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Abstract—We study optimal maximum likelihood block de- coding, iterative decoders designed for this channel amd it
coding of binary codes sent over binary contagion channelsith  queue-based extension can outperfom the theoretical limit
infinite and finite memory. We derive conditions on the codes 4 js achievable on the equivalent BSC (realized via ideal
and channels parameters under which maximum likelihood and . . .
minimum Hamming distance are equivalent. We also note that 'nterleav'ng) [_7] (see als_o [8] and [9] for decoders destyne
under these conditions, minimum distance decoding can pesfm  for Gilbert-Elliott and finite-state Markov channels). Fiwe
better without the use of channel interleaving. finite-memory channel, we determine sufficient conditions
on any binary code under which strict minimum Hamming
_ ) _ distance decoding is equivalent to strict ML decoding; #hil
Most of the results in coding theory are derived under thg, the infinite-memory channel, we show both necessary and

assumption that the communication channel is memoryleggicient conditions for which minimum distance and ML
The fact that most real life channels have memory has rl%coding are equivalent.

been effi_ciently explgited in current communication sysem | related works [10], [11], it was proven that strict mini-
Instead, interleaving is most commonly used to spread aang,,m Hamming distance decoding is equivalent to strict ML

error bursts over the set of received codewords so that le‘fl‘—.‘coding for perfect codes of minimum distance 3 over the
decoding can overcome most of the corrupted codewords fi; o-der Markov channel (finite memory contagion channel
the number of channel errors within a codeword is within thgii, 1/ — 1) with a positive correlation coefficient. In [12]
code's error correcting capability). In other words, the us;ricient conditions, under which strict minimum Hamming
of interleaving makes the channel appear memoryless 10 {j€tance decoding of binary linear perfect codes becomes
block decoder. This method has immediate shortcomings agdivalent to strict ML decoding, are derived for the same
fails to exploit the channel memory while adding delay to thg,annel. We extend the provided conditions to obtain even

system. _ o tighter sufficient conditions that apply for any binary code
It is well known that the maximum likelihood (ML) decod-(jinear or non-linear). We also provide similar results foe

ing of binary codes over the memoryless binary symmetriite memory contagion channel with’ = 2. In an another

channel (BSC) with crossover probability< 3 Is equivalent o [13], a sufficient condition on the infinite memory conta
to minimum Hamming distance decoding. When the commyion channel is provided, under which ML block decoding is
nication channel has memory, the above equivalence does é"@ﬁivalent to minimum Hamming distance block decoding for
necessarily hold. In this paper, we derive conditions 00rerr|inear codes containing the all-one codeword. We also imgro

words and on the channel characteristics, under which s results by obtaining necessary and sufficient conditi
equivalence holds. We deal with finite and infinite memory, any binary codes over the same channel.

Polya-contagion channels introduced in [1]. The infinite™e  rhe remainder of the paper is organized as follows. Sec-
ory contagion channel is a non-ergodic binary additive oan (o, || states the general problem and presents the corsider
which can be used in modeling non-ergodic fading channglgannel models with memory. Section IlI presents the main

[2], [3]. It has a closed-form expression for its epsilop@aity g 1ts. Section IV provides some numerical illustrations
and admits a simple ML decoding rule. Alternatively, theténi Finally, Section V gives concluding remarks.

memory contagion channel (of ordér), which is station-

ary and ergodic, was shown along with its generalizations|l. PROBLEM FORMULATION AND CHANNEL MODELS
based on a finite queue [4]-[6] to accurately model ergoqu ML decoding problem

correlated Rayleigh and Rician fading channels. Furtheemo

it has been recently observed that, in the context of LDPCWe first present the general problem of ML decoding of
binary block codes over modulo-2 additive noise channetls wi

This work was supported in part by NSERC of Canada. memory. The outpuY,, at time instant: of the binary additive

I. INTRODUCTION



channel is given by,, = X,, & Z,,,n =10,1,2,---, where® error increases the probability of future errors. This ctedn
denotes modulo-2 addition ankl, and Z,, are binary-valued which operates under two memory modes (infinite and finite),
input and noise (error) symbols, respectively. The input amas some attractive statistical and information-theongtop-
noise processes are assumed to be independent from eaties and presents an alternative to the Gilbert-Ellibstrmel
other. LetF := GF(2) denote the binary Galois field and[15] and other finite-state channels with memory (e.g.,18][

define the functionD,, : F* x F"* — R as follows: [177).
. P(Y" = y"|X" = x") The infinite memory contagion channel (IMCC) is an infor-
Dp(x",y") = —log, P(Z" = 0n) mation unstable channel with stationary non-ergodic lyinar
P(Z" = y" & x") noise proces$Z; }°, admitting the following closed-form-
— logy, D) fold distribution:
wherex” = (zo, 21, " s Zn-1), ¥Y" = (Yo,¥Y1, " ,Yn—1) P(Z" = z") = (55 + d)l"(lpr +n—d
and modulo-2 addition is performed component-wise. In [14] r(g)r(l%’)r(% +n)

Hamada proved that for any additive noise channel and for a\% I() is the G ¢ ion is the H . iah
blocklengthn, (F*, D,,) forms a metric space. It is natural erel’(-) is the Gamma function is the Hamming weight

i 1
to associate with this metric a weight functioi, (z") = of thf:herror: (or n|0|se) patierzf‘. gere_,fz_S - Oiln(lj:OZS 1:< 15
D, (z™,0™), z" € F" . Let C be an(n, K,d) code wheren are the channel parameters. Specificafly= P(Z; = 1)

is the code’s length (i.e., blocklength of its codewords)js IS th? t(_:hannel bit terror ra}:_e (BE?] a;ﬁj”'s .the cha;netl
its dimension (number of codewords) adds its minimum correfation parameter resufting in the foflowing correlax

distance. When a codeword i@ is sent over the channelcoeﬁ'c'ent between any two noise bits at distinct time insta

and received ag/” at the channel output, then it can be = C?}';fzz)” = lf-d Vi # j where Cov-,-) and Vag-)
directly noted that the ML block decoder selects the folluyvi denote covariance and variance, respectively.dAs 0, the
codeword as an estimate of the transmitted éfie= y"®z", IMCC reduces to a BSC with BER. It is also proven in
wherez" = arg ming . cgn.ynggznec Wa(2z"). It can be shown [1] that the IMCC belongs to the class of averaged channels
that, for memoryless channels, the above weight reducé®to with memory, and a closed-form expression of its epsilon-
Hamming weight. Hence, we can use the nBw(-,-) metric capacity is obtained. However, the fact that the first noise
to generalize basic definitions from coding theory such assamples have the same effect as “more recent” noise samples
code’s minimum distance, its packing and covering radid aron future noise outcomes (due to its infinite memory) makes
so on. Similarly, we can generalize the concept of perfedt athis model appropriate for only non-ergodic binary chasnel
quasi-perfect codéslt was proven in [14] that, for any binary ~ The finite memory contagion channel (FMCC) is a deriva-
additive noise channel, generalized perfect and quaséqter tive model from the IMCC, introduced to limit the effects
codes are optimal under ML decoding among all codes witlf the current noise sample to only a finite number of
the same lengths and dimensions. future noise samples. Its noise process, generated by desimp
In Section Ill, we establish sufficient conditions (and negnodification of Polya’s original urn scheme used to produce
essary, where applicable) on binary codes over two classike IMCC noise process, is a stationary ergodith order
of Polya contagion channels with memory, under which MMarkov source. IfM = 1, the FMCC reduces to the first-
decoding reduces to minimum Hamming distance decodibgder binary Markov additive noise channel (which is a sgleci
(for the case of the finite-memory contagion channel, thease of the Gilbert-Elliott channel). The probability of emor
equivalence holds under strict decodiAgXhus, from the word z" = (z9,z21,...,z,_1) € F" generated by a FMCC
optimality of generalized perfect codes [14], we conclut#,t s identical that of the IMMC noise fodl > n, while for
under the derived conditions, perfect codes in the classiga < n, it is given by:
(Hamming distance) sense are still optimal for the consider

. . . k—1 M—-1—k
channel models, which we briefly describe next. n n . .
Y Pz"=z") = T[[w+i) [ @-p+id)

B. Polya Contagion Channels i=0 §=0

In the binary contagion channel model [1], the noise, gener- depends only on the first M samples
ated via Polya’s contagion urn sampling scheme, propagates n—1 . v
the channel by mimicking the spread of a contagious disease X H [(1 —p+ (M —si-1)6) 7 (p+si-16) }

i=M

through a population in the sense that the event of a chaitnel b

1Recall that a classical perfect code has identical covesind packing whereT is a CO_nStant d_ependlng on the channel parameters
radii; while a quasi-perfect code has a covering radius letis packing (BER p, correlation coefficiens and memory ordenM), k =
radius plus one. Z0+z1+ ... +zy_1ands;_1 =2y + o+ 2i1.

2By strict decoding, we mean that conventional incompleteodig is ;
used where decoding failure is declared if there are more din@ codewords We now present, without pI‘OOf, another useful property of

with minimal decoding metric (e.g., see [12]). contagion channels.



Proposition 1: For both IMCC and FMCC contagion chan- Proof: Let y be the received word. Letm £
nels withp < % the all-0 error word is the most likely amongminccc di (y, ¢),where dy denotes the Hamming distance.
all possible error words. Clearly, m < 7., < % (from the definition of the cov-
ering radius). If there exist a unique codewardsuch that
dg (y, &) = m, then the SMD decoding gives a valid code-

In this section, we study the problem of block ML decoding,ord. Sincem < m*, it follows from Proposition 2 that all
over the above contagion channels. For the FMCC (withther error words of larger Hamming weights have a smaller
M =1,2), we derive sufficient conditions under which strichrobability than the error word corresponding to the SMD

ML (SML) and strict minimum distance (SMD) decoding arjecision. Therefore, SMD and SML decoding are equivalent.
equivalent. Furthermore, for the IMCC, we provide necegssar u

and sufficient conditions for which ML and MD decoding For a givenp, ¢ and n, Theorem 1 gives a sufficient

are equivalent. We first present the results for the FMCgpndition for binary codes under which SMD decoding is
(M =1,2) and then for the IMCC. equivalent to SML decoding. Hence it can be shown that under
these conditions, traditional perfect codes are also gdined
perfect codes over this channel. Therefore, following the

1) FMCC With_M = 1. As mentioned earlier, the l:'\/lccdiscussion in Section I, traditional perfect codes ardnoait
reduces to the first-order Markov channel whigh= 1. We under the sufficient condition in Theorem 1.

IIl. ML D ECODING OVER CONTAGION CHANNELS

A. Finite Memory Contagion Channel

herein tighten the results already derived in [12]. The cledn m*
noise transition matrix is given by: N ! —p =0.001
AN vop = 0.01
et(l—e)(l-p) (I—ep A -ep=0.1
= SEy : : i
« L-l-p) e+(1-ep
4* ‘l‘ -
wherep is the channel noise BER anrd= % We \‘

assume thad < e < 1.
Proposition 2: Define:

(0

S (1 —€)p
mp =
N (e+<1 —e>p) +1n(e+<1—e><1 —p))
q (1 —ep 1 —e)(1-p) Fig. 1: Plot of m* with respect toe for different values ofp.
an
(n—1)In e+(1-e0-p) Tn L—-p In Fig. 1, we plotm™ versus the channel correlation coef-
a e+ (1—¢€)p ficient e for different values of the BER. We notice from
M2 = e+ (1—e€)(1-p) 1—p " the figure that the condition of Theorem 1 is quite restretiv
2In 1-ol-p) +1n D for channels withe > 0.1. In fact, for these channels, only

codes with a covering radius.,, = 1 satisfy the condition
(e.g. the family of Hamming codes). For smallemore codes
satisfy the condition, and asymptotically, wher+ 0 (BSC),
unsurprisingly all block codes satisfy it.

where wy (-) denotes the Hamming weight, we have that 2) FMCC with A/ = 2: We next present results on the
PlZ" = 2z"] >P[Z" = z"] iff m <m* = min(m,m2). equivalence between SMD and SML decoding for codes sent
The above proposition states that for given channel paemietoyer the FMCC with}M/ = 2 using a similar (albeit more

p and e and for a given blocklengt, the ML criterion inyolved) method as with the case df = 1.

used to compare two different error patterns is equivalent t Proposition 3: Define:

the minimum Hamming weight criterion when the Hamming

For any two error worde™ andz" satisfying:
i. wy(z")=m,where0 <m < %
i. wy(z")=m+1i,wherel <i<n-m

weight of at least one of these patterns is less thafe, p, n). In <1L+25> +1n (p + 25)
Conversely, if we look only into error patterns with Hamming 5 =~ 2 p+o
weights greater than or equal t@*(e,p,n), we can find 1 ((1 —p+2§)4(p+25)2)
patterns that do not satisfy this equivalence. 2 p?!(1—p)(1—p+9)3

Proposition 2, which improves upon the sufficient condition and
in [12, Lemma 3], is fundamental for the following result. 21n ( (1 —p+20)"*2(1 —p)? )
Theorem 1:LetC be any ¢, K, d) code. Denote by, the N P?(p+0)(1—p—+0)3(p+20)"—3
classical covering radius of this code.r{f,, < min (m*, %) 2 ) ( (1 —p+26)°

12
then SMD and SML decoding are equivalent for this code. p2(1—p)(1 —p+96)3

|I>




Maximum Covering Radius

whered = . For any two error words™ andz” satisfying so : | |
i. wy(z") =m, where0 <m < 3
i. wy(z")=m+1i,wherel <i<n-m
we have that " = z"] >P[Z" = z"] if m < m* =
min(ml, 7’77,2). '\
The above proposition is instrumental in proving the fol,, "
lowing result.
Theorem 2:LetC be any ¢, K, d) code. Denote by.,, the 10
classical covering radius of this code.rf,, < min (m*, %)
then SMD and SML decoding are equivalent for this code. 0——43 ol 013 03 055 03 035 04
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: Fig. 3: Plot of the maximum allowable,, over the IMCC with respect
’ to correlation coefficient for different values of BERp.
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1 is always more likely than the maximum distance estimate.
Hence, ML and MD decoding are equivalent. ]
We illustrate the condition of Theorem 3 in Fig. 3 by
plotting the maximum allowable value for a code’s covering
radius over the IMCC.
ol 02 03 04 05 06 07 08 05 1 We can tighten the condition in Theorem 3 to obtain
a necessary and sufficient condition on the cdtleFor
Fig. 2: Plot of 7n* with respect toe for different values ofp. an arbitrary received wordy € F", let dpin(y") =
. o . mineee dp(y™,¢) and dpa(y") = maxeecdp(y™,c) as
The possible values of* are plotted in Fig. 2 for different 5p4ye. Definedsum () 2 |dmin(y™) — dmin(1" ® y™)],
values ofp ande. where1” = (1,---,1) is the all-one word of lengt, and
let dsym(C) £ maxynepn dsum(y™). We now can state the
necessary and sufficient condition.
A curious property about the IMCC is that ML decoding Theorem 4:MD decoding is equivalent to ML decoding iff
always reduces to either minimum distance or maximum,,, (C) < %
distance decoding, depending on the set of possible error
words [1]. In fact, letz;™ andz," be two error words and let IV. NUMERICAL RESULTS
d, andds be their respective Hamming weights. We have the
following equivalence:

B. Infinite Memory Contagion Channel

Let C be the (15,21, 3) perfect binary Hamming code.
We simulate the performance 6fover the binary first-order
PIZ" = 21" > P[Z" = 25"] <= |dy —p| > |do —pt| (1) Markov channel and the FMCC with/ = 2. We choose a
correlation coefficient = 0.2 for the Markov channel and we
wherep = % + 3. setd = 0.3 (i.e., with a noise correlation coefficient 6f23)
From the above equivalence, we can obtain a sufficiefar the FMCC withM = 2. This choice of parameters ensures
condition on any binary code so that ML decoding becomdsat bothm* andm* are greater than the covering radius of
equivalent to minimum distance decoding. This is presentédfor our range ofp, as shown in Figs. 1 and 2, respectively.
in the following theorem. Hence, according to Theorems 1 and 2, SML decoding is
Theorem 3:For any(n, M, d) codeC, if the covering radius equivalent to SMD decoding. The simulated communication
of this code isr.o, < 1‘6217, then MD decoding is equivalentsystem consists of a simple encoder, a channel and a minimum
to ML decoding. distance decoder. In Fig. 4, we compare its probability of
Proof: Let y™ be an arbitrary received word IB". We codeword error (PCE) to that of a system that employs an
denote byzmin"(y") andzmax"™ (y™) the error word estimates infinite-depth interleaving scheme. In our simulation, ead
of the minimum and maximum distance decoders, respective?)000 codewords over each channel. The figure shows that, for
We denote byd,., and d,... their respective Hamming relatively small channel BER9 (< 0.1), the performances of
weights. From the definition of the covering radius, we knowoth systems are very comparable. Whereas for higher BERs,
thatdmin < reoy < 2522, Hence [dpin —p| > 2 — 1522, On  the system without interleaving is slightly better. We alvee

25
the other handd,,.. < n. Hence,|dmae — p| < § — 1;?”. a similar behavior over the IMCC. Hence under the conditions

Therefore, for any received wowd |d.in — pt| > |dimaz — |- 0f Theorems 1, 2 and 3, interleaving does not only add delay
From (1), we deduce that the minimum distance estimaie the communication system, it also does not provide any




significant gain in performance and even in some caseswith M = 2. For the IMCC, we provided both necessary and
slightly reduces the performance of the system. Therefosafficient conditions for which MD and ML are equivalent. We

under these conditions, the use of interleaving is notfjasdti
We also simulate the performance of ttig 2%, 3) perfect

0.9-
0.8
0.7
0.61

PCE

0.5
0.4
0.3
0.2
0.1

—No interleaving over binary first-order Markov channel
- Interleaving over binary first-order Markov channel
---No interleaving over FMCC with M =2
—e—Interleaving over FMCC with M =2

i
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Fig. 4: Performance of th¢15, 21!, 3) Hamming code with and without
interleaving over the first-order Markov channel and over BEMCC with

M = 2.
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0.2

p=P(Z=1)

0.25

03

have also noted by simulation that, under these conditibes,
use of an infinite-depth interleaver does not necessarfr of
performance gains.

Future work may include extending the results to other
channel models with memory (e.g., the FMCC withh > 2
and the Gilbert-Elliott channel). Another interestingetition
is to study optimal structures of binary block codes ovemeha
nels with memory as we have established that the Hamming
distance is not necessarily the most important parametéein
code design.
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