
MAP Decoding of Quantized Sources over

Soft-Decision Fading Channels with Memory

Shervin Shahidi

sshahidi@comm.utoronto.ca

Fady Alajaji

fady@mast.queensu.ca

Tamás Linder

linder@mast.queensu.ca

Abstract—We study a joint source-channel decoding scheme
that exploits the channel’s statistical memory and soft-decision
information in fading channels. The channel considered is a
recently introduced binary input 2

q-ary output channel with
Markovian ergodic noise based on a finite queue (called NBNDC-
QB). This model has been shown to effectively represent soft-
decision demodulated correlated Rayleigh fading channels. The
coding scheme consists of a scalar quantizer, a proper index
assignment, and a sequence maximum a posteriori (MAP) de-
coder designed to harness the redundancy left in the quantizer’s
indices, the channel’s soft-decision output, and correlation in the
channel noise process. We first consider the simple case where
the quantized indices form a binary symmetric Markov source
and establish a necessary and sufficient condition under which
the sequence MAP decoder is reduced to a simple instantaneous
symbol-by-symbol decoder. We next assess the signal-to-distortion
ratio (SDR) performance of our general system. Our numerical

results confirm that this system can successfully take advantage of
the channel memory and outperforms systems that use channel
interleaving by as much as 2.6 dB in SDR. In addition, SDR
gains of up to 2.8 dB are achieved using as few as 2 bits for
soft-decision quantization over hard quantized output schemes.
Finally, the NBNDC-QB channel model is validated in terms
of SDR performance by fitting the NBNDC-QB model to a
discrete correlated Rayleigh fading channel, designing a system
for this matched NBNDC-QB model, and comparing this system’s
performance over both the NBNDC-QB and the Rayleigh fading
channels.

I. INTRODUCTION

It is well known that the separate treatment of source

and channel coding, as in Shannon’s source-channel coding

theorem [1], is not optimal in the presence of complexity

and delay constraints. For lossy coding, a variety of different

joint-source channel coding schemes have been proposed to

address this problem (such as [2]–[6] and many others). It

is also known that if a channel is well-behaved (ergodic)

and has memory, then its capacity is strictly greater than

the capacity of its memoryless counterpart (a channel with

identical one-dimensional transition distribution) realized via

ideal (infinite-depth) block interleaving [7], [8]. Consequently,

a communication system can be designed to take advantage of

the channel’s memory so that it can outperform systems that

discard such memory via interleaving. Furthermore, effective
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use of the channel’s soft-decision information can improve

capacity and system performance over hard-decision decoded

schemes (e.g., see [9]–[12]).

In this paper, we study the sequence maximum-a-posteriori

(MAP) decoding problem of quantized sources over a non-

binary noise discrete channel (NBNDC) and the correlated

Rayleigh fading channel used with soft-decoding demodula-

tion. This extends the work of [4] where only binary output

channels with Markov noise were considered. Our system uses

a scalar quantizer (SQ) designed for a noiseless channel and

applied to an analog-valued source; the SQ output is passed

through an index assignment mapping (without the use of

algebraic channel coding) and then sent over the channel.

The channel output is soft-demodulated with resolution of

q bits and delivered to a sequence MAP detector to combat

channel errors. As in [4], we refer to such a coding scheme

as SQ-MAP. We use scalar quantization, rather than vector

quantization (VQ), since although VQ achieves better signal-

to-distortion (SDR) performance than SQ when the channel is

noiseless, it retains less redundancy in the index codewords

at the quantizer output that can be exploited (together with

the channel memory) by the MAP decoder. Consequently, in

this channel uncoded system the overall performance of VQ

is not necessarily better than that of SQ. It is important to

mention that the SQ-MAP scheme is designed to minimize the

sequence error probability, while we evaluate the performance

of the system via the signal-to-distortion ratio (SDR) with

the mean square error (MSE) distortion measure. Hence, the

SQ-MAP is not necessarily optimal in terms of achieving

minimum mean square error (MMSE). However, this system

has tractably low complexity as well as good performance ac-

cording to simulations results, which makes it an efficient joint

source-channel coding scheme. We also prove a necessary and

sufficient condition under which the sequence MAP detector

in the SQ-MAP system with rate one over the NBNDC-QB

reduces to an instantaneous symbol-by-symbol mapping.

The NBNDC channel model we consider for representing

the fading channel was recently introduced in [13]. This model

is more general than the binary Markov channel used in [4]

and subsumes it as a special case. The channel has a binary

input and 2q-ary output. The noise process is a generalization
of the finite queue based (QB) noise model introduced in [8].

We show that the NBNDC with QB noise, which we denote

by NBNDC-QB, is able to model the Rayleigh discrete fading



channel (DFC) in terms of SDR performance. Note that no

closed form expression for the block transition probabilities

of the correlated Rayleigh DFC is known for block lengths

greater than three [13], which makes the implementation

of MAP decoding on this channel very hard. On the other

hand, the NBNDC-QB admits a tractable closed form block

transition distribution in terms of a few parameters.

The rest of the paper is organized as follows. In Section

II, the channel models are explained in detail. The coding

scheme is described in Section III. Details of the system

implementation as well as a theoretical result about the MAP

detector are provided. Section IV is devoted to numerical

results and conclusions are given in Section V.

II. NBNDC-QB AND DFC CHANNEL MODELS

In this section we review two channel models: the NBNDC

with queue-based noise (NBNDC-QB) and the Rayleigh DFC.

Furthermore, we observe that the Rayleigh DFC is a special

case of the NBNDC.

A. NBNDC with queue-based noise

The NBNDC-QB is a binary-input and 2q-ary-output chan-
nel model [13]. The channel noise is modeled via a 2q-ary
stationary and ergodic M th-order Markov process described

by 2q + 2 independent parameters. We note that the number

of model parameters does not depend on the channel memory

M , keeping the complexity of the model independent of the

memory order. On the other hand, the number of model

parameters is exponentially proportional to q, although typical
values for q are as low as 2 or 3. Specifically, the input data

bits Xj are affected by the noise Zj via the relation

Yj = (2q − 1)Xj + (−1)XjZj , (1)

where Yj , Zj ∈ {0, 1, . . . , 2q − 1} for j = 1, 2, . . ., with
{Xj} denoting the channel input binary process and {Yj}
denoting the channel output 2q-ary process. Also, the 2q-ary
noise process {Zj} is assumed to be independent of {Xj}, so
that

Pr{Y m = ym | Xm = xm} = Pr{Zm = zm}, (2)

where xm = (x1, x2, . . . , xm), ym = (y1, y2, . . . , ym), and
zm = (z1, z2, . . . , zm) is given by

zk =
yk − (2q − 1)xk

(−1)xk
, k = 1, 2, . . . ,m. (3)

The noise process is a non-binary generalization of the

queue-based (QB) noise [8]. In this model, each noise symbol

is considered as a numbered ball, either selected from an urn

(with probability 1 − ε) or from a finite queue of length

M (with probability ε). The urn contains a large set of

numbered balls, such that a ball with number i (representing
the noise symbol i) is selected from the urn with probability

ρi, i ∈ {0, 1, . . . , 2q − 1}. The finite queue is updated every

time a noise symbol is generated. See [13] for a detailed

description of the procedure. The resulting QB noise process

is a stationary ergodicM th order Markov source and has only

2q + 2 independent parameters: the size of the queue M , the

probability distribution of the balls in the urn, and correlation

parameters 0 6 ε < 1 and α > 0.
The state process of the queue based noise {Sn}∞−∞,

which is defined by Sn , (Zn, Zn−1, . . . , Zn−M+1), is a

homogeneous first-order Markov process. Define the noise

state transition probability by

Q(sn|sn−1) , Pr{Sn = sn|Sn−1 = sn−1},
According to [13],

Q(sn|sn−1) =

(

M−1
∑

ℓ=1

δzn,zn−ℓ
+ αδzn,zn−M

)

ε

M − 1 + α

+ (1 − ε)ρzn , (4)

where, δi,j = 1 if i = j and δi,j = 0 if i 6= j.
Them-fold channel transition probability Pr{Zm = zm} ,

P
(m)
NBNDC(z

m) is given by (17) of [13] and the channel noise

correlation is given by

Cor =
E[ZkZk+1]−E[Zk]

2

V ar(Zk)
=

ε
M−1+α

1− (M − 2 + α) ε
M−1+α

.

B. Rayleigh DFC.

The Rayleigh DFC consists of a binary phase-shift keying

(BPSK) modulator, a time-correlated flat Rayleigh fading

channel with additive white Gaussian noise (AWGN), and a

q-bit soft-quantized demodulator. Let the input and output

alphabets be X = {0, 1} and Y = {0, 1, . . . , 2q − 1},
respectively. Denoting the DFC binary input process by {Xk},
the received channel symbols are given by

Rk =
√

EsAkSk +Nk, k = 1, 2, . . .

where Es is the energy of signal sent over the channel, Sk =
2Xk−1 ∈ {−1, 1} is the BPSK modulated signal andNk is an

additive white noise, represented by a sequence of independent

and identically distributed (i.i.d.) Gaussian random variables

of variance N0/2. Here {Ak} is the channel’s fading process

with Ak = |Gk|, where {Gk} is a time-correlated complex

wide-sense stationary Rayleigh process with autocorrelation

function given by R[k] = J0(2πfDT |k|) from Clarke’s

model [14], where fDT is the normalized maximum doppler

frequency and J0(·) is the zeroth-order Bessel function of first
kind. Therefore, each Ak is Rayleigh distributed, with unit

second moment. The fading process {Ak} is assumed to be

independent of the noise and input processes. The channel

signal-to-noise ratio (SNR) is given by SNR= Es/N0.

As the last part of the DFC model, a soft-decision demodu-

lator consisting of a uniform quantizer with resolution q bits,

takes the output Rk to produce the discrete channel output:

Yk = j, ifRk ∈ [T ′
j−1, T

′
j),

where T ′
j are uniformly spaced thresholds with step-size ∆,

such that

T ′
j =







−∞, if j = −1
(j + 1− 2q−1)∆, if j = 0, 1, . . . , 2q − 2
∞, if j = 2q − 1.
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Fig. 1. Block diagram of a joint source-channel coding system using scalar
quantization and MAP decoder (SQ-MAP).

Let δ , ∆/
√
Es and Tj , T ′

j/
√
Es. The channel m-fold

conditional probability for the DFC,

P
(m)
DFC (y

m | xm) , Pr{Y m = ym | Xm = xm}, (5)

can be calculated via (2) in [13]. For m = 1, a closed form

expression for P
(1)
DFC(j), j ∈ Y is given by

P
(1)
DFC(j) = n(−Tj−1)− n(−Tj), (6)

where

n(Tj) = 1−Q(Tj

√
2SNR)−

[

1−Q

(

Tj

√
2√

1
SNR

+1

)]

e
−

T2
j

( 1
SNR

+1)

√

1
SNR

+ 1
,

where Q(·) is the Gaussian Q-function. In general, for m 6 3,

P
(m)
DFC (y

m | xm) can be calculated in closed form. For m > 3,
since the joint probability density functions of arbitrarily cor-

related Rayleigh and Rician random variables are not known in

closed form, it can only be determined via numerical methods.

It can be shown that the DFC is actually an NBNDC as given

by (1) with a stationary ergodic noise process [13].

III. JOINT SOURCE-CHANNEL MAP DECODING OF THE

NBNDC-QB

Consider the communication system depicted in Fig. 1.

The analog source V = {Vi}∞i=1 is assumed to be a real-

valued stationary and ergodic process. The scalar quantizer

(SQ) encoder is a mapping γ from the real domain of source

symbols to the index set {0, 1, . . . , 2n − 1}, such that

γ(v) = i if v ∈ Si,

where {Si : i ∈ {0, 1, . . . , 2n − 1}} is a partition of R.

The partitions are chosen according to Lloyd-Max formulation

in [15], with the initial codebook selection obtained via the

splitting algorithm [16].

The index assignment module is a one-to-one mapping,

which maps each index i to a binary vector x ∈ {0, 1}n

b : {0, 1, . . . , 2n − 1} → {0, 1}n, b(i) = x

where x is represented in binary form. Since the mapping is

one-to-one, for a given index mapping b, we can present the

quantization regions by Sx instead of Si, where b(i) = x.

To assign a binary n-tuple codeword to each index, different
index assignment methods such as the natural binary code

(NBC), the folded binary code (FBC) [4], simulated annealing,

and some heuristic assignment methods were tested. The FBC

was selected because of its simplicity and good performance.

The n-tuple codeword x is then sent bit-by-bit over the

NBNDC-QB channel where it is affected by the error n-tuple
zn. The channel output y ∈ Yn is fed to a MAP decoder where

the data redundancy is used for error correction. Finally, the

SQ decoder β maps the decoder output x̂ into output levels

of the quantizer codebook

β(x̂) = cx̂, cx̂ ∈ R, x̂ ∈ {0, 1}n.

The MAP decoder is designed to minimize the sequence

error probability by exploiting the residual redundancy of the

source and channel model statistics to combat channel errors.

The redundancy ρT , in general, is due to a combination of

non-uniformity of the distribution (ρD) and memory (ρM ),

such that ρT = ρD + ρM . Similar to [4], we first assume an

i.i.d. source and then we modify the metric for sources with

memory. If V is i.i.d. then the SQ encoder output process,

{Xi}, is also i.i.d. Hence ρM = 0 and the only remaining

redundancy is due to source non-uniformity.

The MAP detector can be viewed as a system observing

a sequence of 2q-ary n-tuples yN = (y1,y2, . . . ,yN ) ∈
YnN , where N denotes the number of source symbols to

be transmitted over the channel and n is the codeword

length. yN is a noisy observation of the source sequence

xN = (x1,x2, . . . ,xN ) ∈ XnN . The channel contam-

inates the source bits via 2q-ary error symbols znN =
(z1, z2, . . . , znN ) ∈ YnN . Note that since the transmission

over the channel is done bit-by-bit (and not n-tuple by n-
tuple), we represent the noise sequence using a bit-by-bit

notation so that the noise symbols (zni+1, zni+2, . . . , z(n+1)i),
i ∈ {0, 1, . . . , N−1} correspond to the input n-tuple xi+1 and

output n-tuple yi+1. The MAP decoder estimates xN by x̂N

according to

x̂N = argmax
xN

Pr{XN = xN | YN = yN}.

It can be shown that the above equation is equivalent to

x̂N = arg max
xN∈{0,1}nN

Pr{YN = yN | XN = xN} ×

Pr{XN = xN}
= arg max

xN∈{0,1}nN
Pr{ZnN = znN}Pr{XN = xN}

= arg max
xN∈{0,1}nN

(7)

[

Q(zn1 )P (x1)
N−1
∏

i=1

(

Q(zni+n
ni+1 |zni1 )P (xi+1)

)

]

,

where each zi, i = 1, 2, . . . , nN is given by (3),

Q(zi+j
i+1|zii−k) , Pr{Zi+1 = zi+1, Zi+2 = zi+2, . . . , Zi+j =

zi+j |Zi = zi, . . . , Zi−k = zi−k}, i, j, k ∈ {1, 2, . . . , nN −
1}, i + j ≤ nN, i − k ≥ 1, and P (xi) , Pr{Xi = xi} is

the probability mass function (pmf) of the n-tuple codewords.



Note that since the NBNDC-QB is Markovian with memory

order M , for nN > M (which is always the considered case

since N is assumed to be large) it can be shown that (7) is

equivalent to

x̂N = argmax
xN

{log[P (n)
NBNDC-QB(z

n
1 )p(x1)] + (8)

N−1
∑

i=1

log[Q(z
(i+1)n
in+1 | zinin−(M−1))p(xi+1)]},

where

Q(zj+n
j+1 | zj

j−(M−1)) = (9)

j+n
∏

i=j+1









i−1
∑

ℓ=i−(M−1)

δzi,zℓ + αδzi,zi−M



× ε

M − 1 + α
+(1− ε)ρzi



,

which is obtained from (4), zi , 0 if i < 1, zji =

(zi, zi+1, . . . , zj), j ≥ i, P
(n)
NBNDC-QB(z

n
1 ) = Pr{Zn

1 = zn1 } is

given via (17) of [13], and each z is related to its corresponding
symbols x, y via (3).

In view of (8) and (9), the MAP detection can be imple-

mented using a modified version of the Viterbi algorithm. We

consider the state space to be the set of all possible n-tuple
codewords. Therefore, the trellis has 2n states, each having 2n

incoming and outgoing branches and the path metric at step i
is

log[Q(z
(i+1)n
in+1 | zinin−(M−1))P (xi)].

When the source has memory, we assume that it forms a dis-

crete Markov chain of order 1 with state transition probability

matrix P (xi | xi−1), and the path metric will be updated to

log[Q(z
(i+1)n
in+1 | zinin−(M−1))P (xi | xi−1)].

The pmf P (xi) and state transition matrix [P (xi | xi−1)] of
the source codewords are calculated from a training set of

symbols (the same training set used for designing the SQ).

A special case of the MAP decoder

It is useful to know when it is possible to replace the MAP

detector with an instantaneous (symbol-by-symbol) decoding

rule, without sacrificing the system’s optimality in terms of

the probability of sequence error.

The answer to this question is partly given in [17], for n =
M = q = 1. To be more specific, for q = 1 the NBNDC model

is identical to the queue based channel (QBC) model which is

introduced in [8]. It is shown there that for α = 1 (which is

the case here since M = 1), the channel reduces to the binary
Markov channel introduced in [18]. Theorem 1 of [17] states

necessary and sufficient conditions for the MAP decoder to be

useless over a binary Markov channel and for binary Markov

sources. In this case, a MAP decoder is defined to be useless

when it decodes what is sees (i.e., X̂N = Y N ). As a result,

[17] shows that under certain conditions, it is optimal to skip

the MAP decoder and believe in what is seen at the receiver.

Note that skipping the decoder can only be applied for q = 1
where the output sequence is also binary. On the other hand,

for q ≥ 2, the received sequence is not binary; hence, we use
a mapping θ(yi) = ỹi, yi ∈ Y, ỹi ∈ X , in order to convert

the 2q-ary received sequence Y N , into a binary sequence Ỹ N ,

using the rule

ỹi =

{

0, if yi < 2q−1;

1, if yi ≥ 2q−1.

We note that θ is the optimum instantaneous symbol-by-

symbol detector for a symmetric Markov source. Since θ is

also (trivially) defined for q = 1 (ỹ = y), Theorem 1 of

[17] yields necessary and sufficient conditions for the mapping

θ to be an optimal sequence detection rule for q = 1. We

herein establish the following theorem which gives a necessary

and sufficient condition for the mapping θ to be an optimal

sequence detection rule for q > 1, where the Markov source

is binary symmetric and n = 1.
Theorem 1: For a symmetric binary Markov source with

p00 = p11 ∈ [ 12 , 1], where pij = Pr{Xn = j|Xn−1 =
j}, i, j ∈ {0, 1}, and the NBNDC-QB with correlation

parameter ε ≥ 0, memory order M = 1, q > 1, and satisfying
ρ0 ≥ ρ1 ≥ ρ2 ≥ . . . ≥ ρ2q−1, assume that sequence length

N ≥ 3, X1 = Ỹ1, and XN = ỸN . Then X̂N = Ỹ N is an

optimal sequence MAP detection rule if and only if

ρ2q−1−1

ρ2q−1

×
[

1− p00
p00

]2

≥ 1, (10)

where Ỹ N = θ(Y N ) is obtained via applying the mapping θ
component-wise to Y N .

Theorem 1 is illustrated in Table I for a binary symmetric

Markov source with p00 = 0.6 and 0.7, where C is the

left-hand term of (10). In the table, the NBNDC-QB’s one-

dimensional noise distribution is calculated by matching it to

that of the underlying DFC; i.e., by setting ρj = P
(1)
DFC(j) as

given in (6) in terms of SNR, q and δ, where the values of δ
are chosen so that the capacity of the DFC is maximized. (This

is also done in the numerical results section below.) From the

table we clearly observe that when C < 1 the MAP decoder

is performing better than the mapping θ, while for the cases
with C ≥ 1 the MAP decoder and the instantaneous mapping

θ are performing identically.

IV. NUMERICAL RESULTS

We now present numerical results on the performance of the

described communication system over both the NBNDC-QB

model and the underlying Rayleigh DFC.

Several source distributions are tested, including memory-

less (i.i.d.) Gaussian and Laplacian sources and correlated

Gauss-Markov sources. All of the sources have zero mean and

unit variance. The correlated source is modeled via a Markov

process of first-order : Vi = φVi−1 +Ui where φ ∈ (−1, 1) is
the correlation parameter and {Ui} is a Gaussian i.i.d. process.
For each simulation, the SQ training and statistics collection

is done over a set of 106 source symbols. For testing, inde-

pendently generated N = 105 source symbols are transmitted
and the signal-to-distortion ratio (SDR) per source symbol is



calculated. We ran each simulation 10 times and took average

for ensuring consistent results.

A. Exploiting memory and soft-decision quantization

Table II depicts simulation results (in dB) for different

sources over the NBNDC-QB model with several parameters

of SNR, SQ codeword length n, noise correlation Cor, and

soft-decision resolution q.

Memoryless sources

As can be seen from the table, the performance of a system

with high noise correlation can be significantly better than a

system working over a fully-interleaved (Cor = 0) channel.
For example, more than 2.2 dB of SDR gain is obtained for

memoryless Gaussian sources at q = 2, n = 3, SNR = 10.
Furthermore, for n = 1 since the quantized codewords form a

symmetric i.i.d. source, the results illustrate Theorem 1 of [17]

and Theorem 1 of Section III (compare the results of Tables

II and III for n = 1). Considerable gain (up to 2.25 dB) are

also obtained by increasing the quantizer resolution to q = 2
(at n = 3, SNR = 5, Cor = 0.9 for Laplacian sources).

Gauss-Markov sources

For Gauss-Markov sources, we have up to 2.6 dB SDR

gain (at q = 2, n = 3, SNR = 2), by exploiting the noise

correlation instead of interleaving the channel. As can be seen,

in general better performance is observed when channel is

highly correlated.

At low rates, especially at n = 1, the SDR performance for

the correlated channel is worse than that for the uncorrelated

channel. This behavior was expected for n = 1 and q = 1
using Corollary 3 of [17]. According to this theorem and

the numerical results, for the correlated channel, the source

memory has a mismatch with the channel memory. As a

result, increasing the channel noise correlation will also in-

crease the mismatch between the source and channel memory

information. This makes the SQ-MAP perform worse on

correlated channels than over uncorrelated channels. However,

this mismatch does not occur for higher rates (n > 2) and the
SDR performance of the system significantly improves with

increasing channel noise correlation.

It is also observed that system gains up to 2.8 dB (at n = 3,
SNR = 2, Cor = 0.9 for Gauss-Markov sources) using only

a 2-bit soft-decision quantizer in the receiver over a hard-

decision quantizer (q = 1). More gain is obtained for a 3-bit

quantizer.

B. Validating the NBNDC-QB model

We next assess how well the NBNDC-QB model can

approximate the correlated Rayleigh DFC in terms of SDR

performance of the SQ-MAP system.

For a given DFC (with fixed SNR and fDT ) and q,
we choose the value of δ that maximizes the DFC’s ca-

pacity. We also choose the parameters of the NBNDC-QB,

(ρ0, ρ1, · · · , ρ2q−1), M , ǫ and α, so that the two channel

models are as close to each other as possible. We have

used the values given in [19] in which the Kullback-Leibler

(KL) divergence rate between the two channel (2q-ary) noise
processes is minimized overM, ε, α for fDT ∈ {0.005, 0.01},
SNR(dB) ∈ {2.0, 5.0, 10.0, 15.0}, q = 2, ρj = P

(1)
DFC(j) from

(5), and the δ value which maximizes the DFC capacity.

To simulate the Rayleigh DFC, we generate the fading

coefficients using the modified Clarke’s method introduced in

[20]. Simulation results (over the NBNDC-QB and Rayleigh

DFC channels) in terms of SDR are shown in Table IV for

memoryless i.i.d. Gaussian sources. Both systems use the same

MAP decoder designed for the NBNDC-QB.

Comparing the performance of the system for the two

channels, we observe that for lower rates (codeword lengths

n = 1 and 2), there is a good conformity between the

results for the two channel models. This agreement in SDR

performance can be heuristically explained by noting that for

low rates (n = 1 and 2), the SQ output sent to the channel

input is nearly i.i.d. uniform. But the NBNDC-QB and DFC

channels were matched by minimizing the divergence rate

between their noise processes. Hence, when both channels are

driven by the same capacity-achieving input (which must be

i.i.d. uniform as both channels are symmetric), they will then

have a similar probability of error performance in addition

to nearly identical capacities. The same agreement in SDR

performance is also observed for memoryless Laplacian and

Gauss-Markov sources for n = 1. We finally note that for

n ≥ 3, some disagreement in SDR performance is observed

between the two systems (in this case the SQ output is not

i.i.d. uniform).

V. CONCLUSION

We designed a scalar quantizer MAP decoding system

for the recently introduced channel model NBNDC-QB. We

provided a necessary and sufficient condition for a specific

case of the SQ-MAP over the NBNDC-QB, under which

the MAP decoder can be replaced with an instantaneous

symbol-by-symbol decoder. The system was tested for both

correlated and uncorrelated source distributions and numerical

results show that the proposed system can successfully use

memory and soft-decision information over the NBNDC-QB

channel model. Finally, the channel model was compared to

the Rayleigh DFC, in terms of SDR, and it was shown to

be a useful practical model for designing systems which are

intended to be used over Rayleigh DFCs.
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