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Abstract — We derive a closed-form expression for the
exact pairwise error probability (PEP) of a non-uniform
memoryless binary source transmitted over a Rayleigh
fading channel using space-time orthogonal block codes
and maximum a posteriori (MAP) detection. The expres-
sion is easy to evaluate and holds for any signaling scheme.
We then use this result to minimize the bit error rate of
the binary antipodal signaling scheme. Numerical results
for the case of binary antipodal signaling (BPSK and opti-
mal) verify the accuracy of our formula and quantify sub-
stantial gains of MAP decoding over maximum likelihood
(ML) decoding for sources with strong non-uniformity.

I. INTRODUCTION
The original papers published on space-time orthogonal

block (STOB) codes [11] adopt the Chernoff upper bound to
estimate the pairwise error probability of codewords and de-
rive code design criteria. Although the Chernoff bound results
in successful code constructions, it is quite loose even at high
values of channel signal-to-noise ratio (CSNR). It is common
practice in the literature to use the union bound to approximate
the system symbol error rate (SER) or bit error rate (BER).
However, the union bound is intrinsically loose, particularly
at low CSNRs. Therefore, using the Chernoff bound together
with the union bound results in poor approximations to system
performance.
For maximum likelihood (ML) decoding, the main chal-

lenge in finding the PEP of the symbols is to find the expected
value of where is the Gaussian -function and
is a non-negative random variable. In [12], an expression

for the exact PEP of space-time trellis codes is found and used
to derive an upper bound on the BER. Another way to numer-
ically compute the PEP is described in [10], which is easier to
compute in certain cases. In [4], simple formulas in closed-
form for the exact PEP of space-time (trellis and block orthog-
onal) coded equally likely symbols are established for the case
of ML decoded slow Rayleigh fading channels and very tight
upper and lower bounds on system SER and BER are derived.
In this work, we consider a non-uniform memoryless bi-

nary source and provide the exact PEP for STOB coded trans-
mission of symbols for any two dimensional constellation.
We also examine how the exploitation of the source non-
uniformity at the transmitter and/or the receiver can improve
the performance of STOB coded systems. In particular, the
effects of MAP decoding and constellation design for binary
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signaling are addressed. As will be seen in the sequel, MAP
detection requires finding the expected value of ,
where is a real number. This is more involved than the
ML decoding case. However, we demonstrate that, when the
source is strongly non-uniform, there can be a large gain in
performing MAP decoding as compared with ML decoding.
This is consistent with previous joint source-channel coding
work regarding the transmission of non-uniform sources in
single antenna systems (e.g., [1, 2, 5, 9, 13]). To the best of
our knowledge, there is no work in the literature on perfor-
mance analysis or simulation of space-time codes under MAP
decoding.

II. SYSTEM MODEL

The multi-antenna communication system considered here
employs transmit and receive antennas. The input
to the system is an independent and identically distributed
(i.i.d.) bit-stream which can have non-uniform distri-
bution. The complex baseband constellation points are de-
noted by where is a positive integer. We assume
that the signal constellation has an average energy of one,
i.e., , where and

is the bit-string corresponding to symbol . In or-
der to have an average transmit power of , the modula-
tors weight the symbols by . The channel is assumed
to be Rayleigh flat fading, so that the complex path gain from
transmit antenna to receive antenna , denoted by , has
a zero-mean unit-variance complex Gaussian distribution, de-
noted by , with i.i.d. real and imaginary parts. We
assume that the receiver, but not the transmitter, has per-
fect knowledge of the path gains. Moreover, we assume that
the channel is quasi-static, meaning that the path gains re-
main constant during a codeword transmission, but vary in
an i.i.d. fashion from one codeword interval to the other. The
additive noise at receiver at symbol interval , , is as-
sumed to be distributed with i.i.d. real and imagi-
nary parts. For a CSNR of at each receive antenna
and at time , the signal at receive antenna can be written as

, where is the signal
sent from antenna , or in matrix form,

(1)

Due to the structure of STOB codes, the constellation point representing
each tuple of information bits is used by each antenna an equal number
of times; thus the average signal energy for each antenna is the same (and
equals ).



where , ,
, and denotes transposition. is the

path gains matrix with elements .

III. THE MAP DECODING RULE
In the case of STOB codes with a codeword length of

symbol intervals, (1) can be written as [7]

(2)

where and for ,
and for , indicates the
vector of transmitted symbols ( is a function of and the
STOB code), indicates complex conjugation, and is de-
rived from the th row of via negation and/or complex
conjugation of some of its entries. It is clear that are
i.i.d. .
The matrix has orthogonal columns, i.e.,
, where denotes the complex conjugate transpose op-

eration, is the identity matrix, , and
is the inverse of the code rate. Therefore, (2) can be multiplied
from the left by to yield

where Note that each entry of is associated
with only one symbol. It is not hard to verify that the distribu-
tion of the noise sample at an arbitrary symbol interval
and an arbitrary receive antenna is given by

i.i.d. (3)

This shows that the noise vector is composed of
i.i.d. randomvariables, hence symbol can be detected by only
considering the th entry of the vectors , . Since,
given , is an invertible function of , MAP decoding can
be based on instead of in the following way

argmax

argmax

argmax (4)

argmax (5)

where , and (4) and (5) hold because are
i.i.d. and Gaussian, respectively, as shown in (3).

IV. EXACT PAIRWISE ERROR PROBABILITY WITH MAP
DETECTION

A. The Conditional PEP

Without loss of generality, we consider MAP decoding for
the th symbol period. The error probabilities may be deter-
mined using the MAP detection metric given in (5). The re-
ceiver should evaluate this metric for all symbols given that

is transmitted (hence ) and decide in favor
of the one which yields a larger result. Denoting the proba-
bility that “ has a larger metric than when is sent” by

, we want the probability of the event that
the expression between the brackets in (5) is larger for . This
event is equivalent to

(6)
where , , and

and indicate real and imaginary parts, respectively.
From (3), it follows that are i.i.d. .
Hence the distribution of the sum on the left hand side of (6) is

, and the probability of the event in (6), which
is the PEP conditioned on the path gains, is given by

(7)

where is the sum of the
squared magnitudes of all path gains.

B. The Average (Unconditional) PEP

To find the unconditional PEP, one should average (7) with
respect to . Using the moment generating function of normal
random variables, one can verify that is a chi-squared ran-
dom variable with degrees of freedom, with a probability
density function (pdf) given by

The average of (7) can then be written as

(8)

where and . We
note that the integral in (8) is the Laplace transform of

evaluated at . We know that if
and are Laplace transform pairs ( ),

so are and . Therefore, we need to find
the st derivative of

sgn

sgn (9)

where sgn if and 0 otherwise. We find
the st derivative of (9) using induction and some al-
gebra. The result is equation (10) which gives the exact
PEP of MAP decoded space-time orthogonal block codes



sgn

sgn (10)

C. The PEP of ML Decoded STOB Codes

For uniform sources, we have , and
MAP decoding reduces to ML decoding. In this case,

. Hence, the first sum in (10) is non-zero only
for (we assume that if ), and
we have

which agrees with the result we derived in [4].

V. THE OPTIMUM BINARY ANTIPODAL SIGNALING
In this section we consider binary antipodal signaling and

optimize it in the sense of minimizing the BER given by

BER
(11)

Normally, one should use the averaged PEP in (11) with
and , differentiate the result, and find the optimal
and . However, this can be a tedious job considering the

PEP given in (10). Therefore, we use the PEPs at the receiver
side, i.e., given , to find the solution in an easier way. The
optimal constellation derived in this way will not depend on
, justifying our approach.
Let us assume that , and the bits 0 and 1 are

mapped to and , respectively. Letting
, and , with as

defined below (7), we can write the BER conditioned on as

BER

(12)
It is easy to verify that the BER is a strictly decreasing func-
tion of (regardless of ). Hence, given and , in order
to minimize the BER, one has to maximize . Note that is
a scaled distance between the constellation points, therefore,
signaling schemes with the same distance between their sig-
nals have identical performance. It is clear that the constella-
tion with constant average signal energy which maximizes
is the zero-mean constellation, because a constellation with

a non-zero mean can simply be shifted to reduce its energy
without performance loss.
From the zero-mean condition, we have , and the

average energy condition requires that

The above two equalities result in

which is therefore the optimal binary antipodal constellation.
The above constellation is identical to the antipodal signal-

ing result in [6] for the case of the AWGN channel.

VI. SIMULATION RESULTS
It suffices to study the BER of binary antipodal signaling

to show the exactness of our PEP formulas. We simulate the
transmission of an i.i.d. bit sequence over the MIMO channel.
The length of the bit-sequence is min BER bits.
We consider a system with two transmit and one receive an-

tennas using Alamouti’s space-time code [3] in Figure 1. We
remark that the analysis and simulation curves coincide every-
where. This simulation also indicates how MAP decoding can
improve performance. The MAP decoding gain over ML de-
coding is 0.63, 1.57, and 5.98 dB for , and ,
respectively, at BER= .
Figure 2 shows the analysis and simulation curves for a sys-

tem with a uniform source ( ), three transmit and vari-
ous receive antennas, which employs the code in [11]. As
expected, using more receive antennas improves system per-
formance. For example, at BER = there is a gain of 6.9,
9.5, and 11.3 dB in using 2, 3, and 4 receive antennas instead
of only one.
Figure 3 presents the results of Section V. It shows that a

large gain can be obtained through optimization of the con-
stellation according to the prior probabilities. At a BER of

, the gain of using the modified constellation and MAP
detection is 2.7, 6.1, and 20.1 dB, for and ,
respectively, over an ML decoded system with BPSK modula-
tion.
In Figure 4 we compare four systems, i.e., two systems with

BPSK signaling and ML or MAP decoding, and two systems
with optimum signaling andML orMAP decoding. These sys-
tems are indicated by ML symmetric, MAP symmetric, ML
optimum, andMAP optimum, respectively. We note that if the
CSNR is high enough, optimum signaling and ML detection
outperforms BPSK and MAP detection. This is because when
receiver noise is strong (low ), the second term in the ar-
gument of the function in (7) has a dominant effect; hence
MAP decoding and BPSK signaling is more effective than ML
decoding and optimum signaling. In less noisy channel con-
ditions (high ), the first term in the argument of the func-
tion becomes dominant and henceML decodingwith optimum
signaling outperformsMAP decoding with symmetric signals.
As previously mentioned, MAP decoding with optimum sig-
naling is always better than the other systems.
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Figure 1: Results for BPSK signaling. .
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Figure 2: Results for BPSK signaling. , .
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Figure 3: Results for the optimum binary antipodal signaling.
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Figure 4: Comparison between BPSK and optimum signaling
schemes. .


