bin is completed and we move on to the second bin. This
procedure can go on until either we run out of mass points
or the restriction Jj ≤ 2r−1 is violated. In the latter case, we
set Jj = 2r − 1 and then collect all mass points left into the
bin Kn

j (Jj + 1). The former happens if the total probability
of the left-over is strictly less than 2−r−2−s so that we can
not meet the requirement (6), in other words,

Pnj

 Jj⋃
i=1

Kn
j (i)

 > 1− 2−r + 2−s. (9)

On the other hand, we know from (8) that
Pnj

(⋃Jj
i=1K

n
j (i)

)
< Jj2

−r which, together with (9),

implies

1− 2−r + 2−s < Pnj

 Jj⋃
i=1

Kn
j (i)

 < Jj2
−r, (10)

leading to a lower bound for the number of bins in this case

Jj > 2r + 2r−s − 1, (11)

which is greater than the allowable upper-bound 2r − 1. We
can hence conclude that with s that satisfies s < nH∗∞, the
procedure stops only when the restriction Jj ≤ 2r − 1 is
violated, and therefore, we assume Jj = 2r − 1 in what
follows.

As specified earlier, we construct the last bin K(Jj + 1)
by including all the leftover mass there. We therefore have

Kn
j (Jj + 1) = supp{Pnj } −

Jj⋃
i=1

Kn
j (i), (12)

where supp{Pnj } denotes the support of Pnj . Since each bin
has probability lower-bounded by (6), it follows from (12)
that

Pnj (K(Jj+1)) = 1−
Jj∑
i=1

Pnj (K
n
j (i)) ≤ 1−Jj

(
2−r − 2−s

)
,

(13)
which, after substituting Jj = 2r − 1, is simplified as

Pnj (K(Jj + 1)) ≤ 2r−s + 2−r − 2−s. (14)

So far we have constructed m × 2r bins, namely 2r bins
for each Pnj , j = 1, 2, . . . ,m. Consider now the deterministic
mapping gn : Yn ×X → {0, 1}r defined as follows:

gn(y
n, xj) = i if yn ∈ Kn

j (i).

This mapping requires xj because for each j ∈ {1, 2, . . . ,m}
the corresponding bins are disjoint. However, we know that
by using a proper channel encoding and decoding, φn and
ψn, respectively, one can decode Y n to obtain ψn(Y n) such
that P (X 6= ψn(Y

n)) decays exponentially. So, we can have
a deterministic function which acts only on Y n from which
xj is obtained with probability exponentially close to one.
Hence our sequence of deterministic mappings is:

fn(y
n) := gn(y

n, ψn(y
n)) = i if yn ∈ Kn

j (i).

where j is the index of the decoded symbol, that is the j
such that ψn(yn) = xj .

Now let us look at the total variation distance between
P̃nj := fn ◦ Pnj and Ur which is the uniform distribution
over the set {0, 1}r.

V
(
P̃nj , U

r
)

=

2r∑
i=1

|2−r − Pnj (Kn
j (i))|

=

Jj∑
i=1

(
2−r − Pnj (Kn

j (i))
)

+|2−r − Pnj (Kn
j (Jj + 1))| (15)



≤
Jj∑
i=1

2−s + 2−r + Pnj (Kn(Jj + 1)) (16)

≤ Jj2
−s + 2−r + 2r−s + 2−r − 2−s (17)

= 2
(
2r−s + 2−r − 2−s

)
< 2

(
2r−s + 2−r

)
.

where in (15) we use (8), in (16) we use the triangle
inequality and (6) and the inequality in (17) follows from
(14). To make sure that V (P̃nj , U

r) goes to zero as n→∞,
we set r = nH∗∞(Y |X) − nδ and s = nH∗∞(Y |X) − n δ2
for some 0 < δ ≤ 2

3H
∗
∞(Y |X). Hence we can make sure

that P̃nj and P̃nk for j 6= k are at most 2ε-distant in the total
variation sense. This is because, for large n

V (P̃nj , P̃
n
k ) ≤ V (P̃nj , U

r) + V (P̃nk , U
r) ≤ 2ε.

Note that, letting EX [·] denote the expectation with respect
to X , we have in general

V (PZX , PZPX) = EX
[
V
(
PZ|X(·|X), PZ

)]
,

= EX
[
V
(
PZ|X(·|X), EX [PZ|X(·|X)]

) ]
,

and hence by Jensen’s inequality

V (PZX , PZPX)

≤
∑
x

∑
x′

PX(x)PX(x′)V
(
PZ|X(·|x), PZ|X(·|x′)

)
We can therefore conclude that V (P̃nj , P̃

n
k ) ≤ 2ε for all j 6=

k results in the following

V (PZnX , PZnPX) ≤ 2ε,

where Zn = fn(Y
n). In other words, Zn and X are "2ε-

independent" for sufficiently large n in sense of total variation
distance. Invoking [8, Lemma 2.7], the theorem follows.

This theorem implies that, unlike in the binary case studied
in Theorem 1, one can have information transfer at a positive
rate while allowing perfect privacy only in the limit instead
of requiring absolutely zero privacy leakage.

IV. NON-PRIVATE INFORMATION VS. THE RATE-PRIVACY
FUNCTION

Conceptually, gε(X;Y ) quantifies the "largest" part of
Y which carries ε amount of information about X . Wit-
senhausen [9] defined the private information of a pair of
random variables (X,Y ) as

M(X;Y ) := max
W : X→W→Y

H(X,Y |W ). (18)

Wyner [10] defined the common information of X and Y as

CW (X;Y ) := min
W : X→W→Y

I(X,Y ;W ). (19)

Clearly, the definition of private information in (18) im-
plies CW (X;Y ) = H(X,Y ) − M(X;Y ). Operationally,
M(X;Y ) is the rate of information that one needs to
transmit over two "non-common" channels when CW (X;Y )
is transmitted over the common channel in order to be able
to decode X and Y with arbitrarily small error probability.
This definition is not immediately useful in our setting, as it

is symmetric in X and Y . We seek an asymmetric definition
for the private information that Y contains, i.e., the rate of
information contained in Y which correlates with X . Inspired
by Wyner’s common information, CW (X;Y ), and Gács-
Körner’s common information [11], denoted by CGK(X;Y ),
we define the private information about X carried by Y as
follows

CX(Y ) := min
W :X→W→Y
H(W |Y )=0

H(W ), (20)

and similar to the connection between CW (X;Y ) and
M(X;Y ), we define DX(Y ) := H(Y ) − CX(Y ) and call
it the non-private information about X carried by Y . The
quantity CX(Y ) as defined above is similar to the so-called
necessary conditional entropy, H(Y †X), defined by Cuff et
al. [12] as minH(W |X) where the minimum is taken over
W that satisfies the same conditions as in (20). Conceptually,
we decompose the information contained in Y into two
parts, namely, one part which correlates with X , denoted by
CX(Y ), and another part which has no correlation with X ,
denoted by DX(Y ). Using the assumption H(W |Y ) = 0 in
(20), we can obtain the following variational representation
for DX(Y ):

DX(Y ) = max
W :X→W→Y
H(W |Y )=0

H(Y |W ). (21)

Remark 1. Since H(W |Y ) = 0 implies that W is a function
of Y , one can show that the constraint in the above maximiza-
tion, i.e., the conditions X →W → Y and H(W |Y ) = 0, is
equivalent to the "double Markov relations" X → W → Y
and X → Y →W .

The so called exact common information has been intro-
duced in [13] and shown to be related to the problem of exact
generation of a joint distribution PXY . The exact common
information is defined as the minimum rate R∗ at which an
external randomness must be supplied to physically separated
agents, each responsible for one of the marginals via the
private randomness, so that they are able to exactly reproduce
joint distribution PXY , in an asymptotic formulation. As
illustrated in Fig. 2, the exact common information is the
minimum rate of generating W such that two independent
processors construct X̂ and Ŷ , using W as an input of
separate stochastic decoders, such that PX̂Ŷ = PXY .

Processor I

Processor II

W

X̂

Ŷ

Private randomness

Private randomness

Fig. 2. Exact distribution generation.

A new quantity is then introduced in [13], so called



common entropy defined by

G(X;Y ) := min
W :X→W→Y

H(W ), (22)

and shown that R∗ = limn→∞
1
nG(X

n;Y n). Operationally,
CX(Y ) is the exact common information for a setting similar
to Fig. 2, except that the common input to each processor is
assumed to be a deterministic function of Y as depicted in
Fig. 3.

Processor I

Processor II

f(Y )

X̂

Ŷ

Private randomness

Private randomness

Fig. 3. Exact asymmetric distribution generation.

A. Properties of CX(Y )

1) For any (X,Y ) with joint distribution PXY , we have

I(X;Y ) ≤ CW (X;Y ) ≤ G(X;Y ) ≤ CX(Y ) ≤ H(Y ).
(23)

Proof. The first and the second inequalities are shown
respectively in [10] and [13]. The third one becomes
clear once we examine the definitions of G(X;Y ) and
CX(Y ). Indeed, the objective functions in the minimiza-
tion are equal, however, the constraint set for CX(Y )
is a subset of the constraint set for G(X;Y ). The last
inequality follows from the fact that Y belongs to the
constraint set as well.

Note that CX(Y ) = I(X;Y ) implies that
CW (X;Y ) = I(X;Y ) = CX(Y ). It is a well-
known fact that CW (X;Y ) = I(X;Y ) is equivalent
to CGK(X;Y ) = I(X;Y ). Thus, CX(Y ) = I(X;Y )
implies that CGK(X;Y ) = CW (X;Y ). As Wyner [10,
p. 166] pointed out, these two notions of common
information are equal if and only if it is possible to
write X = (X ′, V ) and Y = (Y ′, V ) such that X ′

and Y ′ are conditionally independent given V . Hence
CX(Y ) = I(X;Y ) implies this decomposition. For the
converse, suppose that we have the decomposition X =
(X ′, V ) and Y = (Y ′, V ) such that X ′ → V → Y ′.
It is easy to show that for any random variable W that
satisfies X → W → Y and H(W |Y ) = 0, there exits
a deterministic function f such that V = f(W ) with
probability one. Hence, on the one hand,

max
W :X→W→Y
H(W |Y )=0

H(Y |W ) ≤ H(Y |V ),

and on the other hand, since V also satisfies both
conditions of W , we have

max
W :X→W→Y
H(W |Y )=0

H(Y |W ) ≥ H(Y |V ),

and therefore, DX(Y ) = H(Y |V ) = H(Y |X) and
consequently CX(Y ) = I(X;Y ).

2) CX(Y ) = 0 if and only if X⊥⊥Y .

Proof. Suppose CX(Y ) = 0. By the first inequality
in (23), we have I(X;Y ) = 0 which implies X⊥⊥Y .
Conversely, if X⊥⊥Y , then we have the following trivial
Markov chain X → c → Y for any constant c. This
implies CX(Y ) = 0.

3) (Data-processing inequality) For any U such that U →
X → Y , we have CU (Y ) ≤ CX(Y ).

Proof. Let W ∗ attain the CX(Y ). Hence we have the
Markov chain U → X → W ∗ → Y and also
H(W ∗|Y ) = 0. It then follows by the definition that
CU (Y ) ≤ H(W ∗) = CX(Y ).

B. Calculation of DX(Y )

In this section we solve the maximization in the definition
of DX(Y ). To do this, we need a definition which also
appears in [12], [14] and [15].

Definition 2. Given two random variables X ∈ X and Y ∈
Y , let TX : Y → P(X ) be defined by y → PX|Y (·|y) where
P(X ) is the simplex of probability distribution on X .

To solve the maximization in the definition of DX(Y ), we
need the following two lemmas from [16].

Lemma 2 ( [16]). The random variable TX (Y ) satisfies the
Markov chain X → TX (Y )→ Y .

This lemma shows that the random variable TX (Y ) is
basically a sufficient statistics of Y with respect to X .

Lemma 3 ( [16]). Let X,Y and V form a Markov chain,
X → V → Y and also H(V |Y ) = 0. Then there exists
a deterministic function g, such that TX (Y ) = g(V ) with
probability one.

This lemma together with Lemma 2 implies that TX (Y ) is
the minimal sufficient statistics of Y with respect to X , i.e.,
all other sufficient statistics of Y are a function of TX (Y ).

The following theorem shows that TX (Y ) solves the
minimization in the definition of CX(Y ).

Theorem 3. For any pair of random variables (X,Y ) with
joint distribution PXY , we have

DX(Y ) = H(Y )−H(TX (Y )).

Proof. Since H(Y |W ) = H(Y ) − H(W ) for all W that
satisfies the condition H(W |Y ) = 0, we will show that
TX (Y ) minimizes H(W ) over all W that satisfies Markov
chain X → W → Y and H(W |Y ) = 0. Note that
Lemma 2 shows that TX (Y ) belongs to the constraint set



of the maximization in the theorem and Lemma 3 shows
that TX (Y ) has the smallest entropy among all the random
variables in the constraint set. These two lemmas therefore
together imply that H(Y |W ) attains its maximum value at
W = TX (Y ).

As mentioned before, CX(Y ) ≤ H(Y ). From the previ-
ous theorem we can now give the condition under which
CX(Y ) = H(Y ). Assume that Y = {y1, y2, . . . , ym}.

Lemma 4. CX(Y ) = H(Y ) if and only if there exists no
y1, y2 ∈ Y such that PX|Y (·|y1) = PX|Y (·|y2).

Proof. From Theorem 3, it is easy to see that if for all
y ∈ Y , PX|Y (·|y) are different, then CX(Y ) = H(Y ). Con-
versely, suppose that W ∗ attains CX(Y ) and also suppose
H(W ∗) = H(Y ). Assume that there exist y1 and y2 such
that PX|Y (·|y1) = PX|Y (·|y2). Then define a new random
variable Ỹ which takes on values on set {y′, y3, . . . , ym}
with probabilities (PY (y1)+PY (y2), PY (y3), . . . , PY (ym)).
This random variable satisfies the conditions X → Ỹ → Y
and H(Ỹ |Y ) = 0. However, H(Ỹ ) < H(Y ) = H(W ∗)
which contradicts the minimality of W ∗.

C. Connecting DX(Y ) with g0(X;Y )

Considering the definition of CX(Y ), one can loosely say
that all the information contained in Y which is correlated
with X is concentrated on TX (Y ), and therefore DX(Y )
represents the amount of information contained in Y and
not correlated with X . This suggests that DX(Y ) is equal
to g0(X;Y ). In what follows, we study two different cases
where DX(Y ) = g0(X;Y ). First we look at the case when
CX(Y ) = I(X;Y ). We previously showed that this happens
if and only if there exists the decomposition X = (X ′, V )
and Y = (Y ′, V ) such that Y ′ is conditionally independent
of X ′ given V . In this case, DX(Y ) = H(Y |X). It is
straightforward to show that in this case we have g0(X;Y ) ≤
H(Y ′|V ). To see this, assume otherwise, that is, suppose that
there exists a random variable, say, Z such that Z⊥⊥X and
also I(Y ;Z) > H(Y ′|V ). Since

I(Y ;Z) = I(Y ′, V ;Z) = I(V ;Z) + I(Y ′;Z|V ),

the assumption I(Y ;Z) > H(Y ′|V ) implies

I(V ;Z) > H(Y ′|V,Z).

This contradicts our assumption that Z⊥⊥X = (X ′, V ).
Hence we conclude that g0(X;Y ) ≤ H(Y ′|V ). One special
case of this decomposition is the case studied by Wyner [10]
where X ′, Y ′ and V are mutually independent. Consider
now the following deterministic function f acting on Y =
(Y ′, V ), defined by f(y) = (y′, 0). Then we set Z = f(Y )
and hence the privacy filter is PY ′|Y . By construction we have
Z⊥⊥(V,X ′) and hence Z⊥⊥X . Note that I(Y ;Z) = H(Z) =
H(Y ′). Since we showed above that g0(X;Y ) ≤ H(Y ′|V )
and since in this special case H(Y ′|V ) = H(Y ′), one can
conclude that g0(X;Y ) = H(Y ′). Therefore, in this case the
equality DX(Y ) = g0(X;Y ) holds.

The second setting that we examine is the binary case.
From Theorem 1 we know that g0(X;Y ) = 0 for any binary
correlated X and Y .

Suppose X = Y = {0, 1}, Y ∼ Bernoulli(p), PX|Y (·|0) =
Bernoulli(α) and PX|Y (·|1) = Bernoulli(β). The condition
H(W |Y ) = 0 implies that there exists a deterministic
function f : Y → W with |W| ≤ |Y| such that W = f(Y )
and therefore, PW |Y (w|y) = 1{w=f(y)}. The only possible
cases for PW |Y are

PW |Y =

[
0 1
1 0

]
and

PW |Y =

[
1 0
0 1

]
where each column corresponds to a value of Y ∈ {0, 1}.
Thus W ∼ Bernoulli(p) or W ∼ Bernoulli(1 − p). In
either case, H(W ) = H(Y ). Hence, CX(Y ) = H(Y ), i.e.,
DX(Y ) = 0 and thus g0(X;Y ) = DX(Y ) = 0 which
is what we wanted to show. Note that this argument does
not depend on the cardinality of X . In other words, it is
impossible to send any information at non-zero rate with
zero privacy leakage when |Y| = 2 which is a restatement
of Lemma 1.

Although the relation DX(Y ) = g0(X;Y ) holds for the
two cases described above, in the following example we have
g0(X;Y ) > DX(Y ).

Example 1. Consider X distributed according to
Bernoulli(p) and the binary erasure channel PY |X with
erasure probability δ. The output alphabet is therefore
ternary {0, e, 1} where e denotes the erasure. Letting
Z = f(Y ) where f maps Y = 1 and Y = 0 to 1 and e to
0, we conclude that g0(X;Y ) ≥ h(δ). On the other hand,
H(Y |X) = h(δ) which implies that g0(X;Y ) = h(δ).
Furthermore, Lemma 4 implies that CX(Y ) = H(Y ) and
thus DX(Y ) = 0. Therefore, although DX(Y ) = 0, we can
extract independent information of X from Y with positive
rate.

In general, one can ask under what condition on PXY does
the relation DX(Y ) = g0(X;Y ) hold?

V. CONCLUSION

In this paper we defined a new privacy-utility tradeoff
where both privacy and utility are measured in terms of
mutual information. The resulting rate-privacy function char-
acterizes the best utility when the privacy leakage is required
to be less than ε. For the case when ε = 0 (perfect privacy) we
calculated the rate-privacy function for the binary case. We
also introduced a new quantity which quantifies the private
information contained in the observable data and examined
the connection between this quantity and the rate-privacy
function.
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